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Abstract
Synchrotron light sources support a wide array of techniques to
investigate materials, often producing complex, high-volume data
that challenge traditional workflows. At the Advanced Light Source
(ALS), we developed infrastructure to move microtomography data
over ESnet to ALCF and NERSC, where CPU- and GPU-based al-
gorithms generate 3D reconstructed volumes of experimental sam-
ples. We employ two data movement and reconstruction models:
real-time processing as data streams directly to NERSC compute
nodes, and automated file transfer to NERSC and ALCF file systems.
The streaming pipeline provides users with feedback in under ten
seconds, while the file-based workflow produces high-quality re-
constructions suitable for deeper analysis in 20-30 minutes. This
infrastructure enables users to utilize HPC resources without direct
access to backend systems. We plan to extend this architecture to
more endstations, supporting our beamline scientists and users.

CCS Concepts
• Applied computing → Physical sciences and engineering; •
Software and its engineering; • Human-centered computing
→ Visualization; • Computer systems organization → Cloud
computing;

Keywords
synchrotron, tomography, streaming, HPC workflows, automation
ACM Reference Format:
David Abramov, Samuel Welborn, Ryan Chard, Kuldeep Chawla, Xiaoya
Chong, Elizabeth Clark, Bjoern Enders, Alexander Hexemer, Jason Jed,
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1 Introduction
The Advanced Light Source (ALS) is a Department of Energy (DOE)
third-generation X-ray synchrotron serving thousands of users an-
nually across materials science, biology, chemistry, and physics.
Historically, experiments produced manageable data volumes that
could be analyzed on workstations local to the beamline. How-
ever, modern, high-bitrate detectors and improvements in X-ray
beam brightness and coherence is shifting this paradigm. Data
throughput is expected to increase by orders of magnitude with the
next upgrade to ALS (ALS-U), with projected facility-wide volumes
reaching multiple petabytes per day [1].

Aligning with emerging DOE initiatives [19], we addressed these
challenges by designing and deploying a novel infrastructure that
∗Both authors contributed equally to this research.
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integrates the ALS microtomography beamline (8.3.2) [15] with two
high-performance computing (HPC) facilities: the National Energy
Research Scientific Computing Center (NERSC) and Argonne Lead-
ership Computing Facility (ALCF). This framework automates the
movement of raw data from the beamline acquisition server to HPC
centers, processes the data with CPU- and GPU-based tomographic
reconstruction code, and serves the results back to the user. We
achieve both rapid turnaround time (<10s) for immediate feedback
by processing detector data streams synchronously with acquisi-
tion on NERSC compute nodes, and high-quality reconstructions
by performing longer-running file-based processing on both ALCF
and NERSC compute nodes. We serve both types of reconstructions
back to the user for seamless visualization and interaction.

In this manuscript, we present an end-to-end production imple-
mentation of our microtomography beamline computing infrastruc-
ture that integrates with existing control software, and supports
automated, low-latency reconstruction workflows for scientific
users. We first describe the background information on data chal-
lenges at light sources and user facilities in Section 2. Then, we
walk through the user experience of microtomography beamline
users in Section 3. After this, we discuss in detail the overall de-
sign and implementation of the system in Section 4, followed by
an evaluation our infrastructure from qualitative and quantitative
perspectives in Section 5. Finally, we share future directions in
Section 6 and closing thoughts in Section 7.

2 Background and Related Work
2.1 Data Challenges (and Solutions) at DOE

Light Sources and User Facilities
Synchrotron facilities enable researchers to probematter at nanome-
ter resolution and femtosecond timescales across diverse experi-
mental conditions. Common techniques, including tomography
(3D structural imaging), ptychography (high-resolution phase con-
trast), ARPES (electronic band structure), and various scattering
methods, generate multidimensional datasets requiring coordina-
tion between beamline control systems, data storage, and analysis
pipelines [4]. As modern detectors increase in speed and resolution,
facilities globally face unsustainable data rates and fragmented
workflows [13]. This "data deluge" affects everything from local
storage to curation and real-time feedback [33].

