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ABSTRACT

The growing demand for real-time analysis, experimental steering, and decision-making in scientific work-
flows has created a need for tightly coupled integrations between experimental facilities and high-performance
computing (HPC) systems. The Department of Energy’s Integrated Research Infrastructure (IRI) initiative
highlights data streaming as a key capability for enabling memory-to-memory data transfers, bypassing
the limitations of traditional store-and-forward models. SciStream is a toolkit developed by researchers

at Argonne National Laboratory (ANL) to support such streaming by addressing cross-domain security,
delegated authentication, and application transparency. We deployed and evaluated SciStream on the Oak
Ridge Leadership Computing Facility’s (OLCF) Advanced Computing Ecosystem (ACE) infrastructure,
leveraging the Olivine OpenShift cluster and its high-bandwidth Data Streaming Nodes (DSNs) as gate-
way nodes. Our evaluation included synthetic streaming workloads derived from IRI science workflows,

a streaming simulator, and integration with RabbitMQ to handle low-level messaging. This report docu-
ments the deployment process, performance evaluation, and challenges encountered, along with opportuni-
ties for future improvements.



1. INTRODUCTION

The scientific workflow landscape is evolving rapidly, with modern workflows increasingly requiring near
real-time data analysis, experimental steering, and informed decision-making during experiment execution.
This shift is driving the development of tightly coupled workflows that integrate scientific instruments at
experimental facilities with High-performance computing (HPC) systems, enabling on-the-fly analysis of
experimental data and timely feedback to guide experimental control. Examples include the Linac Coher-
ent Light Source (LCLS) workflow at SLAC National Accelerator Laboratory, which streams diffraction
frames from the LCLS light source over Energy Sciences Network (ESnet) [7] directly to HPC systems at
Oak Ridge Leadership Computing Facility (OLCF) [35]; the Al-enabled workflow at Argonne’s Advanced
Photon Source (APS), which uses HPC nodes to retrain models on the fly for real-time experimental steer-
ing [6]; and the edge-to-exascale workflow using Frontier at OLCF, where a Temporal Fusion Transformer
(TFT) at the Spallation Neutron Source (SNS) predicts 3D scattering patterns and provides feedback to
adjust beam settings [43].

The U.S. Department of Energy (DOE) Integrated Research Infrastructure (IR]) initiative aims to accel-
erate the time to insight from such tightly coupled experimental-HPC workflows [26]. In its 2023 report
[31], the IRI task force identified several templates for interacting with HPC resources. Among these, data
streaming offers powerful emerging capabilities such as near real-time data analysis, experimental steering,
and informed decision-making during experiment execution. Unlike traditional store-and-forward mod-
els, which involve writing data to disk, transferring it over wide-area filesystems, and then reading it on

a supercomputer, data streaming enables direct memory transfers. With direct memory streaming, bytes
are moved straight from an edge node’s DRAM into an HPC job’s address space, bypassing intermediate
storage layers.

SciStream [12] is one such tool that tackles the infrastructural challenges necessary to enable these memory-
to-memory data transfers between instruments and HPC, even when neither system has direct network
connectivity. It treats each experimental or HPC facility as an independent security domain and allows

each to expose streaming resources through a federated interface. SciStream addresses three primary chal-
lenges: handling data transfers across security domains between data producers (e.g., scientific instru-
ments) and consumers (e.g., HPC systems); supporting delegated authentication and authorization within
broader scientific workflows; and decoupling sophisticated identity and access management from applica-
tions, minimizing changes and reusing existing security architectures.

An initial discussion with the SciStream team at Argonne National Laboratory (ANL) led to a collabo-
rative effort to deploy it on the OLCF’s Advanced Computing Ecosystem (ACE) infrastructure [36]. The
ACE infrastructure at OLCF serves as a platform to support various foundational technologies, comput-
ing capabilities and cutting-edge science. SciStream’s architecture relies on Gateway nodes (GNs) that act
as intermediaries, connecting the internal instrument/HPC network with the external Wide-area network
(WAN). The Olivine OpenShift [27] cluster within ACE includes high-bandwidth Data Streaming Nodes
(DSNs) [8] with both internal and external 100 Gbps connectivity, making them ideally suited to serve as
SciStream GNs.

The first phase of the project focused on preparing SciStream components for deployment on the Open-

Shift environment of the Olivine cluster. After making the components OpenShift-compatible, we tested

them extensively and deployed them on the Olivine DSNs. In the next phase, we evaluated the functional-

ity of the different components and the options that SciStream provides. To assess performance and scal-

ability under conditions resembling real streaming workloads, we derived synthetic workloads from the
streaming characteristics of two IRI science workflows—Gamma-Ray Energy Tracking Array (GRETA)/Deleria



[13] and LCLS [40]. Producer and consumer applications were deployed on OLCF’s Andes [32] com-
pute cluster to test the scalability of streaming through SciStream. In addition, we developed a streaming
simulator that emulates experiments in which these synthetic workloads are streamed from producers to
consumers. We also deployed a streaming service, such as RabbitMQ [10], to handle low-level messaging
aspects during the SciStream experiments.

This technical report documents our efforts beginning with the deployment, testing, and evaluation of
SciStream on ACE. §2 introduces SciStream, its design goals, and architectural components. §3 describes
the containerized deployment of SciStream on a local system to gain familiarity with its commands and
setup. §4 provides details of the ACE platform and deployment hardware. §5 outlines the step-by-step de-
ployment process for two setups: one with producer applications deployed locally communicating with
consumer applications on the Olivine cluster, and another with both producer and consumer applications
deployed on the Andes cluster and communicating through a RabbitMQ streaming service. §6 presents our
evaluation of SciStream using the second setup through simulated streaming experiments. §7 concludes
the report, discusses the challenges faced during deployment and testing, along with future work.



