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* Gas Injection
* Changes in liquid-gas mixture
* Formation of lower gas region

* Changes hydrodynamic
properties

e Deleterious effects in fluid-
structure interactions
* Dependent on Initial Breakup
* Not yet well-understood

* Experimental data limited .
° Need DNS instead T. O’Hern, unpublished




* An interface with small

perturbation initially separates a
h liguid and gas
% * Anoscillatory acceleration is
§ applle.d using a body force in the
e domain
_|_
S

e a* €0(10)
» — € 0(100 Hz)
* The oscillatory acceleration either

stabilizes or destabilizes the
interface
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* Finite Volume!l!

« WENO3!
 Shock/discontinuity capturing O%ipi | G (s pian) = 0
at 11
e Riemann Solver 35;“ LV (puupl — T + Q) = —pg
t
N Ell o pre
HLI_C 0 Bptl 1 + V- (aiprein) + oaapr - Vu = —up6P — oy Ty : Vu

¢ Tlme Stepplng 604283282 +V- (leQQQu) + agps - Vu = upio P — axTy : Vu

* Explicit TVD RK!4
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Dimensionless growth at w /27 = 200 Hz

* Floguet analysis allows for the T T

Most unstable a

estimation of growth rates in 41 mode
periodic systems

Unstable

e Allows for the identification of
the most unstable mode for a
given acceleration and

Stable

Dimensionless Growth Rate
o
I

oscillation frequency 4
0 h Ratio of - . *
4T interface -8/ T
k™= kh = \ \a height to T E

wavelength k* /2



M Floquet Theory M Transient Theory Il Simulation Cace 7" e e
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k*=314 a® =80 k=314, a® =100 .
‘ ! e Nonlinear effects

develop slowly

* Droplet pinch-off
and ejection are
observed

* Lack of gas injection
is suspected to be a
result of no droplet
Impacts happening
at the interface
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k¥ =31.4,a" =45

* Nonlinear effects
occur much earlier in
the simulation

*Small regions of gas
entrapment where
ejected fluid impacts
interface
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*Gas Injection sensitive to early breakup

*Time scales make simulation of interface breakup
expensive

* Next steps: Extension to 3D



mflowcode.github.io
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