The ALS is preparing for the ALS-U upgrade [26], which will
transform it into a fourth-generation, diffraction-limited storage
ring. This transformation will increase data rates through enhanced
synchrotron brightness [1]. In parallel, advances such as ultrafast
detectors and autonomously-driven experiments are poised to fur-
ther accelerate scientific discovery [16, 36]. Similar upgrades at
other user facilities demonstrate the scale of this challenge: the
Advanced Photon Source (APS) developed standardized HPC work-
flows [24] and LCLS-II built scalable infrastructure for live interac-
tive analysis [6, 28]. Cloud-based orchestration frameworks have
been developed for managing terabyte scale materials workflows in
tomography [37]. Recent work at the National Center for Electron
Microscopy (NCEM) shows how streaming to HPC over high-speed
networks significantly improves data turnaround and real-time
experiment steering [34].
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Figure 1: Comparison between a chicken (left) and sandgrouse (right) feather tomography reconstructions. HPC-augmented
workflows help users at the microtomography beamline quickly inspect material characteristics, such as morphological
differences between species as discussed further in Section 5.1.1.

2.2 DOE Computing Infrastructure
The DOE Public Access Plan [29] outlines that DOE-funded data
should follow FAIR principles (Findable, Accessible, Interoperable,
Reusable) and data management best-practices [35], including per-
sistent identifiers, rich metadata, and immediate availability. As
outlined in the "AI@ALS Workshop Report" [23], meeting FAIR
data requirements is essential for supporting advanced artificial
intelligence and end-to-end data analysis pipelines, which necessi-
tates investment into data infrastructure, collaboration with other
institutions, and fostering a culture of continuous improvement.

Addressing these data challenges, we leverage the DOE’s Ad-
vanced Scientific Computing Research (ASCR) infrastructure, in-
cluding high-performance computing facilities (NERSC, ALCF), the
Energy Sciences Network (ESnet), and the Integrated Research In-
frastructure (IRI) initiative [19]. Through IRI, we meet regularly
with colleagues from across light sources and ASCR facilities to find
commonalities and share lessons learned. Recent advances demon-
strate the potential: streaming to supercomputers for real-time pro-
cessing [30], federated ptychographic reconstructions [5], and opti-
mized ML inference workflows [14]. However, deployment requires
addressing facility-specific challenges such as priority scheduling
for time-critical workflows, and managing distinct authentication
and containerization across diverse HPC architectures.

3 User Experience
The effectiveness of data infrastructure in a user facility such as the
ALS ultimately hinges on the experience of its users, scientists, en-
gineers, and collaborators who must interact with beamline control

systems, reconstruction pipelines, and analysis environments, often
under tight experimental schedules. Table 1 outlines a set of three
beamline user archetypes we identified to guide our infrastructure,
each with distinct needs and levels of interaction. This user-centric
approach ensures that design decisions, stakeholder communica-
tion, and strategic planning reflect the needs of the people who
depend on the system daily. See Section 5.1 for user feedback.

Table 1: Beamline User Archetypes

User Type Description

Visiting User Short, on-site scheduled beamtime;
requires remote data access; focused on
rapid data acquisition under constrained
timeframes; thousands of annual users
(novices and experts); utilizes the tools in
Figure 2.

Staff Beamline Scientist Endstation expert (hardware, software,
analysis); provides guidance to users;
ensures experimental quality and system
uptime; 1-2 per beamline.

Software Engineer Develops and maintains scalable
infrastructure, compute and visualization
services; software support for the tools
and flows in Figure 2, and Figure 3.

3.1 Microtomography Workflow Use Case
We highlight a representative use case from the ALS microtomogra-
phy beamline [15], where the integration of HPC resources enables
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rapid processing for fast feedback during an experiment. Almost im-
mediately, 2D reconstructed previews are visible to the user. Within
a few more minutes, users can interact with their data in a browser-
based 3D volume visualization. Figure 2 shows an overview of the
tools users interact with at this beamline.