2. ARCHITECTURE AND COMPONENTS OF SCISTREAM

SciStream [12, 16] is a middlebox-based architecture and toolkit designed to enable secure, efficient, and
transparent memory-to-memory data streaming between scientific instruments and remote HPC facilities.
Unlike traditional file-based data staging that relies on intermediate storage systems, SciStream directly
bridges producer and consumer applications across multiple security domains, overcoming restrictions
due to firewalls, Network Address Translation (NAT), and limited external connectivity of instruments and
compute nodes.

SciStream was developed by researchers from ANL with four main design goals in mind. The first goal

is third-party streaming. In scientific workflows, it is often desirable for users or workflow engines (e.g.,
Swift/T [42], Pegasus [15], Galaxy [25]) to initiate, manage, and monitor data transfers without requiring
direct intervention from the producer or consumer applications themselves. SciStream enables this model
by separating the control and data channels. The control channel is responsible for authentication, autho-
rization, and negotiation, while the data channel carries the actual data streams. This design ensures flexi-
bility, transparency, and fault isolation, making it easier to integrate SciStream into large-scale workflows.

The second goal is secure streaming. Because instruments and HPC systems typically reside in distinct ad-
ministrative and security domains, end-to-end security is critical. SciStream enforces authentication and
authorization on both control and data connections. It leverages federated identity systems like InCom-
mon [41] and Globus Auth [1 1] to manage user access seamlessly across facilities. For the control plane,
SciStream uses shared-key authentication, while for the data plane it relies on source-based authentication.
Encryption can also be enabled on demand to further secure sensitive communications across WANS.

The third goal is general and transparent streaming. SciStream is designed to be application-agnostic, re-
quiring minimal changes to existing producer or consumer code. This is achieved by using transport-layer
(Layer-4) proxies that are transparent to applications and independent of the specific streaming library in
use—whether ZeroMQ [5], RabbitMQ, Kafka [20], or others. This approach avoids the complexity and
scalability limitations of application-layer (Layer-7) proxies, which must support each protocol individ-
ually, and the deployment challenges of network-layer (Layer-3) NAT or tunnels, which can be difficult to
scale and may introduce additional overhead.

Finally, SciStream supports both provisioned and best-effort resources. In provisioned scenarios, resources
such as bandwidth and compute capacity are reserved in advance to guarantee performance. In contrast,
best-effort scenarios arise in environments where HPC jobs may be queued or network traffic is shared
with other workloads. SciStream’s control protocol is flexible enough to handle both cases by allowing
asynchronous setup. Producers, consumers, and controllers can connect independently when they become
available, enabling both time-sensitive guaranteed workflows and opportunistic data streams to coexist
effectively.

As shown in Figure 1, SciStream’s architecture leverages the Science DMZ [14] to deploy On-demand
proxies (ODPs) on specialized GNs, which act as bridges between internal instrument or HPC networks
and the external WAN. These proxies are implemented as Layer-4 TCP proxies with reconfigurable circu-
lar buffers. While dedicated GNs provide superior performance and easier management by avoiding con-
tention from file-based transfers, re-purposing existing Data Transfer Nodes (DTNs) can be a cost-effective
alternative, particularly for smaller institutions. SciStream is designed to support both deployment models,
making it adaptable across a wide range of scientific facilities.

SciStream’s architecture is realized through three core components: SciStream User Client (S2UC), SciStream
Control Server (S2CS), and SciStream Data Server (S2DS) (see Figure 2). The S2UC is the interface



Remote HPC Facility

Exp. Facility

oo

Figure 1. SciStream’s architecture for memory to memory data streaming. On-demand proxies
(ODP) are deployed on specialized Gateway nodes (GNs) in both facilities.

through which users or workflow systems request, manage, and monitor streaming sessions. It handles user
authentication, resource negotiation, and connection orchestration, while also providing monitoring in-
formation such as throughput and channel status. The S2CS operates on GNs within the facilities. Its role
is to authenticate users and applications, manage resources, and launch S2DS processes, while also map-
ping producer-consumer associations to ensure resources are allocated correctly. The S2DS runs on GNs
and functions as the proxy between the local network of instruments or HPC interconnects and WAN. It
uses proxy certificates to authenticate external WAN connections and source-based authentication for inter-
nal Local area network (LAN) or HPC connections. Its primary purpose is to forward data streams while
maintaining transparency to producer and consumer applications.
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Figure 2. SciStream’s components and data flow paths.

SciStream introduces two major protocols to manage its operation: a negotiation protocol and a control
protocol. The negotiation protocol ensures that, before streaming begins, the producer and consumer agree
on the required bandwidth and number of channels through their respective S2CS. If necessary, additional
channels can be allocated to meet bandwidth demands, ensuring that both facilities can support the re-
quested stream and that resources are distributed in a balanced manner. Once negotiation is complete, the
control protocol orchestrates the end-to-end setup. The S2UC collects user requests, authenticates with



facilities, and assigns a unique identifier. Each S2CS on GNs then instantiates new S2DS to act as prox-
ies bridging local and remote networks. Ports are allocated, connection maps are constructed, and both
producers and consumers are informed of their designated endpoints. Once mappings are distributed, the
proxies establish connections, and the data path is activated. The data then flow through three transparent
hops: producer application — producer proxy (producer S2DS) — consumer proxy (consumer S2DS) —
consumer application, as indicated by ) , @ , and € in Figure 2. From the applications’ perspective,
these paths are fully transparent, and the data stream appears to flow directly from the producer applica-
tion to the consumer application (indicated by the red arrow). The control protocol also provides teardown
mechanisms to release resources once a request is complete.



3. LOCAL SCISTREAM SETUP USING DOCKER

This section outlines the steps required to set up SciStream using Docker [30] and establish communica-
tion between a simple producer and consumer application. This process is intended to familiarize with
SciStream deployment options and commands. Figure 3 illustrates this setup and the component interac-
tions. The only prerequisite is to have Docker installed locally.

For this deployment, we used the latest SciStream toolkit (version 1.2.1) [18, 17], whose Docker image

is available on Docker Hub [29]. The image is first pulled to the local environment, then tagged with the
address of the registry.apps.olivine.ccs.ornl.gov registry under a namespace (e.g., st£008). It is
then pushed to the registry so it can be reused. The remaining process is divided into five steps.
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Figure 3. SciStream setup on a local system using Docker containers.

