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Abstract—Novel algorithms leveraging neuromorphic com-
putation are on the forefront of algorithm design. Here, we
investigate how stochastic devices integrate and perform with
a novel neuromorphic algorithm for solving MAXCUT problems
in graphs. We evaluate how using magnetic tunneling junctions
(MTJs) as the device to generate random numbers impacts the
neuromorphic MAXCUT algorithm. We use both experimental
MTJ data, as well as a model of the device behavior to investigate
MTJ performance on this task. We also leverage the use of
evolutionary optimization to tune the MTJ device to maximize
performance on the algorithm and minimize energy usage of the
device.

I. INTRODUCTION

Novel algorithms leveraging neuromorphic computers offer
an exciting path forward for improving computational and/or
energy efficiency on many applications, including several dif-
ferent graph and optimization algorithms [1]. At the same time,
a wide variety of emerging devices are being evaluated for
neuromorphic computing implementations [2]. However, most
of these neuromorphic device implementations are evaluated
in the context of neural network applications (i.e., for training
or inference of neural networks), not in the context of these
new, emerging neuromorphic algorithm types. It is extremely
important to consider these novel neuromorphic devices and
novel neuromorphic applications together in order to gain a
better understanding of how they perform collectively, and
further, to understand which device types make the most sense
for which applications. Moreover, there is an opportunity to
tune device behaviors for given applications in order to get the
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best performance for a given application. We have previously
shown that using novel devices, we can fine tune and optimize
for specific applications and achieve better performance [3],
[4]; however, to our knowledge, optimization approaches have
not been applied to tuning neuromorphic devices for non-
neural network applications.

One emerging device type of interest to neuromorphic
computing and other emerging compute and memory more
broadly is magnetic tunneling junction (MTJs). MTJs can
be leveraged to produce true random number generation
(TRNG) [5]. Exploration of TRNGs has been extensive in
the security field as the true randomness of TRNGs enable
them to be more cryptographically secure [6]–[9]. Similarly,
MTJs have been extensively investigated as devices used in
neuromorphic systems [10]. Furthermore, previous work has
been done with integration of FPGA generated stochastic bits
in regard to energy optimization [11]. However, in the neuro-
morphic field, there has been little testing done with integrating
MTJs as TRNGs in non-neural network applications. In this
work, we seek to close that gap by showing the performance
of MTJ-based RNGs integrated with a novel neuromorphic
circuit solving MAXCUT. We leverage both experimental MTJ
data as well as a device model based on this data. Using
the device model, we further use evolutionary algorithms to
tune device characteristics to optimize for improved energy
efficiency when executing the novel MAXCUT solver using
these devices. We show that we are able to obtain improved
energy efficiency with comparable algorithm performance to
the default device parameters, indicating that there is an oppor-
tunity to optimize these devices for the MAXCUT application.

II. RELATED WORK

Several attempts at improving traditional MAXCUT algo-
rithm performance have been noted in previous literature [12]–
[16]. However, there is relatively little literature on solving
MAXCUT with neuromorphic circuits, and it is completely
novel to integrate MTJ-based TRNG with these circuits.

TRNGs recently have been integrated into several applica-
tions, primarily focused on security. TRNGs offer the char-979-8-3315-4127-9/24/$31.00 ©2024 IEEE
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acteristic of being derived from physical-system interaction
rather than traditional PRNGs relying on a seeded value. This
is not the first MTJ-based TRNG model as Amirany et al.
have designed and tested a similar TRNG utilizing MTJs
and carbon nanotube field-effect transistors (CNTFET). This
TRNG was proven to show true randomness via NIST testing,
and when compared to previous TRNGs had much lower
power consumption and energy expended per bit. This design
shows how MTJ-based TRNGs have the lead edge over other
TRNGs when it comes to low power design [17].

Demonstrating feasibility and performance has been long
tried in the realm of TRNGs and security. Several applications
have been integrated with TRNGs to demonstrate the potential
for stronger security measures in Internet of Things (IoT)
devices. Extensive experiments to show how applications uti-
lizing TRNGs are cryptographically safe while also accounting
for true randomness [18].

