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1 Introduction: The Los Alamos National Laboratory

The Los Alamos National Laboratory (LANL), located in the state of New Mexico (United States),
is one of the most iconic research centers in the world. Founded in 1943 as part of the Manhattan
Project [1, 2], it emerged from a global conflict and an unprecedented scientific emergency. At
that time, the United States feared that Nazi Germany might develop an atomic weapon first.
Under the direction of physicist J. Robert Oppenheimer [3], the U.S. government established a
secret laboratory in an isolated region of the Los Alamos plateau, bringing together some of the
greatest scientific minds of the era. This site, then known as Project Y, became the birthplace of
the first atomic bomb.

During World War II, Los Alamos became an extraordinary center of intellectual collaboration.
Physicists, chemists, engineers, and mathematicians from around the world — including Enrico
Fermi, Richard Feynman, and Niels Bohr — joined forces to accomplish a mission considered crucial
for ending the war [4]. It was here that the “Little Boy” and “Fat Man” bombs were designed, later
dropped on Hiroshima and Nagasaki in August 1945. On July 16, 1945, the laboratory carried out
the first nuclear test in history, known as the Trinity test [5], conducted in the New Mexico desert.
This event marked the beginning of the atomic age and profoundly transformed the relationship
between science, technology, and political power.

After the war, Los Alamos continued its work within the context of the Cold War, becoming
a central player in nuclear weapons research and U.S. strategic deterrence [6]. New facilities were
built to develop more advanced weapons as well as technologies for detection, safety, and simu-
lation. From the 1960s onward, the laboratory broadened its mission toward civil and scientific
fields such as energy, astrophysics, materials chemistry, biotechnology, and high-performance com-
puting [7]. This diversification marked a turning point: LANL evolved from a military-oriented
institution into a multidisciplinary research center serving both science and society.

Today, Los Alamos National Laboratory employs over 14,000 people and operates with an
annual budget of several billion dollars [8]. It remains under the supervision of the Department of
Energy (DOE) and plays a key role not only in national security and nuclear non-proliferation, but
also in leading scientific programs in advanced simulation, artificial intelligence, climate research,
nuclear fusion, materials science, and renewable energy. Among its most renowned facilities are
the Trinity supercomputer — one of the most powerful in the world [9] — and several research
laboratories open to international collaboration.

LANL’s mission is to “solve national security challenges through simultaneous excellence.” The
laboratory strives to achieve significant impact on strategic priorities by combining world-class
research and development with operational excellence and strong community engagement [10].
As a federally funded research and development center, LANL aligns its strategic plan with the
priorities set by the DOE’s National Nuclear Security Administration (NNSA) and other national
strategy frameworks. It conducts work across all DOE missions: national security, science, energy,
and environmental management. The scientific and engineering expertise developed over decades
of research remains at the core of what makes LANL, DOE, and NNSA a major driving force of
science, technology, and innovation in the United States.
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2 Context and Objectives

2.1 Project inception

Determining the melting curve of a material is a key thermodynamic objective with far-reaching
implications across materials physics, high-pressure engineering, and planetary sciences [11] . Melt-
ing curves are essential for assessing the stability of structural and nuclear materials under extreme
conditions, and they also provide valuable constraints on planetary interiors, evolutionary models,
and various astrophysical observations. Beyond these practical aspects, they can reveal profound
changes in atomic bonding under compression, several of which have recently been highlighted by
high-pressure experiments.[12] [13].

Despite their importance, melting curves remain difficult to determine with precision, espe-
cially at high pressures and temperatures. Molecular simulations offer an important complemen-
tary route, but most standard approaches free-energy calculations, two-phase coexistence, or the
Z-method require prior identification of the stable solid phase. This step becomes challenging
whenever compression induces competing crystalline structures, as is the case for alkali metals,
which exhibit a sequence of complex and sometimes poorly understood structural transitions,
along with non-monotonic melting behavior and unusual electronic features.

These limitations naturally raise the question of whether the melting transition can be predicted
directly from liquid-state dynamics, without any knowledge of the solid phase. Several empirical
freezing criteria have been proposed, particularly for hard-sphere and Lennard–Jones systems.
Among them, the Hansen–Verlet rule is often cited: crystallization is expected when the height
of the first peak of the static structure factor S(k) reaches approximately 2.85[14] . While useful
in simple cases, this threshold is not universal and loses reliability for systems with more complex
interactions, such as compressed alkali metals.[15, 16]

In this work, we adopt a different perspective by analyzing liquid-state dynamics through the
statistics of atomic displacements, using first-passage times (FPT). This quantity measures the
average time required for an atom to travel a given distance for the first time. It provides direct
insight into the onset of dynamical hindrance in the liquid and reveals a clear signature of the
approach to freezing. This leads to a simple and transferable criterion for locating the melting
point along an isochor or isobar, without simulating the solid phase.

To formalize this idea, we introduce the mean first-passage time:

T (r) =

∫ ∞

0

Fr(t) t dt,

which represents the average time needed for an atom to move a distance r from its initial po-
sition. This quantity is readily obtained from molecular dynamics trajectories by analyzing the
distribution of first-passage events.

Instead of examining T (r) directly, we consider its logarithmic derivative:

D(r) =
d lnT (r)

d ln r
,

which describes how the characteristic timescale of atomic motion grows with displacement. Being
dimensionless, D(r) allows straightforward comparison across interaction models and thermody-
namic conditions. Most importantly, it exhibits robust and reproducible features: as shown in
Fig. X, D(r) displays a well-defined peak near r∗ ≈ 0.7 a, with a maximum value D(r∗) ≈ 2.1
at melting (a = the characteristic interatomic distance of the system). This behavior appears
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consistently across a wide variety of systems, including Lennard–Jones, Yukawa, Hard-Sphere, and
Inverse-Power-Law models, suggesting the presence of a common underlying dynamical mechanism,
as shown in Figure 1.
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Figure 1: Mean first-passage statistics at freezing for diverse model liquids.

Building on this observation, we develop a melting criterion based solely on the liquid phase.
Using only short ab initio trajectories, this criterion is able to reproduce the experimental melting
curves of Al, Ti, and Li, without relying on phase-coexistence simulations or free-energy calcula-
tions.