3.1 START CONSUMER APPLICATION

In this setup, we use a simple Python TCP server as the consumer application. It listens on all interfaces at
port 8080. Start the consumer application with:

python3 consumer-app.py

3.2 SET UP AND START PRODUCER S2CS
In this step, the producer-side S2CS is set up and started.

1. Run the SciStream Docker image in an interactive terminal with Bash as the entrypoint. It also maps
port 5000 and the range 5100-5110 from the container to the host, allowing services inside the con-
tainer to be accessed on those ports. Port 5000 is used by S2CS for control-plane requests, while
all other ports are used by S2DS depending on the number of connections specified in the S2UC re-
quests.

docker run -it -p 5000:5000 -p 5100-5110:5100-5110 --entrypoint
/bin/bash registry.apps.olivine.ccs.ornl.gov/stf008/scistream:1.2.1



2. Find the container’s routable interface for communication between the container, host, and external
network. For most containers it is the primary Ethernet interface (e.g., eth®), connected to Docker’s
default bridge network. Here 172.17.0.2 is the IP assigned to the container by Docker’s internal
Dynamic Host Configuration Protocol (DHCP) for that network. Next generate a self-signed X.509
certificate (prod-server.crt) and private key (prod-server.key) using a 2048-bit RSA key.
Set the certificate’s Common Name (CN) and Subject Alternative Name (SAN) to the IP address
172.17.0. 2 of the container, so it can be used to authenticate a service running at that address.

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
prod-server.key -out prod-server.crt -subj "/CN=172.17.0.2" -addext
"subjectAltName=IP:172.17.0.2"

3. Next, start producer S2CS using the self-signed certificate and key that were generated earlier. SciStream
supports multiple data server implementations, including HAProxy, Nginx, Stunnel, StunnelSubpro-
cess, and HaproxySubprocess. In this setup, we use the StunnelSubprocess type of data server and
specify the container IP as 1istener_ip so that the server can listen on it.

s2cs --server_crt="prod-server.crt" --server_key="prod-server.key"
--type="StunnelSubprocess" --verbose --listener_ip=172.17.0.2

3.3 SET UP AND START CONSUMER S2CS

This step is similar to the previous one, as we start another SciStream control server, this time the con-
sumer S2CS, configured in the same way as the producer S2CS. The main differences are that we use a
different host port range (since ports 5000 and 5100-5110 are already mapped to the producer S2CS con-
tainer), the container has a different IP address, and we generate a separate certificate and key for the con-
sumer. The corresponding commands are shown below.

docker run -it -p 6000:5000 -p 6100-6110:5100-5110 --entrypoint /bin/bash
registry.apps.olivine.ccs.ornl.gov/stf008/scistream:1.2.1

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout cons-server.key
-out cons-server.crt -subj "/CN=172.17.0.3" -addext
"subjectAltName=IP:172.17.0.3"

s2cs --server_crt="cons-server.crt" --server_key="cons-server.key"
--type="StunnelSubprocess" --verbose --listener_ip=172.17.0.3

3.4 START S2UC AND SEND REQUESTS

Next, we start a container for the SciStream S2UC and send requests to it, which are then relayed to the
producer and consumer S2CS. Upon receiving a request, the S2UC generates a unique ID and passes it
to both the producer and consumer S2CS. Once the S2CSs accept the request, they create S2DS proxies
that stream data between each other. The request sent to the consumer S2CS is called an inbound request,
while the request sent to the producer S2CS is called an outbound request. Note that the certificates gen-
erated by the producer and consumer S2CS in the previous steps must be shared with the S2UC so it can
authenticate the connections.

1. Run the SciStream Docker image in an interactive terminal. Mount the local . /certs directory,
containing the producer and consumer S2CS certificates copied from their respective containers, into
the S2UC container at /certs, making the certificate files available inside the container.



docker run -it -v ./certs:/certs --entrypoint /bin/bash
registry.apps.olivine.ccs.ornl.gov/stf008/scistream:1.2.1

2. Send the inbound request to the consumer S2CS by specifying the server certificates and the con-
tainer’s IP address (172.17.0. 3). The remote_ip indicates the next hop for the data from the con-
sumer S2DS, which in this case is the consumer application (see Figure 3) listening on 0.0.0.0:8080

(see §3.1) of the host machine. Because the request originates inside a container, host.docker.internal

is used as the remote_ip, since it is a special Domain Name System (DNS) name provided by
Docker that resolves to the host machine’s IP address. The receiver_ports parameter is set to
8080, and the number of connections is one.

s2uc inbound-request --server_cert="/certs/cons-server.crt" --remote_ip
host.docker.internal --s2cs 172.17.0.3:5000 --receiver_ports 8080
--num_conn 1

As a result of the inbound request, the consumer S2CS creates a consumer S2DS proxy (opens a
port, PROXY_C) and assigns it a unique ID (UID).

3. Next, send the outbound request to the producer S2CS by specifying the server certificates and the
container’s IP address (172.17.0.2). The remote_ip is the consumer S2CS IP address (172.17.0.3),
which serves as the next hop (see Figure 3). The receiver_ports parameter is set to the port opened
(PROXY_C) by the consumer S2CS as a result of the inbound request, and num_conn is set to one.

The command also includes the UID generated by the consumer S2CS, along with its IP address and
proxy (PROXY_C).

s2uc outbound-request --server_cert="/certs/prod-server.crt" --remote_ip
172.17.0.3 --s2cs 172.17.0.2:5000 --receiver_ports PROXY_C --num_conn 1
UID 172.17.0.3:PROXY_C

As a result of the outbound request, the producer S2CS creates an S2DS proxy (PROXY_P).