In our previous work, we have shown results of reinforce-
ment learning and evolutionary algorithms when tuning for
energy performance in a codesign workflow. This was done
by using the MTJ device model to generate a gamma distribu-
tion [3], [4]. In this work, we expand upon that by replacing
the simple application of generating a gamma distribution with
a novel neuromorphic solution to the MAXCUT problem.

III. METHODS

A. MAXCUT

The MAXCUT algorithm is an NP-complete problem that
takes a graph’s vertices and separates them into two different
disjoint sets such that the separation maximizes the number of
edges spanning between the two sets. Several different meth-
ods have been created to solve the MAXCUT problem. One
such algorithm is the Goemans–Williamson algorithm, which
features a semi-definite programming algorithm for solving an
adjacency matrix from the graph [19]. Another algorithm that
is utilized is the Trevisan algorithm. The Trevisan algorithm
gets the cut weights by solving for the minimum eigenvector of
the normalized adjacency matrix [20]. The Trevisan algorithm
performs worse than the Goemans–Williamson algorithm in
theory; however, in practice, it has a similar performance to
the Goemans–Williamson algorithm [16].

Theilman et al. have devised two unique modifications
to these algorithms to introduce neuromorphic circuit-based
devices. This is done using popular neuromorphic components,
including leaky-integrate and fire (LIF) neurons and Oja’s anti-
Hebbian plasticity rule [16], [21].

The LIF Goemans–Williamson algorithm has a variable we
will refer to as dimensional matrix W, and the dimensions are
defined by n (number of vertices) by r (rank of the solution).
The neuromorphic circuit is defined as utilizing a number r
random devices connected to n LIF neurons. A ratio is formed
between the devices and LIF neurons which is mapped to
the elements in the dimensional matrix W, giving the LIF
covariances [16]. As Theilman et al. discussed, this enables
the algorithm to take hardware specifications into account, by
imposing a constraint on the range of weights. Finally, the

cut weight is obtained by checking which neurons are spiking
and not spiking and using that to assign the vertices in the
corresponding disjoint sets [16].

The LIF Trevisan algorithm, while fundamentally a different
algorithm, uses the same setup with an array of LIF neurons
equaling the number of vertices in the graph associated with
random devices. Specifically, the weight vector is obtained
from funneling the population of LIF neurons into a single
LIF neuron, and this is used to directly perform the Oja’s
anti-Hebbian plasticity rule [16], [22]. This results in the
Trevisan algorithm’s main objective of obtaining the minimum
eigenvector by having the weight vector converge from the LIF
covariance matrix [16].

The other two algorithms that we include in our evaluations
are a standard Goemans–Williamson algorithm used for refer-
ence and a naive algorithm that randomly selects vertices for
the cuts. These are used to compare performance against the
LIF versions of the algorithms. As such we shall maintain that
the standard Goemans–Williamson algorithm will be referred
to as the Solver, modified algorithms will have LIF appended
to them (LIF-GW, LIF-TR), and the naive algorithm shall be
referred to as Random [16].

B. MTJ Device

The MTJ is a three-terminal, layered magnetic device com-
prising of a bottom ferromagnetic free layer (FL) separated
from a top pinned layer (PL) by an insulating layer as shown
in Fig. 1a. For devices built with perpendicular magnetic
anisotropy (PMA), the magnetizations of these two layers will
favor resting in the ±ẑ directions. When the magnetizations
of the two magnetic layers are parallel the device is in a low-
resistance state when reading across terminals T1 and T2, and
when they are anti-parallel the device is in a high-resistance
state.

While there are several ways to operate an MTJ device
for TRNG, such as via voltage-controlled magnetic anisotropy
or via spin-torque transfer, for the applications in this paper
we consider MTJ devices based on spin-orbit torques (SOT).
These SOT-MTJ devices rely on a heavy metal layer beneath
the MTJ stack to host a spin-polarized current density JSOT

between terminals T1 and T3 to aid in the stochastic switching
the magnetization of the FL m̂. For an SOT-MTJ with PMA,
the current through the heavy metal drives the FL magnetiza-
tion into an unstable equilibrium in the plane of the device.
Stochastic switching is then realized via the thermally driven
symmetry breaking upon removal of the current, causing the
FL to stochastically relax into either the + or −ẑ directions
as shown in Fig. 1b. The binary interpretation of the resulting
high- or low- resistance state as a ’1’ or a ’0’ thus gives a
candidate binary random number generator. The pulse-and-
relax scheme outlined here is capable of generating each bit
on the order of tens of nanoseconds.