Figure 2:Workflow interfaces at themicrotomography beam-
line. Users align samples in LabVIEW, launch the streaming
service via a web app, and start scans. Orthogonal slices of the
reconstructed volume appear in ImageJ within 10 seconds of
acquisition completion. After reconstruction, users explore
persistent data via Jupyter, view TIFF slices in ImageJ, and
inspect volumes using an itk-vtk-viewer web app.

Workflow Overview. Users engage with beamline controls soft-
ware and web interfaces, with no direct access to backend comput-
ing infrastructure required. They begin by preparing and mounting
their sample (Figure 2), and aligning it to the beam using control
software (Figure 2A). Users have the option of launching a NERSC
streaming service using the web application shown in Figure 2B.
Upon starting a scan (Figure 2C), a 180° image sequence is saved
as an HDF5 file with embedded metadata.

Our framework contains two main workflow branches that run
in parallel: (i) the streaming branch and (ii) the file transfer branch.
After completion of an acquisition, the streaming service at NERSC
reconstructs the full dataset and sends a three-slice preview back

to the user in less than 10 seconds (Figure 2D and E). On the
file transfer branch, HPC workflows are triggered at both NERSC
and ALCF as soon as the acquisition has finished saving to the
local beamline server. This branch takes longer to complete (20-30
minutes), but produces higher quality reconstructions owing to the
preprocessing and iterative algorithms used. In addition, metadata
is captured automatically, outputs are persistently registered, and
remote collaborators can participate with VPN access.

Reconstructed 3D volumes from the file transfer branch become
available to the user in a web-based viewer powered by itk-vtk-
viewer and Bluesky Tiled (Figure 2G), whichwe extended to support
immersive visualization using WebXR, and demonstrated on Meta
Quest 3 headsets. Users can explore their metadata via SciCat [20],
transfer data using Globus, and initiate further analysis in Jupyter-
Lab (Figure 2F), as well as segmentation and feature extraction in
dedicated applications such as Dragonfly [7] and the MLExchange
segmentation app [14].

4 Design and Implementation
We designed our system to address four primary challenges. First,
beamline infrastructure is heterogeneous. ALS uses a mix of LabVIEW
and EPICS control systems, while DOE compute centers expose
Slurm, PBS, or Globus Compute interfaces. Second, data volumes
are substantial. Each 3-minute scan usually produces 20–30 GB of
raw images, and reconstruction produces an additional 40–60 GB
of data. Since storing the data on multiple intermediate file sys-
tems introduces feedback latency, we implement dual-path pro-
cessing: Globus-based transfers for file-based (batch) workflows
for high-quality reconstructions, and synchronous processing on
EPICS-based data streams for rapid feedback. Third, local beamline
computing resources are limited. Thankfully, we can leverage DOE
HPC resources to execute remote jobs, however, this still requires
facility-specific implementations. Fourth, the ALS supports dozens of
beamlines. While initially deployed at the microtomography beam-
line, we aim to generalize our work to other endstations with data
movement, launching technique-specific analysis codes on HPC,
and metadata management. The infrastructure we present is en-
abling a pilot deployment on a second beamline, forming a template
for additional planned rollouts.

4.1 Technology Overview
We integrate an open-source software stack in our GitHub reposi-
tory splash_flows [10]. Workflows are orchestrated by a Prefect
server running in a virtual machine (VM), which directs jobs to
Prefect Workers in the same VM. When files are written to disk as
an HDF5 file, we call Prefect to copy the data from the ALS to HPC
centers using Globus Transfer [3, 9]. We have demonstrated the
monitoring of Globus data transfer bandwidth with Grafana. In
parallel, projection image streams are forwarded to NERSC using
pvaPy [30], reconstructed with streamtomocupy [22], and results
are streamed back to the ALS via ZeroMQ [12]. A React-based
single-page web application at the beamline facilitates initiation
and monitoring of the NERSC streaming service through the Su-
perfacility API (SFAPI) [8]. HPC compute for the file-based work-
flow is split between NERSC—Slurm jobs are launched through
the SFAPI or in an interactive JupyterLab session—and remote
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file-based reconstruction at ALCF via Globus Compute. Both
HPC file-based workflows utilize TomoPy [11] for reconstruction.
Software environments are packaged in Docker/Podman contain-
ers configured with Conda environments, often inside lightweight
Ubuntu VMs. Users can inspect reconstruction data with itk-vtk-
viewer [17, 18, 25], Bluesky Tiled (a data access service) [2], the
MLExchange segmentation app [14], or in VR. Another React-
based single-page web application provides the web interface for
the volume viewer and data selection. SciCat [20] records metadata,
and long-term datasets migrate to the high-performance storage
system (HPSS) tape at NERSC.