3.5 STREAM DATA

The final step is to send data from the producer application to the consumer application. Since the con-
sumer is a simple Python TCP server, the producer can be as simple as a Netcat [28] client to send mes-
sages to it.

echo "123" | nc 127.0.0.1 PROXY_P

The reason the localhost IP 127.0.0.1 is used to send data to the producer S2DS instead of the producer
S2CS container IP (172.17.0.2) is that the host machine cannot directly access a container’s internal IP
address. While containers on the same Docker network can communicate with each other using their con-
tainer IPs, the host must rely on port mappings. In this case, port PROXY_P inside the container is mapped
to the same port on the host machine (see §3.2), so using 127.0.0. 1 allows the host to reach the container
through the mapped port.



4. DEPLOYMENT PLATFORM AND SPECIFICATIONS

The Advanced Computing Ecosystem (ACE) is a strategic initiative within the OLCEF that supports the de-
velopment of cutting-edge technologies to advance scientific research and innovation at OLCF and across
the DOE [36]. In addition to computing environments that span moderate (e.g., Frontier [2] and Andes
[32]) and open (e.g., Odo [33]) enclaves, ACE also provides a testbed offering a centralized, sandboxed en-
vironment that incorporates emerging compute and storage architectures. In this section, we describe the
specific components used for SciStream deployment and evaluation on the ACE testbed.

4.1 OLIVINE OPENSHIFT CLUSTER

Within the ACE infrastructure, the Olivine OpenShift cluster [34] provides a suitable platform for stream-
ing technology deployments, as it includes DSNs, dedicated gateway hosts that bridge the public WAN and
internal OLCF networks via high-speed network adapters. For this reason, we selected the DSNs to host
SciStream’s control and data servers. Purpose-built for streaming, each DSN is equipped with two 32-core
2.70 GHz AMD EPYC 9334 processors and 512 GiB of RAM. While each node supports 100 Gbps con-
nectivity to both internal and external networks, current usage is limited to 1 Gbps due to ongoing efforts
to fully configure high-speed interfaces within the OpenShift environment. Besides the DSNs, the Olivine
cluster also includes 13 standard nodes without high-speed connectivity. Among these, some are config-
ured with 64 cores and 256 GB of RAM, while others have 128 cores and 512 GB of RAM,; all of them
natively support only 10 Gbps networking.

4.2 ANDES COMPUTE CLUSTER

To deploy producer and consumer applications communicating through SciStream, we utilize OLCF’s An-
des [32] cluster. Each Andes node is equipped with two 16-core 3.0 GHz AMD EPYC 7302 processors
and 256 GiB of RAM. Andes and the DSNs in Olivine cluster are connected via a 1 Gbps Ethernet net-
work.
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S. DEPLOYMENT ON ACE

To deploy SciStream on ACE, we follow the same five steps described in §3, but adapt them for the OpenShift-
based Olivine cluster in ACE. The producer S2CS and consumer S2CS are deployed as OpenShift Pods.

We describe two types of setups: in the first, the producer runs on a local machine and communicates with

a consumer application running (in a Pod) on the Olivine cluster; in the second, both producer and con-

sumer applications run on Andes compute nodes. In the second setup, we also deploy and use an off-the-

shelf streaming service as a front end to SciStream, enabling the producer and consumer applications to
exchange data through this service.

5.1 SETUP 1: LOCAL PRODUCER AND OLIVINE CONSUMER

Figure 4 illustrates setup 1 where a local producer streams data to an Olivine consumer through SciStream.

| Legend
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Data Stream 2

Olivine OpenShift \

Figure 4. Setup 1: Local producer and Olivine consumer interactions with SciStream components
deployed on the Olivine OpenShift cluster.

5.1.1 Start Consumer Application

1. In this setup, we first define a Pod for the consumer application in a YAML file named consumer-pod.yaml.
This Pod runs the same Python TCP server consumer application described in §3.1. The Pod defini-
tion creates a Pod named consumer-pod with a single container based on the SciStream Docker
image. The container mounts a scratch volume at /scratch inside the container. Alternatively, any
Linux-based Docker image with Python installed could be used to run the simple Python TCP server
instead of the SciStream image. We then create the Pod from the YAML definition:

oc create -f consumer-pod.yaml

This deploys the Pod on one of the standard Olivine nodes. Let us refer to the IP address of this Pod
as CONS_APP_POD_IP.

2. Next, we copy the consumer application consumer-app .py from the local machine into the running
Pod, placing it under /scratch/consumer-app.py:

oc cp ./consumer-app.py consumer-pod:/scratch/consumer-app.py

3. Finally, we start the consumer application inside the Pod, which begins listening on port 8080.
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5.1.2 Set up and Start Producer S2CS

Similar to the consumer application, the producer S2CS is also defined as a Pod to run in the OpenShift
environment. The Pod’s YAML definition (producer-s2cs.yaml) creates a SciStream producer S2CS
Pod and runs a container from the SciStream image specifically on one of the Olivine DSNs. In §3.2, we
ran a container with the required host-to-container port mappings using Docker’s CLI; here, the Pod defi-
nition instead exposes the same mappings (port 5000 for control and ports 5100-5110 for the data plane)
through Kubernetes. The remaining steps to launch the producer S2CS, such as certificate generation and
starting the S2CS instance, are provided as container arguments. When the container starts, it generates

a self-signed certificate bound to the Pod’s IP and launches the S2CS process listening on that IP. In ad-
dition, the YAML defines an OpenShift Service resource [4] called prod-s2cs-service. A Service
provides a stable network endpoint to access the Pod, even though Pod IPs are dynamic and not directly
reachable from outside the cluster. Deploy the Pod and start the producer S2CS with:

oc create -f producer-s2cs.yaml

Let us call the IP of this Pod, where the producer S2CS is deployed, PROD_S2CS_POD_IP.

5.1.3 Set up and Start Consumer S2CS

Similar to the producer S2CS in the previous step, we create a Pod definition (consumer-s2cs.yaml) for
the consumer S2CS, then deploy and launch it.

oc create -f consumer-s2cs.yaml

Let us call the IP of this Pod, where the consumer S2CS is deployed, CONS_S2CS_POD_IP, and refer to the
Service defined for the Pod as cons-s2cs-service.