From a physical standpoint, the peak in D(r) signals the onset of a regime where atomic motion
becomes temporarily localized. A minimal continuous-time random-walk model, defined by the
vibrational spectrum and a single characteristic jump timescale, reproduces the emergence of this
peak and indicates that the threshold corresponds to a critical degree of localization dominated
by low-frequency vibrational modes. This establishes a direct connection between liquid dynamics
and thermodynamic stability near the solid–liquid boundary, through a quantity that is both
dimensionless and broadly transferable across interaction types.

This study focuses on monatomic model liquids and elemental metals, but extending the ap-
proach to multicomponent, molecular, or network-forming liquids represents a particularly promis-
ing direction for future research. Moreover, the current model-based interpretation does not yet
provide an a priori derivation of the threshold D(r∗) ≈ 2.1. Establishing a quantitative connec-
tion between this critical value, free-energy landscapes, and thermodynamic coexistence conditions
remains an important objective for future work.

In this context, the main objective of this internship is to analyze and interpret the physical
origin of the peak observed in the function D(r) at the phase transition, using molecular dynamics
simulations. The aim is to understand why the liquid systematically develops this distinctive dy-
namical signature near melting, and to relate it to the underlying atomic mechanisms that govern
the onset of freezing.

During this internship, more than fifty Python and Fortran codes were developed
or used. For this reason, the present report will focus primarily on the physical
reasoning and scientific interpretation rather than on technical implementation. The
full set of scripts will nevertheless be made available to the examination committee
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during the oral presentation. The first part of the internship also involved becoming
familiar with the Linux environment and learning to use LAMMPS; this preliminary
work will not be detailed in this report.

2.2 Interparticle Potentials Studied

This project focuses on three representative interparticle potentials: Lennard–Jones, Hard-
Sphere, and Yukawa. These models span a wide range of microscopic interactions and allow us
to explore how the shape and range of a potential influence the structural and dynamical properties
of liquids [31, 17].

2.2.1 Lennard-Jones potential

The Lennard–Jones (LJ) potential is a standard model for neutral atoms or nonpolar molecules.
It combines short-range Pauli repulsion and long-range van der Waals attraction:

VLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
.

Here, ε sets the interaction strength and σ the distance where VLJ = 0. The LJ model success-
fully reproduces the basic phase behavior of simple liquids and serves as a reference for studying
condensed-matter systems at the atomic scale [18, 19].

2.2.2 Yukawa potential

The Yukawa (or screened Coulomb) potential describes interactions that decay exponentially:

VYukawa(r) = ε
exp(−κr)

r
.

The screening parameter κ controls the interaction range: small κ gives long-range forces, while
large κ yields short-range interactions. This model is widely used for plasmas, dusty plasmas, ionic
liquids, and charged colloids [20, 29, 22].

2.2.3 Hard-Sphere potential

The Hard-Sphere (HS) model represents particles interacting only through excluded volume:

VHS(r) =

{
∞, r < σ,

0, r ≥ σ.

It contains no attraction; all properties arise purely from geometry. A key control parameter is
the packing fraction:

η =
π

6
n∗σ3,

which measures how much of the volume is occupied by the spheres. Increasing η drives the system
from a dilute fluid to dense phases, glassy states, or crystallization [30, 24].

By comparing these three models—from purely repulsive hard spheres, to the balanced attrac-
tion–repulsion of Lennard–Jones, and the screened electrostatic forces of Yukawa—we investigate
how microscopic interaction laws govern macroscopic observables such as structure, diffusion, and
free-volume statistics in liquid systems.
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2.3 Molecular Dynamics Software and Implementation

To study the interaction potentials introduced above, we performed molecular dynamics (MD)
simulations using LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), an
open-source package developed at Sandia National Laboratories [25]. LAMMPS integrates New-
ton’s equations of motion to model the time evolution of interacting particle systems and is widely
used for large-scale atomistic simulations in materials science, soft matter, and plasma physics.

LAMMPS includes many interatomic potentials (Lennard–Jones, Yukawa, EAM, Tersoff, etc.)
and supports several thermodynamic ensembles (NVE, NVT, NPT) as well as various boundary
conditions. Its modular and parallel architecture (MPI/OpenMP) makes it particularly efficient
on high-performance computing clusters [26].

In this project, LAMMPS was used to generate atomic configurations and particle trajecto-
ries, which were then post-processed to extract structural and statistical properties such as the
radial distribution function g(r) and local free-volume distributions. These quantities, central
to the characterization of liquids, follow classical theoretical frameworks described in statistical
mechanics [31].

Because of its flexibility, LAMMPS requires a solid understanding of its input syntax and com-
mand structure. Once mastered, it allows the simulation of a broad range of atomic and molecular
systems and the computation of numerous physical quantities, including particle positions, ener-
gies, pressure, temperature, and interaction forces.

2.4 Simulation Parameters

Running molecular dynamics simulations in LAMMPS requires choosing several key parameters
that directly influence numerical stability, accuracy, and computational cost.

The simulation box size L sets the volume of the system and must be large enough to limit
finite-size effects while preserving the target density. Periodic boundary conditions are applied
to mimic an infinite bulk system and remove surface artifacts.

The time step dt determines the resolution of the integration of Newton’s equations. It must
be small enough to capture the fastest atomic motions (typically 1−2 fs). The total simulation
time must be long enough to ensure proper equilibration and to gather statistically meaningful
averages.

The cutoff radius rcutoff defines the maximum distance over which interactions are computed.
Its value must balance accuracy and computational efficiency, especially for potentials with long
tails such as Lennard–Jones or Yukawa.

Finally, the number of particles N controls the statistical representativeness of the system:
larger systems reduce finite-size effects but increase computational cost.

Choosing appropriate values for L, N , dt, ttot, and rcutoff is therefore essential to obtaining
reliable and reproducible molecular dynamics results.