To study the potential applications of this device, we use a
macrospin model outlined in [5] which considers the magne-
tization dynamics described by a modified Landau-Lifshitz-
Gilbert equation. The effects of the heavy metal layer are



Fig. 1: Spin-Orbit Torque Magnetic Tunnel Junction (SOT-
MTJ) device model and operation. a) Two magnetic layers,
the pinned layer (PL) and free layer (FL) are separated by
a thin insulating layer and sit atop a heavy metal substrate.
When the magnetizations of the two layers are parallel, the
device resistance Rread between terminals T1 and T2 is low,
and when they are anti-parallel it is high, representing two
distinct binary states. b) While the magnetizations of the two
magnetic layers will rest out of plane for devices built with
Perpendicular Magnetic Anisotropy, the magnetization of the
free layer can be brought in-plane via application of a spin-
polarized electric current JSOT through the heavy metal be-
tween terminals T1 and T3. Removal of the current then causes
stochastic relaxation into either the high- or low- resistance
states with equal probability. c) Example bitstreams generated
by an SOT-MTJ device, with application and removal of JSOT

indicated above the bitstreams.

described by the layer resistance, the spin-hall angle, and the
spin polarization of the current. The other parameters, such
as free layer anisotropy energy or saturation magnetization,
are dependent on the device stack and are listed in table
II. This paper will focus on the generation of uniform bit
streams, as shown in Fig. 1c, and thus we utilize the various
knobs available in the model to optimize the device for this
application.

C. Test Graphs

During the execution of the integrated MAXCUT algorithm,
several different graphs were used for testing purposes. First,
for smaller graph sizes (50 - 500), graphs were randomly gen-
erated using the networkx library. The graphs were generated
using fast_gnp_random_graph with each of the graphs
being undirected. For the larger graphs, we used graphs based
on real life examples from the Stanford Large Network Dataset

Collection, which included a multitude of generated graphs
from road networks to peer-to-peer network graphs [23].

We focused on selecting a graph that would be of adequate
size, but could be run locally. We used a communication
network graph, specifically the email communication network
from Enron. The number of nodes in the graph is 36,692 and
the number of edges is 183,831. With much larger graphs we
ran into several memory-related issues when simulating the
neuromorphic implementation. We could not run the algorithm
on these graphs due to the graph sizes, which would require
250GB or more of memory.

IV. RESULTS

A. Tera-bitstream

1) Experimental Setup: For these series of tests, we utilized
a bitstream with a trillion bits that was directly sampled from a
physical device. This physical device is an MTJ device that is
actuated using a field programmable gate array (FPGA). The
bitstream was tested against the NIST Statistical Test Suite to
verify the randomness, in which it succeeded with only one
XOR operation. This bitstream is unique in the sense that not
only is it verified as truly random, but the bitrate and setup
costs are heavily reduced. This bitstream has all the qualities
that we need to utilize for MAXCUT, fulfilling the need for a
stochastic device [24].

The initial testing of the tera-bitstream with the MAXCUT
algorithm required integration of reading random bits, captured
in a file from the FPGA-actuated MTJ from a stream, into the
application. This was integrated into the MAXCUT algorithms
to replace the default RNG devices; in particular, anywhere
a random bit would have been sampled, we instead draw
from this bitstream. For our testing we maintained much
of the original MAXCUT variables, including graph sizes
50, 100, 200, 350, 500 and connectivity probabili-
ties of .10, .25, .50, .75. We utilized 220 different
graph cuts for each iteration of the algorithm.