5.1.4 Start S2UC and Send Requests

In this step, we start a container locally for SciStream S2UC in the same way described in §3.4. As before,
the certificates generated by the producer and consumer S2CS in the previous steps must be shared with
the S2UC so it can authenticate the connections. The following command can be used to copy the certifi-
cates from their Pods to the local machine:

oc cp pod-name:/certs/server-cert.crt ./server-cert.crt

1. Start the S2UC container locally. The following command runs the S2UC container with the direc-
tory ./s2uc-mount mounted to /certs, where the producer and consumer S2CS certificates have
been copied:

docker run -it -v ./s2uc-mount:/certs --entrypoint /bin/bash
registry.apps.olivine.ccs.ornl.gov/stf008/scistream:1.2.1

2. The next step is to send the inbound request to the consumer S2CS. Unlike the fully local setup of
SciStream described in §3, where both S2UC and the S2CS processes ran in local Docker contain-
ers, here the S2UC container is local while the S2CS processes run as Pods in the OpenShift cluster.
Since Pod IPs are internal to the cluster and cannot be accessed directly from outside, we use port
forwarding. Port forwarding creates a secure tunnel between the local environment and the service
inside the cluster, allowing interaction as if the service were running locally. In this case, we forward
port 5000 on the local machine to port 5000 of the cons-s2cs-service (created in §5.1.3) inside
the cluster.

oc port-forward -n stf0®08 svc/cons-s2cs-service 5000
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This allows interaction with the consumer S2CS as if it were running locally on 127.0.0.1:5000.
The inbound request can then be sent with:

s2uc inbound-request --server_cert='"certs/cons-server.crt"
--remote_ip CONS_APP_POD_IP --s2cs host.docker.internal:5000
--receiver_ports 8080 --num_conn 1

Here, CONS_APP_POD_IP is the Pod IP of the consumer application listening on port 80880, which is

the next hop from the consumer S2CS Pod. The consumer S2CS itself is specified as host.docker.internal
instead of CONS_S2CS_POD_IP, since Pod IPs are not reachable outside the cluster. The special

DNS name host.docker.internal resolves to the host machine’s 127.0.0. 1, and with port for-

warding enabled, traffic sent to 127.0.0.1:5000 is routed through the cons-s2cs-service to the

consumer S2CS Pod. As a result of this inbound request, the consumer S2CS creates a consumer

S2DS proxy (PROXY_C) and assigns it a unique ID (UID).

3. Send the outbound request to the producer S2CS. In the same way, we first forward local port 5000
to the prod-s2cs-service:

oc port-forward -n stf0®08 svc/prod-s2cs-service 5000

s2uc outbound-request --server_cert="certs/prod-server.crt"
--remote_ip CONS_S2CS_POD_IP --s2cs host.docker.internal:5000
--receiver_ports PROXY_C --num_conn 1 UID CONS_S2CS_POD_IP:PROXY_C

Here, CONS_S2CS_POD_IP is the next hop from the producer S2CS Pod. As with the inbound re-
quest, host.docker.internal is used along with port forwarding to communicate with the pro-
ducer S2CS. As a result of this outbound request, the producer S2CS creates an S2DS proxy (PROXY_P).

5.1.5 Stream Data

To send a data stream from the local producer, we use the same Netcat client to transmit data to the Python
TCP server consumer application. Data can be sent either from outside a container (on the local machine)
or from inside a container. Before sending data, port forwarding to the prod-s2cs-service through port
PROXY_P must be enabled:

oc port-forward -n stf008 svc/prod-s2cs-service PROXY_P
e From outside a container, send data to the consumer application with:
echo "123" | nc 127.0.0.1 PROXY_P
e From inside a container, send data using:

echo "123" | nc host.docker.internal PROXY_P

5.2 SETUP 2: ANDES PRODUCERS AND CONSUMERS

In this setup, we use nodes in OLCF’s Andes compute cluster to deploy the producer and consumer appli-
cations. In a real experimental data streaming scenario, producers typically run on clusters or machines
located either in a different facility or in a separate cluster within the same facility. Such streaming scenar-
ios also involve low-level messaging aspects such as connection management, buffering, and flow control
between producers and consumers. To address this, we deploy a dedicated backend streaming service, such
as RabbitMQ, as a front end to SciStream. RabbitMQ is a messaging broker that implements the Advanced
Message Queuing Protocol (AMQP) [9] as its wire-level communication protocol. A RabbitMQ server
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(broker) enables clients to send, receive, or temporarily store messages using queues (i.e., ordered collec-
tions of messages that are held until consumed). Figure 5 illustrates this setup. Unlike the previous setups,
the data flow path (shown in green) includes an additional fourth hop: from the RabbitMQ server to the re-
ceiving consumer application. Furthermore, as seen in the previous setup (§5.1), sending requests or data
from outside the OpenShift cluster requires enabling port forwarding for each opened port or proxy. To
simplify this, we instead use NodePorts, a Kubernetes Service type [4] that exposes a Pod’s port on a fixed
port of every cluster node, allowing external clients to connect directly to <NodeIP>:<NodePort> without
requiring port forwarding.
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Figure 5. Setup 2: Producer and consumer applications on Andes cluster communicating with
RabbitMQ server through SciStream deployed on the Olivine OpenShift cluster.

