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Why study MgO up to Earth’s core conditions? 

Credit: Sanne Cottaar Cutaway of Earth’s interior showing schematic locations of an LLSVP 
and ULVZs on the core-mantle boundary. Image courtesy of E. 
Garnero/M. Li, ASU. 



MgO & (Mg,Fe)O shock-ramp experiments on Z

• Motivation: Can Fe-enrichment 
account for Earth’s ULVZs?

• Goal: First direct measurements of 
sound speeds of (Mg,Fe)O following 
isentropic paths similar to the 
geotherm
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DFT calculations guiding shock and ramp

• MgO B1
• MD calculations using 

Quantum Espresso
• 64 atoms supercell

Rankine-Hugoniot relations
ρ0US = ρ(US − up)
P − P0 = ρ0(US − u0)(up − u0) 
E −E0 = 1/2(P +P0)(V −V0) 
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Z3894 90 GPa fp50 & MgO

Z3809 90 GPa fp25 & MgO

Z3865 150 GPa fp25 & MgO

Z3866 150 GPa fp50 & MgO

Z experiments





FP (0%)

FP (50%)

FP (50%)

Romulan

Romulan

Romulan

Romulan

Romulan

Romulan
VISAR

VISAR VISAR

CathodeAnode

FP (50%)

FP (50%)

VISAR

VISAR

VISAR

FP (0%)



Jean-Paul Davis

Sakun Duwal

3.00               3.05                3.10               3.15                3.20
Time (μs)

400

300

200

100

    0

Pr
es

su
re

 (G
Pa

)

Prediction:
• Shock to ~90 GPa
• Ramp to ~ 350 GPa

Predicting shock-ramp path





Measurements on the Z machine

Diagnostics
• Velocity interferometer system 

for any reflector (VISAR)
• Photon Doppler velocimetry 

(PDV)



PDV velocimetry profiles
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Velocimetry analysis

• Average PDV and VISAR data to 
minimize uncertainty

• Correct velocities for the LiF 
windows

• Calculate the shock state 
given a Hugoniot state guess
• This is the state that we begin 

the ramp and Lagrangian 
analysis

Shock state



Iterative Lagrangian Analysis (ILA)

• Lagrangian Analysis
• Reiterate until minimal change 

in EOS for each iteration
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