2.5 Data Analysis and Post-Processing Tools

The analysis of data generated from molecular dynamics simulations requires efficient compu-
tational tools capable of handling large datasets and performing numerical treatments. In this
work, we used programming languages such as Python and Fortran, as well as the visualization
software Gnuplot, for post-processing and graphical analysis of simulation results.
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Python was employed for data manipulation, statistical analysis, and visualization through
libraries such as NumPy, Matplotlib, and SciPy. Fortran was used for high-performance numerical
computations, particularly for the calculation of free volumes and histograms.

Gnuplot is an open-source plotting software that allows fast and precise visualization of data
and analytical functions. It supports various output formats (PNG, PDF, EPS) and is especially
convenient for automating the generation of scientific figures and fitting procedures.

Following the molecular dynamics simulations, several physical functions are computed using
a Fortran code developed by Jérôme Daligault and Alfred Farris. This program mainly evaluates
the functions D(r), τ(r), g(r), and MSD(t). It can be applied to all three interaction potentials
considered in this study and serves as a foundation for the analysis of various physical quantities.
For the functions D(r) and g(r), the results are expressed as a function of the reduced distance
r/a, where a denotes the Wigner–Seitz radius.

The Wigner–Seitz radius a is defined as

a =

(
3

4πn∗

)1/3

, n∗ =
N

L3
=

ρ

m

where n∗ is the particle number density. Physically, a represents the radius of a sphere that, on
average, contains a single particle in a homogeneous system. It therefore provides a characteristic
measure of the mean interparticle spacing. This length scale is widely used in plasma physics and
condensed matter theory to normalize distances and to compare systems with different densities
on a common, dimensionless basis. Table 1 summarizes the simulation parameters relevant to the
calculation of the parameter a for each interaction potential.

Table 1: Simulation parameters for the Lennard–Jones, Yukawa, and Hard-Sphere models.

Parameter Symbol Lennard–Jones Yukawa Hard Sphere
Number of particles N variable 4000 512
Box length L 10.0σ 1.998× 10−6 cm variable
Particle mass m 1.0 1.994× 10−23 g N/A
Real density ρ variable 0.01 g cm−3 variable
Boundary conditions – p p p p p p ppp
Integration units – reduced (LJ) CGS reduced (HS)
Wigner–Seitz radius a variable 7.80871× 10−8 cm variable

3 Analysis of the Logarithmic Derivative Curves
The first part of this internship consisted in reproducing the D(r) curves of the Lennard–Jones,
Yukawa, and Hard-Sphere models with the highest possible accuracy, in order to extract the
transition parameters specific to each system with great precision. These calculations require
selecting both an appropriate total simulation time and a suitable time step. The D(r) curves for
all three models are provided in Appendix 1. From these curves, we can extract the parameter
values at the liquid–solid transition, as well as the values corresponding to D(r) = 2.0, where the
peak first begins to develop. These quantities are essential for the remainder of this project and
are reported in Table 2.
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Value of D(r) Lennard–Jones Yukawa Hard Sphere
2.1 Tmel = 1.415 Γmel = 440.00 ηmel = 0.4953
2.0 T = 1.725 Γ = 390.00 η = 0.4779

Table 2: Values of the transition parameters for the three interaction models.

4 Self-diffusion coefficient
The second part of this internship focuses on studying the self-diffusion coefficient of the investi-
gated systems, with the goal of identifying a correlation between a slope break in its behavior and
the emergence of the peak previously observed in the function D(r).

The self-diffusion coefficient quantifies the ability of particles to move due to their own thermal
motion, in the absence of external gradients. It reflects microscopic particle mobility and can
be evaluated from molecular dynamics simulations using either the mean squared displacement
(MSD) or the velocity autocorrelation function (VACF), following the Green–Kubo or Einstein
relations [31, 32, 28].

The diffusion coefficient D is strongly temperature dependent: increasing T enhances particle
kinetic energy and collision frequency, leading to higher diffusivity, while decreasing T causes
motion to become progressively hindered by the potential-energy landscape and excluded-volume
effects. This behavior is characteristic of thermally activated transport and is often described by
an Arrhenius-type relation:

D = D0 exp

(
− Ea

kBT

)
,

where D0 is a high-temperature pre-factor and Ea the activation energy.
In reduced units commonly used for Lennard–Jones, Yukawa, and Hard-Sphere systems, the

inverse temperature can be expressed through dimensionless parameters such as the coupling pa-
rameter Γ or the packing fraction η. For Yukawa or Coulomb systems, the coupling parameter

Γ =
Q2

4πε0akBT

measures the ratio of potential to thermal energy and therefore increases when the temperature
decreases [29].

For Hard-Sphere systems, the relevant control parameter is the packing fraction η:

η =
π

6
n∗σ3,

which quantifies the degree of crowding. Larger η reduces available free volume and decreases
diffusion [30].

Thus, the parameters 1/T , Γ, and η are closely related, as they all characterize the balance
between thermal agitation and interparticle constraints. Variations in these quantities lead to
similar trends in the diffusion coefficient, enabling a unified description of transport across different
interaction potentials.

4.1 Mean Squared Displacement

The Mean Squared Displacement (MSD) is a physical quantity that measures the average squared
distance traveled by particles as a function of time. It quantifies how far, on average, particles
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move from their initial positions during a simulation or an experiment [31, 32]. The MSD is a key
parameter used to characterize the diffusive behavior of a system and is defined as:

MSD(t) =
〈
|ri(t)− ri(0)|2

〉
(1)

where ri(t) is the position vector of particle i at time t, and the angle brackets ⟨·⟩ denote
an ensemble average over all particles. A linear increase of the MSD with time indicates normal
diffusion, whereas deviations from linearity correspond to subdiffusive or constrained dynamics.