5.2.1 Deploy Streaming Service

To deploy a three-server RabbitMQ streaming service, we used the Bitnami RabbitMQ Helm Chart (ver-
sion v3.18.3) [21]. This chart provisions a RabbitMQ cluster with servers running as separate Pods on
OpenShift, each configured with specific security, performance, and networking settings. Transport Layer
Security (TLS) is enabled using auto-generated certificates, and pod anti-affinity rules ensure that the

three RabbitMQ server Pods are scheduled on separate Olivine DSNs. Each replica requests 12 CPUs and
32 GiB of memory and is allocated 15 GiB of persistent storage. The service is exposed via NodePort,
with ports 30672 (AMQP) and 30671 (AMQPS) made available on the cluster nodes. These NodePorts al-
low external access from both producers and consumers. Let us refer to the node/host IP of the node where
one of the RabbitMQ server Pods is deployed as RABBIT_SERVER_NODE_IP, and the Pod’s internal IP as
RABBIT_SERVER_POD_IP. The RabbitMQ deployment command using the Helm Chart is shown below,
where rabbit.yaml specifies the cluster configurations:

helm install rabbitmq bitnami/rabbitmg -namespace stf008 -f rabbit.yaml
The RabbitMQ service can be uninstalled with:
helm uninstall rabbitmq -n stf008

5.2.2 Start Consumer Application

Since the producer and consumer applications communicate through a RabbitMQ streaming service, we
use a Golang-based RabbitMQ consumer application that connects over either TLS or non-TLS, declares

a queue (MSG_QUEUE), and consumes messages. The consumer application utilizes the amqp091-go (ver-
sion 1.10.0) [38] RabbitMQ AMQP client library to implement RabbitMQ APIs. The application is started
with:
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go run consumer-app.go

The consumer application uses amgp.DialConfig("amqp://username:password@RABBIT_SERVER_
NODE_IP:30672") API from the amqp091-go client library to establish a connection with the RabbitMQ
server. Here, port 30672 is the NodePort mapped to the RabbitMQ server’s non-TLS port 5672. If the
consumer application needs to use TLS, it can instead connect through port 30671, which is mapped to
the RabbitMQ TLS port 5671.

5.2.3 Set up and Start of Producer and Consumer S2CS

The setup and startup of the producer and consumer S2CS are the same as described in §5.1.2 and §5.1.3,
except that we modify their Pods’ YAML files. Specifically, the Services prod-s2cs-service and cons-
s2cs-service are updated to expose the Pods’ ports 5000 and 5100-5110 externally through Node-
Ports 30500, 30510-30520 and 30700, 30710-30720 on the host nodes where the Pods are deployed.
Let us refer to the node and Pod IPs of the Pods where the producer and consumer S2CS are deployed as
PROD_S2CS_NODE_IP, CONS_S2CS_NODE_TIP, PROD_S2CS_POD_IP, and CONS_S2CS_POD_IP, respec-
tively.

5.2.4 Start S2UC and Send Requests

To start S2UC, we used a login node on the Andes cluster, which only supports Apptainer [|] containers.
The first step is to pull the SciStream Docker image (version 1.2.1) from Docker Hub using the apptainer
pull command, which generates a scistream_1.2.1.sif file locally. The Apptainer container can then
be started with:

apptainer exec --bind ./certs:/certs scistream_1.2.1.sif /bin/bash

The certificates generated by the producer and consumer S2CS have been copied to the . /certs direc-
tory so they can be shared with the S2UC for connection authentication. The container then binds the local
./certs directory to /certs inside the container.

1. Send the inbound request from the container using S2UC:

s2uc inbound-request --server_cert=certs/cons-server.crt --remote_ip
RABBIT_SERVER_POD_IP --s2cs CONS_S2CS_NODE_IP:30700 --receiver_ports
5672 --num_conn 1

The request is sent to the consumer S2CS at its node IP (CONS_S2CS_NODE_IP) and NodePort 30700,
which maps to port 5000 inside the Pod. From the consumer S2CS, the next hop (remote_ip) is

the Pod IP of one of the RabbitMQ servers deployed on a DSN. The receiver port is the non-TLS

port 5672. Note that NodePort 30672 does not need to be used here, since both the consumer S2CS
and the RabbitMQ server run inside the same Olivine cluster and can communicate directly without
NodePorts. As a result of this inbound request, the consumer S2CS creates a consumer S2DS proxy
(PROXY_C) and assigns it a unique ID (UID). We will refer to the NodePort mapped to this PROXY_C
as PROXY_C_NODEPORT.

2. Send the outbound request from the container using S2UC:

s2uc outbound-request --server_cert=certs/prod-server.crt
--remote_ip CONS_S2CS_NODE_IP --s2cs PROD_S2CS_NODE_IP:30500
--receiver_ports PROXY_C_NODEPORT --num_conn 1 UID
CONS_S2CS_NODE_IP:PROXY_C_NODEPORT
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Here, the producer S2CS does not need to use the consumer S2CS node IP (CONS_S2CS_NODE_IP)
to communicate, since both are in the same cluster and the consumer S2CS Pod IP could be used
directly. However, we still use CONS_S2CS_NODE_IP to mirror a real cross-facility or cross-cluster
streaming scenario, where the producer S2CS Pod would be deployed in a different cluster than the
consumer S2CS. As a result of this outbound request, the producer S2CS creates an S2DS proxy
(PROXY_P). We will refer to the NodePort mapped to this PROXY_P as PROXY_P_NODEPORT.

5.2.5 Stream Data

To send data to the consumer application through the streaming service, we use a Go-based RabbitMQ
producer application. This producer sends messages to the queue MSG_QUEUE in the RabbitMQ server and
can be started with:

go run producer-app.go

The producer uses the same API to connect to the RabbitMQ streaming service but specifies a different
URL: amgp.DialConfig("amqgp://username:password@PROD_S2CS_NODE_IP:PROXY_P_NODEPORT").
Here, PROD_S2CS_NODE_IP is the producer S2CS node IP, and PROXY_P_NODEPORT is the NodePort
mapped to the proxy opened by the producer S2CS as a result of the outbound request. We use AMQP
without TLS in this setup because SciStream’s tunneling through proxies already provides encryption

and authentication via its TLS layer. In a true cross-facility deployment, the only externally exposed path

is this tunnel, ensuring that all traffic is protected by SciStream’s TLS-secured channel. Once the data
reaches the RabbitMQ server inside the HPC facility, it is already encrypted, so additional TLS between

the consumer S2CS and RabbitMQ is unnecessary.
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6. EVALUATION

In this Section, we present the evaluation of SciStream on ACE specifically utilizing setup 2 described in
§5.2 since this setup most closely match with real streaming scenario setup. We first describe the stream-
ing workloads and a streaming simulator developed for performing the evaluation and then we measure the
throughput and latency for the streaming workloads when streamed from producer to consumer application
through SciStream.