4.2 Operational Layers
As illustrated in Figure 3, the architecture separates concerns
across five cooperating layers.

Figure 3: Overview of the operational layers in our infrastruc-
ture: Acquisition, Orchestration,Movement, Compute, and Ac-
cess. Each scan usually generates around 30 GB of raw data,
but this can vary depending on the scan settings. The NERSC
streaming branch provides immediate visual feedback to the
user, while the two file-based workflows (NERSC and ALCF)
generate persistent data products for further analysis.
4.2.1 Acquisition Layer. The microtomography beamline detec-
tor uses an EPICS driver for data acquisition. To save acquisitions,
we employ two pvaPy-based systemd services on beamline’s local
storage server: (1) a process variable access (PVA) channel mirror
server, which republishes data from the detector’s input/output
controller (IOC), and (2) a file-writing service. [30] The PVA mirror
server publishes detector frames data for both the file-writing ser-
vice and the optional streaming reconstruction service running at
NERSC. For each frame, the file-writing service first validates its
metadata, and then uses the metadata to write into an HDF5 file.

4.2.2 Orchestration Layer. A call to Prefect from the file-writing
service initiates a set of flows once an acquisition is written to disk.

Prefect Flows. The new_file_832 flow orchestrates data move-
ment between beamline servers, as well as metadata ingestion
into SciCat. The file-based reconstruction flows, alcf_recon_flow
and nersc_recon_flow, copy data to HPC using Globus Transfer,
launch TomoPy reconstruction in CPU nodes, and generate a stack
of TIFF images and a multi-scale reconstructed volume (Zarr for-
mat). Once complete, these HPC flows coordinate data movement
back to the beamline. We encapsulate these variations with adapter
classes, ensuring location-transparent orchestration. To launch and
monitor our streaming service at NERSC via SFAPI, users initiate a
flow using our simple web frontend (shown in Figure 2B). Addi-
tionally, scheduled pruning flows prevent storage saturation. Prefect
flows can be retried in the user interface in case of errors.

Prefect Workers. Prefect workers execute flows in isolated con-
tainers with carefully tuned limits: tuned concurrency for scan
detection tasks, but lower concurrency for HPC job submission to
prevent queue conflicts. Workflows are designed as a series of sub-
flows and tasks, implementing idempotent semantics that support
safe retries of specific steps in case of failure.

Container Deployment. We deploy services using Docker con-
tainers built by GitHub Actions runners, tagged with version num-
bers. This continuous integration/continuous deployment (CI/CD)
pipeline enables rapid iteration while maintaining stability during
beamtime. We freeze container versions during experiments and
update only during scheduled maintenance windows.

Virtual Machine. Our production Prefect server and related ser-
vices runs on a dedicated Ubuntu 20.04.6 virtual machine within
the ALS-managed VMware environment. It is provisioned with
an 8-core Intel® Xeon® Gold 5120 CPU (2.20GHz, AVX-512), 8GiB
RAM, and a 2GiB swap partition. The local storage stack comprises
a 78GiB logical volume and a 20TiB NFS-mounted high-throughput
volume, used for data staging and accessed by Prefect workers.
Networking is provisioned via a 10 Gbps full-duplex Twisted Pair
VMXNET3 virtual NIC, with VLAN-based segmentation.