At long times, the MSD typically increases linearly with time, reflecting the diffusive regime
of the system. In this regime, the self-diffusion coefficient D can be determined from the slope of
the MSD according to the Einstein relation [33]:

D = lim
t→∞

MSD(t)

6t
. (2)

4.2 Velocity Autocorrelation Function

The Velocity Autocorrelation Function (VACF) describes how the velocity of a particle at a given
time is correlated with its velocity at a later time. It provides insight into the persistence of particle
motion and the dynamical properties of the system [31]. The VACF is mathematically defined as:

Cv(t) = ⟨vi(t) · vi(0)⟩ (3)

The integral of the VACF over time is directly related to the self-diffusion coefficient through
the Green–Kubo relation:

D =
1

3

∫ ∞

0

Cv(t) dt (4)

Two complementary Python scripts were developed to analyze the microscopic diffusion be-
havior of the simulated systems. The first script calculates the velocity autocorrelation function,
VAF(t), from the mean squared displacement (MSD) data using a finite-difference approximation
of its second derivative. It processes all msd.dat files, computes the discrete second derivative
of the MSD over time, and produces new files, vaf.dat, containing the corresponding VAF(t).
This step converts the displacement information into a time-dependent measure of how particle
velocities remain correlated, providing a direct view of how momentum relaxation occurs in the
system.

The second script takes the computed VAF(t) and integrates it numerically using the trape-
zoidal rule to obtain the time-dependent diffusion coefficient, D(t), following the Green–Kubo
relation. As time increases, D(t) gradually approaches a constant value, which corresponds to
the self-diffusion coefficient D. The resulting D.dat files contain these integrated values and can
be used to study the transition from the ballistic to the diffusive regime. Together, these two
programs form a consistent post-processing workflow that links atomic motion from molecular
dynamics trajectories to the macroscopic transport property of diffusion.

4.3 Results and Analysis

In a first step, we compared the evolution of the self-diffusion coefficient as a function of Tmel/T for
the Lennard–Jones model for both methods (MSD and VAF). The self-diffusion coefficient was then
calculated using the method based on the Velocity Autocorrelation Function, since this approach
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is less influenced by the statistical noise introduced by molecular dynamics simulations. Next, we
modified the parameter r_seed in LAMMPS, which defines the random seed used to initialize
particle velocities at the start of each simulation for both the Lennard–Jones and Yukawa models.
Changing this parameter allowed one to obtain several independent estimates of the self-diffusion
coefficient for the same temperature (or the same value of Γ). The results were then averaged to
minimize the effect of statistical noise and improve the reliability of the calculated diffusion values.
The detailed parameters used for the Lennard–Jones and Yukawa simulations are summarized in
Table 3.

Table 3: Simulation parameters for the Lennard–Jones and Yukawa models.

Parameter Symbol Lennard–Jones Yukawa
Number of particles N 1000 4000
Box length L 10.0σ 1.998× 10−6 cm
Particle mass m 1.0 1.994× 10−23 g
Time step ∆t 0.001 τLJ 1.0× 10−15 s
Total simulation time tsim 2.5× 104 τLJ 1.0× 10−10 s (100 ps)
Temperature T variable 7703K
Cutoff radius rcut 6.0σ 4.685× 10−7 cm
Screening parameter κ – 2.561× 107 cm−1

Potential strength Γ variable variable
Boundary conditions – p p p p p p
Integration units – reduced (LJ) CGS

It is important to carefully convert the diffusion coefficients into the appropriate units. Indeed,
the diffusion values are obtained from the MSD(t) data generated by the Fortran code in a common
internal unit referred to as “mfpt”. Consequently, the following equations are used to convert these
results back into the reduced units corresponding to the Lennard–Jones and Yukawa systems:

log(DLJ) = log(Dmfpt)− 1
2
log(T ∗) + log

(
a
σ

)
, (5a)

log(DYukawa) = log(Dmfpt)− 1
2
log(3Γ). (5b)

For the Hard-Sphere model, we relied on a recent molecular dynamics studies on hard spheres [34],
which provides diffusion coefficient values as a function of density. This allows us to determine the
corresponding diffusion coefficients as a function of the packing fraction.
Then, the quantity ln(D) is plotted as a function of the reduced temperature Tmel/T , or equiva-
lently, in terms of the reduced coupling parameter Γ/Γmel for the Yukawa model and the reduced
packing fraction η/ηmel for the Hard-Sphere model. Then, we observe that certain regions of the
plot exhibit a linear behavior. These portions are therefore fitted with straight lines of the form
y = ax+ b in order to identify possible similarities between the three models (Figures 2 (a), 2 (b),
2 (c)).
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Figure 2: Logarithm of the self-diffusion coefficient ln(DV AF ) as a function of Tmel/T for Lennard–
Jones (a), Γ/Γmel for Yukawa (b), and η/ηmel for Hard-Sphere (c).

Examination of the three figures reveals that several fitted lines tend to intersect (black dashed
lines) within the same region where the peak in the D(r) curves corresponds to a value of 2.0 (black
solid lines). This value of 2.0 corresponds, for all three models, to the onset of a peak in the D(r)
plots. It is therefore essential to understand, at the microscopic level, the physical mechanisms
responsible for the emergence of this peak and to identify the phenomenon that gives rise to it.

5 Microscopic Study of the Free Volume
We recall here that the purpose of this study is to identify the microscopic mechanisms respon-
sible for the development of a peak in the D(r) curves, and consequently for the slope breaks
observed in the behavior of the self-diffusion coefficient. In this section, we focus on a specific
and conceptually straightforward physical quantity, the free volume available to a particle, which
provides a microscopic framework for interpreting the observed diffusion behavior. Before moving
on, it is important to introduce a physical function that will serve as the basis for our free-volume
calculations: the radial distribution function g(r), often called the pair correlation function.
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5.1 The radial distribution function g(r)

The radial distribution function, g(r), gives an idea of how the particles in a system are arranged
around one another. It shows how the local density changes as a function of the distance r from a
chosen reference particle. In practice, 4πr2g(r), dr represents the average number of particles found
between r and r + dr. For an ideal gas, where the particles are randomly distributed, g(r) equals
1 everywhere, meaning there is no preferred distance between particles. In contrast, in liquids or
solids, g(r) displays oscillations: the first peak corresponds to the most probable distance between
two neighboring particles, while the following peaks reflect the degree of order in the surrounding
structure. By looking at the shape of g(r), one can therefore obtain direct information about the
microscopic organization of the system and the nature of the interactions between particles.

This function makes it possible to identify the distances at which a particle’s first, second, and
higher coordination shells are found. In other words, it provides direct information about how
neighboring particles are distributed in space around a reference particle.

