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SUSTAINABILITY IN ADDITIVE MANUFACTURING

 Plastic pollution is an ongoing global challenge

FDM filament recycling

« Need sustainability in polymer manufacturing
« Also true for additive manufacturing

» Thermoplastics can be reprocessed

« Thermosets, by nature, are difficult to recycle
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ADDITIVE MANUFACTURING VIA PHOTOROMP

photoROMP: photoinitiated Ring-Opening Metathesis Polymerization

Photosensitizers make many Ru catalysts accessible

Additive manufacturing with pDCPD: poly(DiCycloPentaDiene)
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DEGRADABLE PDCPD VIA PHOTOROMP
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SILYL ETHER MONOMERS FOR ROMP AND
DECONSTRUCTION OF PDCPD
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EXPLORATION OF SILYL ETHER MONOMERS IN PHOTOROMP
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- Amenability of Ru catalyst, photosensitizer, and 0\ Investigate silyl ether

coinitiator combinations to silyl ether inclusion monomers for photoROMP

« Kinetics and ability to print via photoROMP Characterize materials
, , , properties
- Materials properties (mechanical, thermal)

Deconstruct materials and

« Deconstruction of networks L,} recycle fragments

- Fragment recovery and recycling

r Print materials over
H multiple regenerations

« Ability to print over multiple generations of
deconstruction




PHOTOROMP KINETICS AND PRINTING WITH SILYL ETHERS
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MATERIALS PROPERTIES WITH SILYL ETHER INCLUSION
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DECONSTRUCTION OF THERMOSETS WITH SILYL ETHER
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DECONSTRUCTION OF THERMOSETS WITH SILYL ETHER
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REGENERATION AND PRINTING WITH RECOVERED FRAGMENTS
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CONCLUSIONS
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COMPARISON OF PROPERTIES TO PREVIOUS WORK
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CURING CONSIDERATIONS

Curing process: Hold at 180 C for 4 hours
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CONVERSION OF UV CURED NETWORKS

Norbornene Conversion

Cyclopentene Conversion
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« Real-time IR kinetic characterization
indicates full conversion of
norbornene, cyclopentene with
inclusion of iPrSi8

 Residual exotherm decreases with
iPrSi8 inclusion
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PRELIMINARY FRAGMENT SIZE CHARACTERIZATION
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« No noticeable trend yet, contrary to
previous work

« Could be result of experimental

conditions -



FRAGMENT LOADING EXPLORATION
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