4.2.3 Data Movement Layer. Our system transfers data to the
HPC centers with two parallel mechanisms: streaming using EPICS
and pvaPy, and file transfer using Globus.

Streaming Pipeline. The streaming pipeline addresses the crit-
ical need for rapid experiment feedback. The advantage here is
that we skip the intermediate movement steps of raw data to both
the beamline server and the shared file systems at HPC facilities.
When the streaming service is running at NERSC, it connects to
the beamline’s PVA mirror server and receives frames as they are
acquired synchronously with the file-writer service (Section 4.2.1).
This service stores the frames in an in-memory cache until the
acquisition is complete, and then performs a back projection using
streamtomocupy with all four GPUs on a NERSC GPU node [21, 22].

File-Based Pipeline. Once the file-writing service completes an
acquisition, it triggers the file-based Prefect Flow on the raw HDF5
dataset. Each file moves from the acquisition system to a user-
accessible beamline data server. From here, we move data to the
NERSC Community Filesystem (CFS) and the Eagle filesystem at
ALCF. After reconstructions are processed, the data is copied back
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to the beamline data server. Each of these movements is coordi-
nated using the Globus Transfer Python SDK [3, 9] for streamlined
authentication. We enable checksum verification to ensure data
integrity when moving files and folders between locations. Within
the NERSC file-based reconstruction Slurm job, we copy data us-
ing bash commands from CFS to Perlmutter Scratch (pscratch) for
improved I/O performance. Transfer flows to and from HPSS for
long-term archival are also handled through Slurm and SFAPI. The
pruning flows built into the orchestration layer provide scheduled
file-system clean up across all levels to avoid storage saturation.

4.2.4 Compute Abstraction Layer. Our infrastructure provides
facility-specific compute adapters that handle each system’s spe-
cific authentication, job submission, and result collection protocols.
In addition to these adapters, users can manually perform recon-
structions and further analysis in JupyterHub on a beamline PC or
via NERSC.

The NERSC adapter uses the Superfacility API (SFAPI) to submit
Slurm jobs, supporting both streaming and file-based reconstruction
services. We submit reconstruction jobs to NERSC via SFAPI using
ALS’s collaboration account [8]. These jobs are scheduled with
the realtime quality-of-service (QOS), which provides prioritized
job scheduling. Jobs execute within podman-hpc [27] containers
that mount the reconstruction scripts and data volumes. For the
file-based reconstruction, we request exclusive access to a full CPU
node with 128 cores for at least a 15-minute window.

Our ALCF adapter implements reconstruction using a server-
less approach via Globus Compute, which uses a pilot-job model to
maintain compute nodes that can be reused when they are available,
as well as a demand queue on Polaris to reduce queue wait times.
Remote Python functions are executed on the Polaris HPC clus-
ter through pre-configured endpoints, accessing the Eagle filesys-
tem and invoking reconstruction scripts as subprocess calls. This
function-as-a-service approach enabled by Globus Compute, com-
bined with the use of a demand queue, provides immediate execu-
tion without the overhead of traditional batch scheduling.

4.2.5 Access Layer. Results are made accessible to users both
at the beamline and remotely. At the microtomography beamline,
raw and reconstructed datasets are stored on a data server with a
Globus transfer endpoint [3, 9], which is mounted to the beamline
computers. At NERSC, data is stored on CFS, and user data is made
available in JupyterHub. Metadata for each scan is searchable in
SciCat. Additionally, we provide visualization tools for users to
inspect 2D reconstructed images in ImageJ, and 3D reconstructed
volumes are served via Bluesky Tiled [2] to a web app powered by
itk-vtk-viewer [17, 18, 25], which supports real-time and immersive
viewing via a desktop web browser and in VR.