5.1.1 Focus on the Hard-Sphere Model

In the Hard-Sphere model, particles are represented as perfectly rigid spheres that cannot overlap.
There are no attractive forces between them, and the only interaction arises from the impenetrable
core defined by the particle diameter σ. This simple constraint has a direct impact on the shape
of the radial distribution function g(r). For distances smaller than σ, g(r) is strictly zero, since no
particle can exist within the excluded volume of another. At r = σ, the function exhibits a sharp
rise corresponding to the contact between neighboring spheres, which defines the most probable
interparticle distance. Beyond this point, g(r) oscillates around unity, showing alternating regions
of higher and lower probability that reflect the spatial arrangement of successive coordination
shells. As the system becomes denser, these oscillations become more pronounced, revealing the
emergence of local order. Close to crystallization, the peaks of g(r) align almost periodically,
indicating a structure that approaches that of an ordered solid. Thus, the overall shape of g(r)
directly mirrors the geometric constraints and degree of packing characteristic of the Hard-Sphere
system. The initial goal of this section is to generate the radial distribution function g(r) for
several packing fractions and to observe its main feature the hard, impenetrable wall that appears
at contact between particles. A Fortran code developed several years ago by Jérôme Daligault is
used to generate all the data for the Hard-Sphere model, including particle positions, energies, and
the radial distribution function g(r), among others. However, the code does not directly allow us
to set or predict the packing fraction η. Instead, the simulations are controlled through a variable
parameter r, which effectively determines the degree of compression of the system. By varying this
parameter, we can indirectly modify the packing fraction and thus explore different densities of the
Hard-Sphere system. After adjusting the Fortran code, I was able to generate a correspondence
table between the parameter r and the packing fraction η, as detailed in Appendix (Table A.1),
and to generate Figure 3, which shows the radial distribution function g(r) as a function of the
diameter σ.
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Figure 3: Radial distribution function, Hard-Sphere model.

This figure confirms that particles cannot overlap, and that the minimum center-to-center distance
between them is r/σ = 1.0. Furthermore, the first minimum observed around r/σ ≈ 1.44 corre-
sponds to the distance to the first coordination shell, i.e., the position of the nearest neighboring
particles. We will use this notion of the first coordination shell in the calculations of the free
volumes.

5.2 A first calculation of the free volume

In order to understand the physical mechanism behind the peak observed in D(r) and the slope
break in the self-diffusion coefficient, we first introduce the concept of free volume. To do so, we
refer back to the minimal model inspired by the seminal ideas of Frenkel [32] and Zwanzig [33],
who described atomic motion in liquids as a combination of localized vibrations and occasional
spatial jumps an approach particularly relevant near the freezing transition. Two main quantities
must therefore be considered in this framework: localized vibrations and spatial jumps. When a
particle diffuses, that is, when it moves from one position to another, it must have enough free
space available to do so meaning that its nearest neighbors do not completely fill the surround-
ing volume. This is precisely where the notion of free volume comes into play. We will compute
the free volume available around a particle at a given time t, and then average this quantity over
all particles. The goal is to detect whether a change in free volume occurs at the freezing transition.

To begin with, we focus exclusively on the Hard Sphere model, since it is by far the simplest
framework to work with. In this description, particles behave like solid billiard balls whose vol-
umes cannot overlap, which automatically sets a strict minimum separation between them. This
avoids the complications that arise in the Lennard-Jones or Yukawa models, where the notion of
a minimum distance is not fixed because the interactions are soft and allow particles to approach
more gradually.
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5.2.1 Free-Volume Calculation Method

As mentioned earlier, particles in the Hard Sphere model cannot approach each other closer than
r=1.0 σ, so each sphere has an effective radius of 0.5 σ. For our analysis, we gather the position
files from all the Hard Sphere simulations carried out at different packing fractions.

The first step is to extract particle positions only at specific, regularly spaced times so that the
configurations are sampled evenly. After that, we need to wrap the particles back into the L-length
simulation box. “Wrapping” means that whenever a particle crosses one side of the periodic box, we
bring it back from the opposite side, ensuring that all positions remain inside the boundaries of the
box. The free volume calculation is performed by analyzing the local environment of each particle in
a given Hard Sphere configuration. For every particle, the script places a radius R spherical probe
around its center and determines how much of this sphere is occupied by neighboring particles.
To do so, the positions of all particles are combined with their periodic images, and a KD–tree
search is used to efficiently identify neighbors whose own spherical volumes intersect the probe.
A KD-tree (short for k-dimensional tree) is a data structure that allows very fast searches of
neighboring points in space. Instead of checking the distance between one particle and all the
others which would be extremely slow for large systems — the KD-tree organizes the points in
a hierarchical, tree-like structure. This makes it possible to quickly eliminate large regions of
space that are too far away to matter. As a result, finding all the neighbors within a radius R
becomes much faster, typically scaling as O(logN) rather than O(N). This is why KD-trees are
widely used in molecular simulations, computer graphics, and any application where one needs to
repeatedly search for nearby points in a large set.The occupied volume is obtained either from the
full volume of a neighboring sphere (when it lies entirely inside the probe) or from the analytical
expression of the intersection between two spheres when only partial overlap occurs. The free
volume associated with the particle is then defined as the difference between the probe volume and
the total occupied volume. This procedure is repeated for all particles and for multiple simulation
snapshots, and the resulting free volumes are averaged and normalized by the particle volume,
providing a quantitative measure of the available local space as a function of the probe radius R.
In the free–volume calculation, the central particle is deliberately excluded from the evaluation
of the occupied volume. As a consequence, for small probe radii, the free volume starts at 0%,
since the probe sphere is fully filled by the particle located at its center. If the central particle
were included in the computation, the free volume would instead start artificially at 100%, because
the probe volume would simply coincide with the particle’s own volume. By removing the central
particle from the count, the free volume grows only once the probe radius exceeds the particle’s
hard core, providing a physically meaningful measure of the space available around it. The free
volumes obtained from this procedure are presented in Figure 3. A free-volume calculation was also
performed on an FCC structure to validate the method used in this work. We also computed the
first and second derivatives of the free-volume curve obtained while excluding the central particle
from the calculation (Figure 3). The goal of this additional analysis is to highlight very subtle
variations in the free-volume behavior that are not immediately visible from the raw curve alone.
As a preliminary step, we also verified that our Hard-Sphere simulations are physically realistic by
computing the average number of neighbors up to σ=1.5. To do so, we used the following relation:

N(1.0, 1.5) = 4πρ

∫ 1.5σ

1.0σ

r2 g(r) dr, with g(σ+) =
1− η/2

(1− η)3
(value of g at contact).