We conducted both integration and stress tests using the
tera-bitstream. The integration tests followed the same setup
as in the original MAXCUT implementation that Theilman
et al described, which looked at a variety of graph sizes and
connection probabilities. In our integration tests, each of the
graph sizes and connectivity probabilities were run ten times.
Then, we conducted a stress test to see how well the approach
scales. The stress test was run using a large, real-world graph,
in our case the Enron Email graph. The same number of cuts
were performed on the graph as stated before 220 [16].

TABLE I: Number of bits used

n LIF Goemans–Williamson LIF Trevisan

50 4,194,304 52,428,800
100 4,194,304 104,857,600
200 4,194,304 209,715,200
350 4,194,304 367,001,600
500 4,194,304 524,288,000

36692 4,194,304 38,474,350,592



Fig. 2: Comparison of max cuts found for each of the graph and connectivity sizes with respect to the original Goemans–
Williamson algorithm (solver). The n is the number of nodes and p is the connectivity probability. The comparison is between
the MAXCUT algorithm that is powered by the trillion bitstream and a reference default MAXCUT run with normal PRNG’s.
The designation of ref is given for the reference runs.

2) Results: In Table I, we can see the distribution of bits
being used from the tera-bitstream. The unchanging number
of bits required is an interesting quirk of the LIF Goemans–
Williamson algorithm. The construction of the algorithm can
be explained in two stages: solving for the SDP (semi-definite
programming) and the sample stage. The solving the SDP
stage is the same as the traditional Goemans–Williamson
algorithm, but the interesting part is in the sampling section.
The algorithm is set up so the rounding step is replaced by a
sampling section. This section samples standard normal ran-
dom variables, with one random variable per vertex. Theilman
et al. postures that there is such a sequence of random variables
that has an association to the unit vector in the solution. If
that is the case, one can simply check the sign of the random
variable to determine what the cut is assigned to. In regards
to the LIF section, the sampling of standard normal random
variables is instead used to generated a random population
of LIF neurons. There is a set rank used within the function
not only to shape the SDP solution vector, but to also have r
number of devices be directly tied to LIF neurons. In our case,
for testing, the rank is equal to four, which makes the number
of bits consistent despite the graph size increasing [16].

Table I shows that the LIF Trevsian algorithms bit usage
scales with the graph size. Oja’s anti-Hebbian plasticity rule
requires a pool of LIF neurons to be generated according to
the size of the graph. This is done for every iteration that
a cut weight is generated, so there is a direct relationship
between graph size and the number of bits being utilized in
the algorithm.

Figures 2 shows the comparison between the max cuts for
each of the graph sizes with respect to the reference run
of MAXCUT. Regarding the Goemans–Williamson algorithm
comparison there is very little variation between reference LIF
Goemans–Williamson and the bitstream-based LIF Goemans–
Williamson algorithms. For the LIF Trevisan algorithm, we

start to see variation between reference LIF Trevisan and
the bitstream-based LIF Trevisan with the largest variation
being displayed for the graph with 50 vertices. This behavior
is expected, as with a smaller graph there will be higher
variation and more apparent max cuts for that graph, as both
the reference and bitstream-based Trevisan algorithm have a
higher opportunity to converge the minimum eigenvector.

Figure 3 gives an overview of the performance of both
algorithms with respect to the corresponding solver (reference
Goemans–Williamson algorithm). As we can see the LIF-
GW (leaky integrate and fire Goemans–Williamson) algorithm,
with the tera-bitstream integrated, is performing exactly like
the reference LIF-GW algorithm for each graph size and
connectivity. For the LIF-TR (leaky integrate and fire Trevisan)
and naive random cut selection algorithm, we start to see some
variation for each of the graphs.

Looking at the tera-bitstream LIF Goemans–Williamson
performance (blue line) we notice that the pattern from each
of the graphs is that it closely matches the reference LIF
Goemans–Williamson run (purple line is overlapping). This
is very interesting since the sampling section of the algo-
rithm directly relies on generating an appropriate sampling
of random stochastic devices (in this case, sampling from
a fair coin) to feed into the LIF neurons. As we can see,
when using a bitstream generated from a physical device,
the algorithm performs to the full capacity compared to the
reference Goemans–Williamson algorithm. This behavior is
exhibited on a wide range of graph sizes and connection
probabilities, fully displaying the performance against a wide
array of graph selections.