6.1 STREAMING WORKLOADS

We define streaming workloads based on two IRI science workflows, GRETA/Deleria [ 3] and SLAC-
LCLS [40] selected from the OLCF Science Pilots and Workflows initiative [36]. This initiative aims to
implement them on the ACE infrastructure to support experimental steering and cross-facility integration
across diverse scientific domains.

GRETA is a gamma-ray spectrometer currently being deployed at the Facility for Rare Isotope Beams at
Michigan State University. It enables real-time analysis of gamma-ray energy and 3D position with up to
100x greater sensitivity than existing detectors. The associated workflow software, Deleria, continuously
streams experimental data over ESNet to hundreds of analysis processes on an HPC system, processing up
to 500K events per second. Deleria supports time-sensitive streaming and has been deployed across ESNet
and ACE to demonstrate a distributed experimental pipeline. Recent emulation experiments on ACE scaled
to 120 simulated detectors, achieving sustained bi-directional streaming rates of ~35 Gb/s.

The LCLS at SLAC National Accelerator Laboratory provides X-ray scattering for molecular structure
analysis and streams experimental data to enable rapid analysis and decision-making between experiment
runs. The LCLStream pilot project trains a generalist Al model using streamed detector data, from both
archived and live LCLS/LCLS-II [39] experiments, to support tasks like hit classification, Bragg peak seg-
mentation, and image reconstruction. This Al-driven approach serves as a shared backbone for various
downstream data analysis tasks. With the new LCLS-II producing data at 400x the rate of its predeces-
sor, streaming up to 100 GB/s to HPC systems will be essential for responsive analysis and experiment
steering. LCLStream aims to support online streaming and real-time analysis during experiment execution,
eliminating delays associated with waiting for data to be written to file storage systems before processing.

Table 1. Data streaming characteristics for streaming workloads - Deleria and LCLS.

Characteristics Deleria LCLS
Payload size ~KiB range ~1 MiB
Payload format Binary HDF5
Payload element Events Events
Data packaging Variable # events/msg  Variable # events/msg
Data rate 32 Gbps 30 Gbps

Consumption parallelism Parallel (non-MPI) Parallel (MPI-based)
Production parallelism Parallel (non-MPI) Parallel (MPI-based)

Table 1 shows the key data streaming characteristics relevant to both workloads. The LCLS stream uses

~1 MiB data payloads with a steady data rate of <30 Gbps sustained over 1-100 minutes. Each message
contains an HDF5-formatted file, with producers and consumers launched using MPI. Messages are pushed
to consumers in a round-robin fashion as they become available in the queue.
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In contrast, Deleria streams messages in the KiB range, each containing multiple experimental events
batched together. The number of events per message is variable. Data messages use a compressed binary
format, while control messages are encoded in JSON. Depending on the type of experiment, the GRETA
detector sustains a steady data rate of up to 32 Gbps once an experiment begins. Producers and consumers
do not use MPI. Instead, consumers pull event batches asynchronously from a remote forward buffer, while
pushing processed events to a remote event builder. Although the Deleria workload’s payload size is vari-
able in the KiB range and streams a variable number of events per message, for consistency, we fix the
payload size to 2 KiB per event and the number of events per message to eight, resulting in a 16 KiB mes-
sage size.

To indicate that these workloads are synthetic streaming workloads derived from Deleria and LCLS, we
refer to them as Dstream and Lstream, respectively.

6.2 STREAMING SIMULATOR

To simulate the streaming experiments, we developed a Golang-based simulator! and utilized the amqp091-
go (version 1.10.0) [38] RabbitMQ AMQP client library to implement RabbitMQ APIs. The simulator ac-
cepts the streaming characteristics of workflows, as listed in Table 1. Additionally, the simulator allows
specifying RabbiMQ specific parameters (e.g., type of acknowledgements, number of queues, prefetch
count), experiment configurations (e.g., number of producers and consumers, message count, experiment
duration), and SciStream specific options (e.g., URL for connection, number of connections, TLS). For a
given message count or test duration, the simulator runs the experiment with the specified number of pro-
ducers and consumers. Each producer is identical in function and is responsible for generating workload
based on the input workload characteristics and sending data to the RabbitMQ server through SciStream
according to the specified parameters. Similarly, each consumer is identical and is designed to receive
messages from the RabbitMQ server based on the same set of parameters.

In addition to the producers and consumers, the simulator includes a coordinator component that serves
two primary functions. First, it informs producers and consumers about which message queues to use. Sec-
ond, it collects metrics from individual consumers/producers and reports the aggregate results for the entire
experiment. Each component, upon startup, handles the initialization of all required queues for the experi-
ment run. The simulator supports launching both MPI-based and non-MPI producers and consumers.

6.3 EVALUATION METRICS AND SETUP

For the simulations presented, we measured two metrics: throughput and Round-trip time (RTT). Through-
put refers to the aggregate message rate (messages per second) from all consumers involved in each ex-
periment. RTT is the time it takes for a message to travel from a producer to a consumer and for the cor-
responding reply to return to the producer. Each data point represents the average of three runs, with each
run streaming up to 128K messages. All tests were performed with an equal number of producers and con-
sumers to evaluate scaling behavior, and in every case the consumers were started before the producers.

To run the simulations, a total of 33 nodes from OLCF’s Andes system [32] were used: 16 nodes for pro-
ducers, 16 nodes for consumers, and 1 node for the coordinator.

6.4 MESSAGING PARAMETERS

To align streaming behavior with the workload characteristics shown in Table 1, we configure RabbitMQ
with specific parameters. For both workloads, to measure throughput, we adopt the work queue model,

'Our data streaming simulator, configuration files, and Pod definitions are publicly available here: https://github.com/
Ann-Geo/StreamSim/
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where producers send messages to shared queues and messages are distributed nearly evenly across mul-
tiple consumers. Where as to measure the RTT, we use the same work queue model for request messages,
but employ the direct routing model for replies. Each producer has a dedicated reply queue, ensuring that
replies are routed back to the correct producer. This prevents misrouting and eliminates the risk of a pro-
ducer waiting indefinitely for a reply intended for it but consumed by another. For both the above patterns
we used two shared work queues to achieve increased throughput [23].