According to the literature [44], the average number of neighbors within 1.5σ (the first coordination
number) around a particle in a Hard-Sphere system, for large packing fractions, is approximately
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12. This analysis allowed us to confirm the reliability of our Hard-Sphere simulation (see Ap-
pendix A.1).

0.0

20.0

40.0

60.0

80.0

100.0

0.50 1.00 1.50 2.00 2.50 3.00

0.5271 w/o part
0.5179 w/o part
0.4953 w/o part
0.4779 w/o part
0.4558 w/o part
0.4337 w/o part
0.4167 w/o part
0.3789 w/o part
0.3595 w/o part

0.5271 w part
0.5179 w part
0.4953 w part
0.4779 w part
0.4558 w part
0.4337 w part
0.4167 w part
0.3789 w part
0.3595 w part

V
fr

e
e
/V

p
a
rt

ic
le

r/σ

Free Volume, Hard Sphere Model

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

1.00 2.00 3.00 4.00 5.00 6.00

0.5179 w/o part
0.4953 w/o part
0.4779 w/o part
0.4558 w/o part
0.4337 w/o part
0.4167 w/o part
0.3789 w/o part
0.3595 w/o part

d
/d

r 
(V

fr
e
e
/V

p
a
rt

ic
le

)

2r/σ

First Derivative of the Free Volume, Hard Sphere Model

-200.0

-150.0

-100.0

-50.0

0.0

50.0

1.00 2.00 3.00 4.00 5.00 6.00

0.5179 w/o part
0.4953 w/o part
0.4779 w/o part
0.4558 w/o part
0.4337 w/o part
0.4167 w/o part
0.3789 w/o part
0.3595 w/o part

d
2
/d

r2
 (

V
fr

e
e
/V

p
a
rt

ic
le

)

2r/σ

Second Derivative of the Free Volume, Hard Sphere Model

Figure 4: Free-volume curve (top) and its first and second derivatives (bottom).

Looking at the free-volume curve, we observe that its asymptotic behavior is fully consistent
with the expected packing fractions. In particular, when the probe radius R becomes very large,
the free volume normalized by the particle volume naturally approaches the packing fraction of
the system. This is exactly what we should obtain, since at very large R the probe sphere samples
the entire simulation domain and therefore reflects the global fraction of space occupied by the
particles. Unfortunately, no meaningful physical interpretation can be drawn from these figures
at this stage, particularly around 1.5σ. This means that we will need to revisit the notion of free
volume with more care and develop a more refined and intuitive way of interpreting it.

5.3 A second calculation of the free volume

To correctly evaluate the free volume available to each particle, it is essential to consider an
exclusion radius equal to σ around every neighbor, rather than the physical particle radius σ/2.
This follows from the fact that the free volume is defined with respect to the position of the
particle’s center and not its geometric boundary. In a hard-sphere system, two particles come
into contact when their centers are separated by exactly σ; consequently, the region into which
the center of a particle cannot penetrate is a sphere of radius σ around each neighbor. Using
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σ/2 would only describe the space occupied by the particle itself, but would not reflect the true
steric constraints imposed by surrounding particles, leading to a strong overestimation of the free
volume. By adopting σ as the exclusion radius, the calculation captures the correct center-to-
center constraints that govern local packing, cage formation, and dynamical hindrance in dense
fluids. This choice ensures that the computed free volume reflects the physically accessible space
for the particle’s center within the many-body environment.[35] [43]

5.3.1 Free-Volume Calculation Method and Fortran Implementation

The free_volume program computes the free volume accessible around each particle of a three-
dimensional system by combining neighbor detection, periodic boundary conditions, and a spherical
discretizations of space. After reading an input control file, the program extracts the total number
of particles, the number of particles used for the analysis, the particle diameter σ, the maximum
cavity radius Rmax, and the names of the input/output files. The atomic coordinates are then read
from a LAMMPS-style file that specifies the simulation box bounds and the particle positions.
The box lengths Lx, Ly, and Lz are reconstructed, and all subsequent distance calculations use the
minimum-image convention to ensure that periodic boundary conditions are correctly imposed.

The first computational step is a full neighbor search. For each particle, the program loops
over all other particles, computes the relative displacement corrected by periodicity, and identifies
those whose distance is smaller than a cutoff radius Rmax,nn. These neighbors are stored along
with their image-corrected positions. During this process, the code also determines the minimum
interparticle distance for each particle, which identifies its closest neighbor. This information is
important because it sets the maximum radius a spherical cavity can reach before intersecting
another particle.

Once the local environment of each particle is known, the code proceeds to the free-volume cal-
culation. The space around each particle is discretized radially, with the radius r = dr, 2dr, . . . , Rmax,
and angularly using a fine spherical grid consisting of nθ polar angles and nϕ azimuthal angles.
For a given radius r, two situations are possible. If r is smaller than the clearance up to the closest
neighbor (r ≤ Rm = dmin − σ), the entire spherical region of that radius is free of overlap, and
the free volume is simply the full geometric volume Vf = 4πr3

3
. If r > Rm, overlap with neighbors

may occur, and the free volume must be evaluated numerically. In this case, the program scans
all angular directions: for each pair (θ, ϕ), it constructs a test point at distance r from the particle
center, checks whether this point lies inside the excluded hard-core region of any neighbor (i.e.
at distance < σ), and accumulates the corresponding differential volume element r2 sin θ dr dθ dϕ
whenever the point is admissible. Summing all accessible angular directions yields the free volume
at radius r for that particle.

