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Why study MgO up to Earth’s core conditions?

Thermochemical
pile

Lower mantle

Inner core

Credit: Sanne Cottaar Cutaway of Earth’s interior showing schematic locations of an LLSVP
and ULVZs on the core-mantle boundary. Image courtesy of E.
Garnero/M. Li, ASU.



MgO & (Mg,Fe)O shock-ramp experiments on Z
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Motivation: Can Fe-enrichment
account for Earth’s ULVZs?

Goal: First direct measurements of
sound speeds of (Mg,Fe)O following
isentropic paths similar to the
geotherm






DFT calculations guiding shock and ramp

Josh Townsend

- MgO B1

* MD calculations using
Quantum Espresso

MgO Shock-Ramp Paths Simulated by DFTMD

Prilncipal Hlugoniot —E—
Ramp from 100 GPa shock
Ramp from 150 GPa shock —— -

* 64 atoms supercell

Rankine-Hugoniot relations
polk=p(lk— )

P— Po=po(Us— w)(th— W)
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MgO Principal Hugoniot
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/ experiments

MgO (Mgg 75Fep25)0  (MgysFeqs5)O0
End Member Bulk Mantle Fe-enriched

Upper Mantle —*

(Mg,Fe)2SiOq4
2618

shock

Lower Mantle —

experiment compositions

pressure Ll [
Core >
73894 90 GPa fp50 & MgO il
73809 90 GPa fp25 & MgO Z
73865 150 GPa fp25 & MgO o
73866 150 GPa fp50 & MgO :::»'“’P;:::j o
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Predicting shock-ramp path

Pressure (GPa)
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Measurements on the Z machine

LiF

Al flyer
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Diagnostics

* \Velocity interferometer system
for any reflector (VISAR)

* Photon Doppler velocimetry
(PDV)



velocimetry profiles

N1, MgO

Vebsery

Vebooky
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Velocity (km/s)
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Velocimetry analysis

* Average PDV and VISAR data to
minimize uncertainty

e Correct velocities for the LiF
windows

e Calculate the shock state
given a Hugoniot state guess

* This is the state that we begin
the ramp and Lagrangian
analysis
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lterative Lagrangian Analysis (ILA)

* Lagrangian Analysis

* Reiterate until minimal change

in EOS for each iteration 14000
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Lagrangian Sound Velocity (km/s)
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Pressure (GPa)
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