The performance of the tera-bitstream LIF Trevisan algo-
rithm is also comparable to the reference when compared
to the respective solvers. The sharp increase of performance
for both the tera-bitstream and reference near the 103 to 106

can be observed on smaller graphs or graphs with a smaller



Fig. 3: Performance of the MAXCUT algorithm with integrated trillion bitstream. Each of the lines are maximum cut weight
with respect to the Goemans–Willamson solver (labeled as ’solver’ and the green and pink lines) as a function of the number of
samples from Erdős–Rényi random graph. The rows are n number of vertices and the columns are p connectivity probability.
The error bars are an average across 10 different graphs. There is overlap for LIF-GW (blue), LIF-GW ref (purple), Solver
(green), and Solver ref (pink).

connectivity probability. Oja’s anti-Hebbian plasticity rule is
likely the cause for this, since this is an online learning
method, the smaller graphs and less connected graphs have
an easier time converging as the number of cuts increases.
We postulate that the limiting factor for larger and more
connected graphs is the limited number of cuts performed on
the graph. Sadly, increasing the number of cuts quickly inflates
the memory usage of the algorithm.

Interestingly, tera-bitstream LIF Trevisan performance (or-
ange) in comparison shows an interesting variance when
compared to the reference Trevisan performance (brown).
The overlap between the tera-bitstream and reference is close

enough that we can say the device achieved the purpose of be-
ing a stochastic device that produces TRNG behavior that will
satisfy the needs of the Trevsian algorithm. Despite that, the
performance is not entirely similar, and we can extrapolate that
the randomness produced by the corresponding device (TRNG
for the tera-bitstream and PRNG for reference) enabled the
algorithm to converge more quickly. Specifically, in graphs
0.75 connectivity plots, the tera-bitstream performed better
with convergence regarding a lower number of cuts. We can as-
sume that the device that produced the tera-bitstream achieved
a more true random distribution in accordance to the 50/50



uniform distribution. The relationship between the random
devices and LIF neurons is directly tied to the convergence
onto the minimum eigenvector, which generally speaking is the
performance of the algorithm. That being said, if the random
device, i.e. the tera-bitstream, can produce a higher quality
random sample, it will enable the minimum eigenvector to
converge quicker, increasing the cut size [16].

Fig. 4: Performance of the tera-bitstream and LIF Goemans–
Williamson and LIF Trevisan algorithm when utilizing a large
graph. The blue axes represents the LIF Trevisan algorithm
and the red axes represents the LIF Goemans–Williamson
algorithm.

Fig. 4 reinforces the shortcoming of the LIF Trevisan versus
the LIF Goemans–Williamson algorithm. The clear difference
in the max cuts at each interval is a clear indicator and when at
the highest measured cut ( 106) we can see 51.2% lower max
cuts. Interestingly, we see a large increase in max cuts between
the 105 and the 106 cuts for the LIF Trevisan algorithm. This
can be extrapolated from the previous graphs in Fig. 3 as the
point where the performance of the LIF Trevisan algorithm
starts to increase. It is safe to assume that we would see a
very similar pattern to the graph sizes of 500 from Fig. 3
given there was a higher amount of cuts on the graph.

It is worth noting that memory utilization was an issue
for this experiment as the LIF Trevisan, LIF Goemans–
Williamson, and the reference Goemans–Williamson algo-
rithm all have large matrix multiplications which quickly bloat
the memory usage. It can be noted in Fig. 4, that there is
no line for a reference Goemans–Williamson algorithm, and
this is directly caused by a large matrix multiplication that
cannot be avoided. We were able to find workarounds for
both the LIF Trevisan and LIF Goemans–Williams algorithms.
This figure still maintains validity after observing Fig. 3
and seeing the close performance of the LIF Goemans–
Williamson compared to the reference Goemans–Williamson
algorithm. It can be extrapolated that the performance of the
LIF Goemans–Williamson with a large graph will maintain the
same accuracy. Further steps can be taken given a machine
with a large amount of memory, such as an HPC system.
First, the reference Goemans–Williamson algorithm can be
run to verify the LIF Goemans–Williamson algorithm. Second,

a higher number of cuts can be applied to the graph which
could be useful to see the performance of the LIF Trevisan
algorithm. Lastly, larger graphs can be utilized to determine
the performance of the scalability of the LIF Goemans–
Williamson and LIF Trevisan algorithms.