This procedure is repeated for all radii and all particles. The program stores the free-volume
function Vf (i, r) for each particle and writes several outputs: (i) the average free volume ⟨Vf (r)⟩
as a function of radius, which characterizes the typical amount of free space in the system; and
(ii) a file listing, for each particle, the free volume at selected radii of physical interest (such as
r = σeff , 1.50 (at hollow) and 1.96 (at the second peak). Overall, the code provides a detailed
numerical estimation of the local free volume in a dense hard-sphere or Lennard-Jones fluid, ac-
curately capturing how the presence of neighboring particles restricts the available space around
each atom. To improve the clarity of the free-volume interpretation, this quantity is illustrated in
Figure A.8, which is included in the Appendix. The free volumes will be expressed in units of the
volume of a sphere, i.e., Vfree

/(πσ3
eff

6

)
.
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We must carry out the same analysis for the Yukawa and Lennard-Jones models.
The main difficulty is that these two interaction potentials do not feature a well-
defined physical diameter σeff , since particles may overlap depending on the softness
of the potential. Therefore, an effective hard-sphere diameter must be introduced
in order to map these systems onto an equivalent hard-sphere model. This effective
diameter σeff then serves as a consistent length scale for comparing the free-volume
behavior across the different interaction models.

5.3.2 Computation of the effective diameters σeff for the Yukawa and Lennard–Jones
models

- Lennard-Jones : In this work, we rely on two standard definitions of the effective diameter for the
Lennard–Jones potential: the Ben-Amotz–Herschbach (BAH) diameter [37] and the LWCA–AH
diameter, obtained from the Lado-modified Weeks–Chandler–Andersen theory [38]. These two
approaches are widely used in the liquid-state literature to map a Lennard–Jones fluid onto an
equivalent hard-sphere system [39]. The BAH diameter is defined through an integration of the
repulsive part of the potential and depends only on the reduced temperature T*:

σ∗
BAH(T

∗) = 1.1532
[
1 + (1.8975T ∗)1/2

]−1/6

.

The LWCA–AH approach provides a more accurate estimate of the effective diameter, espe-
cially at high densities, since it incorporates both temperature and density effects. The analytical
expression used here is

σ∗
LWCA-AH(T

∗, ρ∗) = 1.1152
[
1 +

√
T ∗T ∗

0 (ρ
∗)
]−1/6

,

where T ∗ and ρ∗ are reduced variables, and T ∗
0 (ρ

∗) is a density-dependent function.
Both effective diameters will be used throughout the following sections in order to compare,

on a consistent length scale, the free-volume behavior obtained from the Lennard–Jones, Yukawa,
and Hard-Sphere models.

- Yukawa : Unlike the Lennard–Jones potential, the Yukawa interaction does not possess a
well-defined or commonly adopted effective diameter. Because the potential is soft and allows for
partial overlap between particles, different definitions of σeff exist in principle, but none of them
has emerged as a standard in the literature. In order to compare the Yukawa system with the
Hard-Sphere reference, we follow a more pragmatic approach: we determine an effective diameter
by aligning the Yukawa data with the Hard-Sphere behavior. In practice, this consists in choosing
σeff such that a selected structural or dynamical quantity (for example the contact value of the
radial distribution function, or the position of the first peak) of the Yukawa fluid collapses onto
the corresponding Hard-Sphere curve. This mapping provides a consistent length scale that allows
us to analyse the free-volume properties of the Yukawa model within the same framework as the
Lennard–Jones and Hard-Sphere systems.

5.3.3 Results and Analysis

The free-volume curves obtained for the Lennard–Jones and Yukawa models are shown in Fig-
ure A.4 in the Appendix. As illustrated in Figure 5(a) for the Hard-Sphere model, the free volume
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reaches a plateau rather quickly at high packing fractions (corresponding to large values of Γ for the
Yukawa potential and low temperatures for the Lennard–Jones system). This behavior indicates
that, beyond a certain radius, no additional accessible space becomes available to the particle’s
center: the local environment is already fully constrained by neighboring particles. In other words,
the particle becomes effectively caged, and the shape of the free-volume curve reflects the strong
steric hindrance that characterizes dense fluids in the vicinity of the freezing transition.
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Figure 5: Free volume analysis for the Hard-Sphere model: (a) free volume distribution, (b) mean
free volume at the hollow.

We now focus on the free volume at the hollow (i.e., the first minimum) of the radial distri-
bution function g(r) for the three interaction potentials. This minimum corresponds to the first
coordination shell surrounding each particle. This shell is of particular interest, as it determines
whether a particle has sufficient space to diffuse.

As can be observed in Fig. 5(b) for the Hard-Sphere model, and in Appendix (Fig. A.5 (a) and
(b) for the Yukawa and Lennard–Jones models, the free volume at the hollow appears to decrease
exponentially with the packing fraction (or with Γ for the Yukawa model and with 1/T ∗ for the
Lennard–Jones model). A plateau also seems to emerge for the three models around the packing
fraction at which the peak in D(r) begins to develop. This further supports the idea that the
behavior of D(r) is directly linked to the microscopic dynamics occurring within the first coordi-
nation shell.

To deepen the analysis, we now turn our attention to the distribution of the natural logarithm
of the free volume at the hollow for each model. Examining ln(vfree) is particularly insightful, as
free-volume fluctuations are typically highly skewed and span several orders of magnitude. Taking
the logarithm therefore compresses the dynamic range, highlights the statistical structure of rare
events, and often reveals whether the underlying distribution follows a log-normal or stretched-
exponential behavior [42, 43]. This representation thus provides a more robust way to compare
the microscopic free-volume statistics across different interaction potentials.

The resulting histograms (Appendix, Figs. A.6 (a) and (b) for the Yukawa and Lennard–Jones
models) exhibit a shape that is remarkably close to a skew-normal distribution. A skew-normal
distribution is a generalized form of the Gaussian distribution characterized by three parameters:
a location parameter ξ, a scale parameter w, and a shape parameter α that controls the degree and
direction of asymmetry [40, 41]. When α = 0, the distribution reduces to a symmetric Gaussian;
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non-zero values of α produce left- or right-skewed profiles. In dense liquids, such skewness naturally
reflects the asymmetric fluctuations of the cage formed by neighboring particles.