4.3 Data Lifecycle
Each scan follows a complete pipeline from acquisition through
reconstruction. The system supports horizontal scaling via multiple
Prefect agent pools and configurable compute resources, though
current deployments use fixed allocations. Under typical operation,
the system processes peak data rates of one scan every 3-5 minutes
(12-20 scans/hour), with daily volumes ranging from 0.5-5 TB de-
pending on the experiment. Raw file sizes range from a few MB to

hundreds of GB, but typical scientific scans are between 20-30 GB.
Data is tiered through distributed network storage for fast writing
and user-access, longer-term storage on the NERSC Community
Filesystem (CFS), and archival onHPSS. Storage is managed through
automated age-based pruning flows, with retention periods opti-
mized for each tier (local servers: days to weeks, CFS: months to
years, HPSS: indefinite long-term archive).

5 Evaluation
We evaluate our integrated tomography pipeline along two com-
plementary axes: usability, as reported by end users (qualitative),
and infrastructure performance, based on timing benchmarks across
beamline and HPC resources (quantitative). Our findings demon-
strate that the infrastructure meaningfully reduces experimental
friction for each user archetype we identified in Table 1, and im-
proves the throughput and reproducibility of scientific data analysis.

5.1 User Feedback
A decade-long beamline user highlighted the dramatic improve-
ment: "When I started, it took 45 minutes just to save a scan, then
another hour to get back a single reconstruction slice—not even the
full volume. Now I get complete 3D volumes in minutes." This 100×
speedup fundamentally changes how experiments are conducted,
enabling previously impossible real-time decision-making.

5.1.1 Case Study 1: FeatherMorphology Comparison. We compared
the microstructure of chicken and sandgrouse feathers (). The sand-
grouse has evolved specialized coiled barbule structures that store
water, an adaptation for desert survival absent in chicken feath-
ers. Our pipeline enabled rapid sample exchange and side-by-side
volumetric comparison, immediately revealing these structural dif-
ferences. This workflow—mount, scan, reconstruct, compare—now
takes 20 minutes instead of hours, accelerating studies.

5.1.2 Case Study 2: Fracking Proppant Analysis: A Retrospective.
Beamline scientists often need to communicate complex results,
and our system makes historical data easy to reprocess and share
with other stakeholders. We reanalyzed a 2020 micro-CT dataset
of fracking proppant [31, 32], reconstructing and segmenting the
raw data using our infrastructure. The 3D volume was textured in
Blender and exported for virtual reality (VR). During a recent tour,
visitors explored the model in a Meta Quest 3 headset, highlighting
how our infrastructure supports scientific communication.

5.1.3 Case Study 3: Software Support. Software engineers are re-
sponsible for connecting the tooling, computing, and persistence
required for daily operation. The orchestration layer powered by
Prefect provides a friendly user interface, making it easy to identify
flow status, timelines, and errors for each step. Logs are stored
in a database, made available directly in the browser, and update
in real-time. In addition to debugging, the Prefect API allows for
extracting flow statistics and observing run success rate (Table 2).

5.2 Performance Metrics
We analyzed 100 recent successful microtomography scans in the
file-transfer workflow branch, encapsulating the time for initial
data staging andmetadata ingestion (new_file_832) and the HPC file-
based workflows (alcf_recon_flow, nersc_recon_flow). We queried
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the Prefect server API, extracted and aggregated completion times
as summarized in Table 21. The range in processing time is explain-
able by the possible files sizes. Cropped test scans produce small
files of only a few MB, whereas uncropped scans at high angular
resolution are much larger, possibly greater than 30 GB.

Table 2: Summary statistics of the last 100 successful file-
based Prefect flow runs in production for user operations.
Durations shown in seconds.

Flow N Mean ± SD Med. Range

new_file_832 100 120 ± 171 56 [30, 676]
nersc_recon_flow 100 1525 ± 464 1665 [354, 2351]
alcf_recon_flow 100 1151 ± 246 1114 [710, 1965]

For the fast turnaround streaming workflow branch, the user can
preview their reconstructed data within 10 seconds of acquisition
completion. For example, a raw dataset with 1969 16-bit projection
images of size 2160×2560 (∼20GB), takes 7–8 seconds to reconstruct,
with a reconstructed volume size of 2160 × 2560 × 2560 32-bit
(∼50 GB). Sending the preview slices back to ALS takes <1 second.