All queue models use RabbitMQ’s classic queues, which retain a fixed number of messages in memory and
support configurable durability. We set the queue overflow policy to “reject-publish”, allowing producers
to detect backpressure, handle rejected messages, and attempt republishing. Of the total RAM allocated

to RabbitMQ servers, 80% is reserved for data payload queues, with the remaining 20% allocated to addi-
tional queues used for control messages, and workflow simulation management. Additionally we enable
batch wise producer and consumer acknowledgements for guaranteed message reception.

6.5 THROUGHPUT MEASUREMENTS

Figure 6 shows the aggregate throughput for both workloads. We also evaluated two additional SciStream
tuning options: network proxy type and number of connections to proxies. Specifically, we tested Stunnel
and HAProxy proxies, with up to four connections used in the HAProxy configuration. For the Dstream
workload with a single producer and consumer, configuration with HAProxy achieved the highest through-
put at 6.3K msgs/sec, while other configurations ranged between 4.4K and 6.2K msgs/sec.
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Figure 6. Throughput (msgs/sec) for (a) Dstream and (b) Lstream workloads.

In the configuration using Stunnel, throughput showed no significant improvement beyond a single con-
sumer. Moreover, Stunnel could support a maximum of 16 simultaneous connections in our setup, making
configurations with 32 and 64 consumers infeasible (no data points shown). This limitation is due to Stun-
nel’s design, which favors a few long-lived, TLS-wrapped flows rather than load balancing. By contrast,
configuration with HAProxy scaled better, reaching up to 19K msgs/sec with four consumers, but through-
put stagnated and began to decline beyond eight consumers. Increasing proxy connections to four showed
no significant performance gain.

For the Lstream workload, which uses a larger payload size, configuration with HAProxy scaled well up to
four consumers, after which throughput plateaued. Stunnel showed similar limitations as with Dstream.
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6.6 ROUND TRIP TIME MEASUREMENTS

We measured the per-message RTT, the time taken for a message to travel from a producer to a consumer
and return to the producer. Figure 7 shows the median RTT for both workloads. Since the Stunnel configu-
ration showed poor performance in earlier tests, we excluded it from further RTT evaluations and focused
only on HAProxy type.
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Figure 7. Median RTT (sec) for (a) Dstream and (b) Lstream workloads.

For Dstream workload, median RTTs were maintained under 0.5 seconds across all consumer counts. The
HAProxy configuration achieved a minimum of 17ms with four consumers. RTT increased slightly as the
number of consumers grew beyond eight. In the Lstream workload, for a single consumer, RTTs were un-
der 200ms. Median RTTs remained below 10 seconds across all consumer counts.

Since median latency cannot capture per-message RTT variations, we present the CDF of RTTs for all
messages in Figure 8. The RTT distributions remain consistently tight, with limited variation. Notably,

in the 64-consumer case, 80% of message RTTs are under 0.7 seconds for Dstream and 12.5 seconds for
Lstream, demonstrating uniformity in latency. However, increasing the number of connections from one to
four does not produce observable improvements in RTT.
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Figure 8. CDF of individual message RTTs for Dstream and Lstream workloads, with the number of
consumers varying from 1 to 64.
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7. CONCLUSION, CHALLENGES, AND FUTURE WORK

In this report, we described the steps taken to deploy and evaluate SciStream on OLCF’s ACE infrastruc-
ture. We first prepared the SciStream components for deployment on the OpenShift environment of the
Olivine cluster. The deployment was then evaluated using synthetic streaming workloads derived from IRI
science workflows, along with a streaming simulator in which producer and consumer applications ran on
compute nodes and communicated through SciStream with the support of a RabbitMQ streaming service.
During deployment and evaluation, we encountered multiple challenges that also revealed opportunities for
future extensions and improvements. We describe these challenges and possible directions below.

Usage of high-speed network: The evaluation shows that throughput eventually stagnates as the number
of consumers increases. A primary reason is the 1 Gbps network link between the compute nodes (pro-
ducers/consumers) and the DSNs (RabbitMQ servers). While the DSNs have 100 Gbps interfaces, config-
uration issues within our OpenShift environment have prevented their effective use. Ongoing efforts are
focused on reworking the DSNs to make the 100 Gbps interfaces fully usable [24].

Secure access via OpenShift Routes: SciStream requires clients to connect to a reachable IP and port.
OLCEF OpenShift clusters can serve applications on NodePorts, but security constraints generally require
that external access (traffic from outside OLCF) use TLS-encrypted connections through OpenShift Routes
[22] (and Istio gateways [3]) on port 443, so that traffic can be inspected. While it is possible to config-

ure OpenShift to support Routes on ports other than 443, this is unlikely from the platform’s perspective
because it would be complex.

Routing constraints: At OLCEF, routing on port 443 is hostname-based, whereas SciStream identifies
connections by port numbers or Unique identifiers (UIDs). Because Route traffic can only come in on

port 443, incoming traffic is generally differentiated by hostname rather than port, which conflicts with
SciStream’s port-based architecture (though hostname-based routing may be possible). Services like S3M
[37, 19] deployed at OLCF already uses hostname-based routing to address this limitation. For compatibil-
ity, SciStream would need new features to support or adapt to hostname-based routing.

NodePort limitations: While exceptions can be requested to allow external access via NodePorts, this
requires additional firewall rules or policies. Reserving a NodePort range for SciStream’s dynamic ports
would help, but this feature is only supported in newer Kubernetes versions. In addition, there may be poli-
cies implemented later to disallow NodePorts on OLCF clusters altogether, as traffic through them cannot
be easily inspected. Given this uncertainty, building SciStream to depend heavily on NodePorts could be
possible only when future policies and Istio-based routing are in place.
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