The probability density function of the skew-normal distribution is

f(x; ξ, w, α) =
2

w
ϕ

(
x− ξ

w

)
Φ

(
α
x− ξ

w

)
,

where ϕ and Φ denote the standard normal PDF and CDF, respectively. In our case, the fitted
variable is x = ln(vfree), so the corresponding distribution of the free volume is obtained through
a change of variables:

pv(v) =
1

v
f(ln v; ξ, w, α).

This formulation provides a compact and physically meaningful way to characterize the asymmetric
microscopic fluctuations of the free volume. We were thus able to successfully fit all the histograms
using a skew-normal distribution, as shown for the Hard-Sphere model at the transition packing
fraction (Fig. 6).
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These mathematical analyses will later allow us to confirm, in a future scientific publication,
that the skew-normal shape observed in the free-volume histograms is not a numerical artifact
but a robust and characteristic feature of the physical systems studied. The asymmetry in the
distribution of ln(vfree/[(π/6)σ

3
eff ]) reflects the microscopic fluctuations of free volume in dense

liquids. Demonstrating the universality of this skew-normal profile across different interaction
potentials will further strengthen its physical relevance and support the interpretation of dynamical
signatures near the freezing transition.

Finally, we examine in more detail the free-volume curves as a function of distance. We ob-
serve that the positions of the peaks in D(r) systematically coincide with the distances at which
the free volume reaches its plateau. As shown in Fig. 7 for the Hard-Sphere model, and in Ap-
pendix Figs. A.7 for the Yukawa and Lennard–Jones systems, the peak in D(r) always appears
when the free volume has reached between 98% and 99% of its plateau value for Lennard–Jones
and Hard–Sphere, and between 99.85% and 99.97% for the Yukawa potential.

This consistent correspondence suggests a direct physical connection between the onset of dy-
namical hindrance (captured by the peak in D(r)) and the saturation of the available free volume
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around each particle.

A direct connection emerges between the peak of D(r) and the point at which the free-volume
curve reaches its plateau. At small r, particles remain trapped within their local cages, and the
available free volume increases rapidly with distance, resulting in a low and slowly varying D(r).
As r increases, the system reaches a critical distance at which the free volume becomes almost
saturated typically between 98% and 99.9% of its asymptotic value, depending on the interaction
model. At this point, even a small increase in available space produces a sharp change in particle
mobility, which manifests as a pronounced maximum in D(r). Beyond this region, once the free
volume has fully plateaued, additional space no longer significantly alters the dynamics, and D(r)
decreases accordingly. This correspondence indicates that the dynamical transition captured by
D(r) the escape from the local cage occurs precisely when the structural environment provides
enough free volume for diffusion to take place.

6 Conclusion
After 24 weeks of internship at Los Alamos National Laboratory, this project has led to substantial
scientific progress. We have established a clear link between the emergence of a peak in the
D(r) function and the microscopic mechanisms governing particle diffusion, consistently observed
across three interaction models: Lennard–Jones, Yukawa, and Hard Sphere. These advances were
made possible through extensive molecular-dynamics simulations and the development of dedicated
analysis tools, including numerous Python and Fortran codes designed to process, visualize, and
interpret the resulting data.

Given the complexity and breadth of the work carried out, summarizing these results in twenty
pages has been particularly challenging. Many technical choices, computational strategies, and
methodological decisions could only be briefly outlined here. The oral presentation to be held in
January will therefore provide a valuable opportunity to discuss these elements in greater depth.

Beyond the scientific results, this internship has been an exceptionally formative experience.
Entering a research environment with limited prior exposure to programming, molecular dynamics,
and advanced theoretical concepts required sustained effort, but proved profoundly rewarding. I
am grateful for the trust placed in me by my supervisor and for the guidance that made this work
possible.

Finally, following my mentor’s proposal, this collaboration will continue remotely from France
through secure access to the laboratory’s computational resources. This extension will allow us to
further investigate the mechanisms underlying the peak observed in D(r) and to assess whether
this criterion can be applied to other systems, such as water models. In the longer term, this
continued effort is expected to lead to a scientific publication based on the results obtained during
this internship.
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Figure A.1: First coordination number and
comparison with literature results.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

0.00 0.50 1.00 1.50 2.00

0.900
1.000
1.100
1.200
1.300
1.415
1.500
1.700
1.900
2.000
2.250
2.500
2.750
3.000
4.000
5.000

2.1
2.0

D
(r

)

r/a

Logarithmic derivative D(r), Lennard-Jones Model

Figure A.2: D(r) curve for the Lennard–Jones
model.
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(a) D(r) curve for the Yukawa model.
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Figure A.3: D(r) curves for the Yukawa (left) and Hard-Sphere (right) models.
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Figure A.4: Free Volume Figures for the Yukawa model (top), LJ-BAH (bottom left), and LJ-
LWCAAH (bottom right).
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Figure A.5: Mean free volume at Hollow for the LJ (left) and Yukawa (right) models.
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Figure A.6: Histrograms of ln(vfree) for the Yukawa (left) and the LJ-BAH (right) models
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Figure A.7: Comparison of the plateau positions and peak D(r) for (a) the Yukawa model and (b)
the Lennard–Jones model.
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Figure A.8: Theoretical Visualization of the Free Volume in 2D, Hard Sphere model

Table A.1: Correspondence between the parameter r and the packing fraction η for the Hard-
Sphere model.

Parameter r Packing fraction η
0.0300 0.5455
0.0400 0.5271
0.0500 0.5179
0.0600 0.5050
0.0650 0.5018
0.0675 0.5002
0.0700 0.4953
0.0750 0.4925
0.0800 0.4853
0.0825 0.4839
0.0900 0.4779
0.1000 0.4685
0.1100 0.4644
0.1150 0.4594
0.1200 0.4558
0.1300 0.4498
0.1500 0.4377
0.1700 0.4286
0.1800 0.4254
0.2000 0.4167
0.2400 0.4006
0.3200 0.3789
0.3600 0.3707
0.4000 0.3595
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