B. Device Model

1) Experimental Setup: The introduction of the MTJ device
model into the MAXCUT algorithm introduced the need for
the integration of a new device for every random bitstream
needed by the MAXCUT algorithm. Similar to the previous
integration, the device model was also used to replace all
locations where random bits are generated in the algorithm.
That is, the model of the MTJ device was sampled for every bit
needed by the MAXCUT algorithm. Specifically, the spin orbit
torque (SOT) device model was utilized. We chose this model
as it fit our needs regarding sampling a uniform distribution.
Since the MAXCUT algorithm only needs a ’0’ or ’1’ state, we
only want to focus on sampling from a uniform distribution.
The spin transfer torque model (STT) was not chosen since the
the SOT model offers a higher level of tuning [3]. It should
be noted that when utilizing the model of the MTJ device
this shifts the focus from the TRNG to PRNG (since the
device model uses a PRNG as part of its modeling process).
Another point to make is that the sampling of the device
model will have a much worse throughput for bit generation.
This is necessary for testing different device configurations as
this enables a quick and easy testing suite for the MAXCUT
algorithm. We can directly tune each of the parameters as
needed while maintaining a clear-cut workflow.

TABLE II: MTJ model configuration

Parameter Value

Alpha (Gilbert damping factor) 0.01
Ki (Anisotropy energy) 0.0002 J/m2

Ms (Magnetic saturation) 300000 A/m
Rp (Resistance in the parallel state) 13265.5557Ω

TMR (Tunneling magneto resistance) 0.3Ω
eta (Spin hall angle) 0.8

J she (SHE current density) 3.34994e+12 A/m2

t pulse (Pulse time) 7.5e-08 ns
t relax (Relax time) 7.5e-08 ns

d (Thickness of the heavy metal layer) 3e-09 m
tf (Thickness of the free layer) 1.1e-09 m

Table II shows the configuration that we used for testing in
the MAXCUT algorithm. These values were derived to ensure
the device enters PMA state and allows the correct sampling
of the uniform distribution.

2) Results: Fig. 5 follows the same pattern as Fig. 4 and
this is to be expected. The device should be functioning
similarly to the tera-bitstream, but within a software-based
environment. It is important to emphasize that the device
model is not a TRNG but a PRNG; here, we are validating the
model’s behavior against the real device, but our main goal is
to leverage the model’s ability to quickly tune and evaluate
different device parameters. It should be noted that the LIF



Fig. 5: Comparison of max cuts found for each of the graph and connectivity sizes with respect to the original Goemans–
Williamson algorithm (solver). The n is the number of nodes and p is the connectivity probability. The comparison is between
the MAXCUT algorithm that is powered by and a reference default MAXCUT run with normal PRNG’s. The designation of

ref is given for the reference runs.

MAXCUT algorithms utilizing the device model are being
compared against the reference MAXCUT run that is using
the default PRNGs. Fig. 5 shows again that an MTJ device
can fully function with these LIF MAXCUT algorithms while
producing similar performance as the reference.