Key quantitative outcomes:
• >100× improvement in time-to-insight compared to his-
torical workflows with streaming reconstruction previews
achieved in <10 seconds after acquisition completes;

• Consistent performance:median file-based reconstruction
times in 20-30 minutes (optimized for image quality).

5.3 Strengths and Limitations
We developed infrastructure that directly serves the needs of beam-
line users (Table 1) by coordinating datamovement, processing, and
visualization. We addressed multi-institutional challenges through
regular IRI meetings [19], submitting tickets to HPC help-desks,
and writing facility-specific job submission implementations that
allows us to run the same analysis code across facilities. Users gain
the benefits of HPC-powered analysis without interacting with the
systems directly, and leave with derived data. By integrating multi-
ple computing centers, we are increasing our current fault-tolerance
and are preparing for future data needs. Our containerized services,
versioned workflows, and persistent metadata ensure reproducibil-
ity and scalability from laptop development to distributed systems.
Staff have observability into the underlying systems, and we aim
for this architecture to be extensible across beamlines.

Current limitations include storage overhead and maintenance
complexity. While we are capturing instrument metadata from each
scan into SciCat, a major limitation is the absence of standard-
ized sample metadata capture, including provenance, preparation
methods, in situ conditions, and material classifications. This gap
impedes experiment contextualization and future AI-driven analy-
sis that require rich semantic information.

Production lessons learned include: maintaining strict staging
and production separation, automated health monitoring every 12-
24 hours, and version-controlled deployments. In one incident, a
burst of concurrent Globus Transfer “prune” requests hit a permis-
sion denied error, leaving a slew of jobs hanging and saturating

1https://github.com/als-computing/splash_flows/tree/XLOOP_SC25_Metrics

the queue. To avoid issues like these, we refactored our flows to
fail early, and try to automatically cancel jobs on remote systems.
Detailed documentation is essential, especially in cases when the
person who created or maintains part of the system is unavailable.

6 Discussion and Future Directions
Our implementation demonstrates an end-to-end pipeline that in-
gests raw projection data, orchestrates transfers and reconstruc-
tions across multiple HPC sites, and delivers interactive visualiza-
tion to users. By combining a workflow orchestration layer, ro-
bust data movement, and containerized compute environments,
we achieved a resilient and extensible system. We identify two
impactful directions for future development.

Dynamic and Real-Time Analysis. Leveraging quick stream-
ing reconstructions, we can explore supporting time-resolved ex-
periments by extending our workflow to handle 4D datasets as
sequences of time-stamped volumes. Furthermore, optimizing the
multi-resolution volume conversion step (Zarr files), rendering 3D
volumes on HPC, and implementing WebRTC streaming to VR
headsets would better enable immersive experiment steering.

Expanded Compute Resources. Beyond NERSC and ALCF,
integration with commercial clouds (AWS, Google) and other DOE
facilities (OLCF) would provide additional capacity and special-
ized hardware. As facilities like NERSC upgrade to next-generation
architectures, our containerized approach ensures portability. As
more beamlines adopt streaming, the issue shifts from a schedul-
ing to an economic-policy challenge. At scale, compute could be
reserved for each beamline to prevent resource contention.

7 Conclusion
We presented an operational HPC-integrated workflow that accel-
erates science at ALS through automated data movement, synchro-
nous reconstruction, and interactive visualization tools. Deployed at
the microtomography beamline, the system processes 0.5-5 TB daily
while providing quick visual feedback to users. Key innovations
include: scalable framework that supports multi-facility HPC or-
chestration; on-demand reconstructions via high-speed streaming
and high-quality file-based workflows; users harness the computing
power of HPC with minimal interaction. As synchrotron facilities
worldwide undergo fourth-generation upgrades, this blueprint for
beamline-HPC integration becomes increasingly critical. Our open-
source implementation [10] provides both a practical solution for
current operations and a foundation for future data challenges.
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