C. Evolutionary Optimization

1) Experimental Setup: Finally, we added the EA in order
to optimize the device characteristics as referenced in II. Patel
et al devised an experimental codesign workflow for both evo-
lutionary and reinforcement learning algorithms for the MTJ
device model [3]. An EA is one that is inspired by evolution
and genetics. One of the most important components in an
EA is the genome, which represents a solution to the problem
that is being optimized. A set of these solutions are maintained
throughout the algorithm as a population. A fitness function is
used to determine how well the genome is performing. Several
operators can be applied to each member of the population
to produce offspring and possibly replace the parent if the
fitness is better. In our scenario, we are optimizing for four
different objectives: total energy, LIF Goemans–Williamson
Algorithm performance, LIF Trevisan Algorithm performance,
and Kullback-Leibler (KL) divergence from a uniform distri-
bution. In particular, we are minimizing for the total energy
and KL divergence, and maximizing for the algorithm per-
formance. To implement the evolutionary algorithm, we are
using LEAP-ec, which is a suite of evolutionary algorithms
implemented in Python [25]. For this specific problem, we
are using NSGA-II (non-dominated sorting genetic algorithm),
which is a multi-objective optimization algorithm [26]. On the
MAXCUT implementation side, we limited the graph sizes

to 25 nodes and probabilities to .25. This was to ensure a
reasonable running time for the optimization pass.

To calculate the performance metrics for the modified
Goemans–Williamson and Trevisan algorithm, we calculated
the difference under the curve with respect to the number of
cuts and cut size relative to the naive random cut algorithm
using the following equations, where i is starting index of the
sum, n is the cut number, h(xi) is the difference between
the two equations, and ∆xi is is the difference between the
number of cuts:

R =

n−1∑
i=1

h(xi) ∗∆xi (1)

h(xi) = f(xi)− g(xi) (2)

Where f(xi) is the LIF algorithm cut size at a relative cut
amount (i.e. 102) and where g(xi) is the naive random cut
algorithm cut size at a relative cut amount. Since the naive
algorithm is the lowest-performing algorithm we should expect
to see a larger number as the area between the curves (LIF and
naive algorithm distance) increases over the entire graph. This
justifies maximizing for this performance metric and ensures
that the LIF algorithms are performing as expected.

A uniform distribution was sampled for the usage of this
MTJ device as the MAXCUT algorithms are expecting a
stream of 1’s or 0’s and a KL divergence was calculated
using the function:

KL(P ||Q) =
∑
x

P (x) log(
P (x)

Q(x)
) (3)

Where P is the actual distribution sampled and Q is the
theorized distribution. The KL divergence score was used to



ensure that the uniform probability distribution was easily
observable. A high KL divergence score would indicate a
biased coin flip, and a lower score would indicate it is closer
to a fair coin flip.

The range of the parameters that were modified during the
optimization have been bounded to ensure that the model
stays within the PMA state. This was done in accordance to
the previous work [3]. The energy utilization is calculated as
joules per bit generated.

The optimization framework was run with a population size
of 30 for 30 generations. The evolutionary optimization tests
were run using the specifications detailed above.

(a)

(b)

Fig. 6: Pareto fronts comparing energy and KL-Divergence.
Each graph has a color mapping for how well the algorithm
is performing, with each of the performance metrics separated
into two graphs for each LIF algorithm. The star marker is
to denote the default configuration, while the circular dots
represent individual results from the optimization, and the
triangles represent the Pareto front.

TABLE III: Default MTJ configuration vs. energy saving
configuration

Parameter Default Optimization

Alpha (Gilbert damping factor) 0.01 0.01
Ki (Anisotropy energy) 0.0002 J/m2 0.0002 J/m2

Ms (Magnetic saturation) 300,000 A/m 1,825,292 A/m
Rp (Resistance in the parallel state) 13265.5557Ω 28604.3934Ω

TMR (Tunneling magneto resistance) 0.3Ω 0.3Ω
eta (Spin hall angle) 0.8 0.1

J she (SHE current density) 3.34994e+12 A/m2 2.8308e+11 A/m2

t pulse (Pulse time) 7.5e-08 ns 5.0e-10 ns
t relax (Relax time) 7.5e-08 ns 5.0e-10 ns

d (Thickness of the heavy metal layer) 3e-09 m 3e-09 m
tf (Thickness of the free layer) 1.1e-09 m 1.1e-09 m

Total Energy 3.5743e-06 J 1.5314e-08 J

2) Results: In Fig. 6a, we can see the performance of the
optimization with respect to the LIF Goemans–Williamson
algorithm. There are several interesting things to note about the
KL-divergence and the total energy usage. The color mapping
on this graph is normalized against the default configuration
run, and many of the genomes achieved equal or better results
than that. When we look at the KL-divergence in relation to
performance we can see a clear trend, as the KL-divergence
approaches 1, the performance of the algorithm increases. This
is a rather interesting result since this would mean that the
distribution is behaving differently than the expected uniform
distribution. If the distribution is skewed toward 1 or 0 this
could drastically affect the performance of the LIF Goemans–
Williamson algorithm. A likely scenario is the LIF algorithms
are not performing better, but the naive random algorithm is
performing worse. Since the performance metric is the area
between the naive random algorithm and the LIF algorithm
if the naive algorithm performs worse, than it will artificially
inflate the performance metric. This is not ideal for accurately
assessing performance and will be rethought in the future.
When looking at the energy usage versus the performance
there are clear groupings of higher performing metrics, but
also higher than normal energy usage (specifically around the
13−3 – 10−4 range). Despite this, the Pareto front has several
instances that use orders of magnitude less energy than the
default configuration, and this shows that there is potential for
vast improvement from the default configuration.

Why the data points share the same location as Fig. 6a is due
to how the optimization was performed. The optimization is
taking the total energy usage of both algorithms while the same
KL-divergence is generated on a device configuration basis. In
Fig. 6b one interesting thing to note about the performance is
that many of the genomes resulted in better performance than
the default configuration. We can see the cluster of data points
at 10−2 tended to have higher performance than the default
configuration. Furthermore, we have the same trend as from
Fig. 6a as the KL-divergence approaches 1 the performance
drastically increases. We can assume the reason is the same as
the LIF Goemans–Williamson algorithm, the naive algorithm
is performing much worse. The Pareto front data points were
selected with the performance in mind, so there are slight
variations between the LIF Goemans–Williamson and LIF



Trevisan algorithms, but we can see that many of the genomes
selected were similar between the two.

In Fig. 6a and Fig. 6b, the majority of the genomes
performed as well as the default configuration. Looking at
KL-divergence and energy we see that if KL-divergence is
slightly higher on average we can achieve lower energy, while
maintaining the same performance. There is a clear cluster of
data points around the 10−2 marker for KL-divergence which
have a lower average energy than the default configuration.
With respect to energy, all of the points on the Pareto fronts
have achieved better energy utilization than the default con-
figuration. Looking at both metrics while keeping both LIF
algorithms performance in mind shows a clear picture: there
are configurations that achieve the same performance, lowering
energy, while the distribution is approximately close to fifty-
fifty.

In Table III we can see the best performing configuration
in regards to energy savings. Magnetic saturation, resistance
in the parallel state, Spin Hall angle, SHE current density, and
both pulse and relax time have been optimized. It show be
noted that many of the top configurations that saved energy had
similar Gilbert damping factor, anisotropy energy, tunneling
magneto resistance, and thickness of both heavy metal and
free layers. The total energy of the optimized configuration is
526% more efficient than the default configuration.

V. DISCUSSION AND CONCLUSION

There are a few key next steps that we intend to take
from this research on novel MTJ devices and the novel
neuromorphic MAXCUT algorithm. Many of the tests that we
wished to run were not feasible due to hardware limitations.
Many tests far exceeded our modest 256GB of memory on
our local workstation, which limited our ability to explore
how the Trevisan circuit behaves with higher cut sizes. With
additional computation resources, the optimization runs also
can be extended to cover more graph sizes and connectivities.
A new performance metric needs to be derived for future
optimization passes. This will only bolster the evidence of
the performance of the novel MTJ device and the novel
neuromorphic MAXCUT algorithm.

Evaluating and optimizing a novel MTJ-based TRNG for
usage in a novel neuromorphic application is needed more
than ever. We have demonstrated the feasibility of doing so,
with a clear path for future work in scaling up the evaluations.
We have shown several times that the performance in the
MAXCUT algorithm utilizing the MTJ device rivals traditional
PRNGs, offering a more tunable and energy-efficient method
to generate random numbers. Leveraging these facts enables
the MTJ device to be well-suited for neuromorphic algorithms
that benefit from stochastic devices.
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