
Characterizing the Impact of GPU Power Management on an
Exascale System

Abstract
As GPU-accelerated high-performance computing (HPC) systems
approach exascale performance, controlling energy consumption
without compromising throughput is essential. Architectures such
as the AMDMI250X-based Frontier supercomputer provide runtime
mechanisms like frequency and power capping, enabling energy
tuning without modifying application code. Although both target
energy reduction, they operate via distinct hardware control paths
and influence workloads differently. We present a comprehensive
evaluation of these strategies on a leadership-class system using
diverse HPC proxy applications representative of production work-
loads. Our study analyzes performance–energy trade-offs across
multiple capping levels, node counts (1 and 32), and application
profiles. Results show that frequency capping generally achieves
higher energy efficiency and scalability, with gains of up to 13.2%
without performance loss, while power capping is more effective
for single-node runs or bursty GPU utilization. We also provide
practical guidelines to help system administrators and users bal-
ance energy efficiency and performance in large-scale scientific
workloads.

Keywords
Energy efficiency, GPU, Exascale Systems, Power Capping, Fre-
quency Capping

1 Introduction
As high-performance computing (HPC) systems scale toward exas-
cale and beyond, the ability to evaluate and model the performance-
energy trade-offs of large-scale applications has become essential
for system designers and practitioners. Modern supercomputers
rely heavily on graphic processing unit (GPU) acceleration to deliver
sustained floating-point throughput, yet this performance often
comes at the cost of high power consumption and limited control
over runtime efficiency. In this context, performance benchmark-
ing and tuning are increasingly intertwined with energy-aware
strategies that aim to maximize computational throughput while
minimizing energy-to-solution. Hence, understanding and quantify-
ing the impact of hardware-level runtime controls on performance
is a key challenge in software/hardware co-design.

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowl-
edges the US government license to provide public access under the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PMBS 2025, St. Louis, MO, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Two controls that are widely supported in GPU platforms are
power capping [11] and frequency capping, commonly implemented
via dynamic voltage and frequency scaling (DVFS) [13]. Power
capping imposes a real-time upper limit on device power draw,
dynamically adjusting voltage and frequency via hardware-internal
policies. On the other hand, frequency capping enforces a static
limit on clock frequency, providing deterministic behavior but po-
tentially limiting performance. While both mechanisms aim to
improve energy efficiency or enforce power budgets, they influence
application behavior through distinct control planes, i.e., reactive
versus proactive, which can lead to markedly different outcomes in
terms of runtime, energy usage, and hardware utilization.

The performance of these mechanisms is highly dependent on
the application characteristics. Compute-bound applications may
be sensitive to frequency constraints due to their reliance on high
arithmetic throughput, whereas memory-bound workloads may tol-
erate aggressive frequency throttling with negligible performance
degradation. Similarly, irregular workloads with bursty behavior
may benefit from the adaptive nature of power management, while
others may underutilize the available power envelope when con-
strained by static frequency limits. These divergent effects highlight
the need for detailed benchmarking and comparative analysis, es-
pecially in heterogeneous, production-scale HPC environments.

In this paper, we present an extensive performance and energy
benchmarking study of power and frequency management strate-
gies on seven well-known GPU-accelerated scientific applications.
Our objective is to characterize how these management techniques
affect runtime, energy-to-solution, and energy efficiency metrics
across diverse application profiles and system configurations. We
evaluate 21 power cap levels and 31 frequency cap settings using
seven representative GPUworkloads on the Frontier supercomputer
at the Oak Ridge Leadership Computing Facility (OLCF), exploring
their scalability and sensitivity to hardware constraints. Rather
than proposing a new power management technique, we evaluate
how existing mechanisms behave under a range of configurations
and application profiles. Through this extensive set of experiments,
we show that:

• Runtime power management strategies can deliver energy
efficiency improvements of up to 34.7% over the default exe-
cution of GPU applications, with frequency capping often
outperforming power capping, especially at scale.

• The effectiveness of power management is highly dependent
on the application and scale characteristics. Memory-bound
workloads benefit from moderate frequency caps, while
power capping was more effective for compute-intensive
or bursty applications.

• While aggressive caps severely degrade performance, moder-
ate configurations can provide favorable energy-performance
trade-offs with <5% slowdown, making them practical for
production HPC workloads.

http://energy.gov/downloads/doe-public-access-plan
https://doi.org/XXXXXXX.XXXXXXX


PMBS 2025, November, 2025, St. Louis, MO, USA

The rest of this paper is structured as follows. We describe the
GPU runtime power management strategies along with the re-
lated work in Section 2. Then, the methodology applied during the
benchmarking is listed in Section 3. The results for performance
and energy efficiency are discussed in Section 4, while we draw the
final considerations in Section 5.

2 Background
In this section, we describe the two hardware-level techniques for
controlling power in GPU-accelerated systems: power capping and
frequency capping. Both are supported by modern GPUs but differ
in implementation, control granularity, and performance impact.
We first describe their operational mechanisms, then review prior
studies on their effects on performance and energy consumption
across various workloads.

2.1 GPU Frequency Capping
Often referred to as dynamic voltage and frequency scaling (DVFS),
GPU frequency capping is a mechanism that constrains the operat-
ing clock frequencies of a GPU’s core and memory subsystems by
defining upper bounds on the clock domain, limiting the maximum
performance capabilities of the device [13]. DVFS operates by se-
lecting a specific frequency-voltage pair from a predefined set of
performance states (P-states) exposed by the GPU firmware. Each
P-state corresponds to a specific core frequency and associated
voltage level that ensures stable operation. Lowering the operating
frequency reduces both dynamic and static power consumption, due
to decreased switching activity and the possibility of operating at
reduced voltage levels. This relationship is governed by the CMOS
power equation 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶 · 𝑉 2 · 𝑓 , where 𝐶 is the switching
capacitance, 𝑉 is the supply voltage and 𝑓 is the frequency [13].

GPUs usually expose control interfaces for frequency capping via
vendor-specific tools, such as nvidia-smi or rocm-smi on NVIDIA
and AMD GPUs, respectively. These tools enable system admin-
istrators or users to restrict the maximum allowable frequency
during application execution, either statically or dynamically, de-
pending on support from the driver and firmware. TheDVFS control
can be applied at different granularity levels, including per-GPU,
per-clock-domain (e.g., core, memory), or even per-workload via
runtime libraries or job scheduler plugins. From a hardware per-
spective, DVFS is managed by a power management controller (e.g.,
NVIDIA’s PMGR or AMD’s SMU) that applies frequency scaling
commands and coordinates voltage rails accordingly. In this sce-
nario, frequency capping provides a proactive and deterministic
control mechanism. Moreover, the latency of switching between
P-states is typically in the microsecond range, making DVFS viable
for fine-grained phase-based tuning. However, abrupt frequency
reductions may also incur performance penalties, particularly in
compute-bound kernels, as the number of operations executed per
second is directly tied to the SM clock rate.

2.2 GPU Power Capping
GPU power capping is a runtime technique that constrains the
maximum power consumption of a GPU by enforcing a power
budget, typically expressed in watts. This mechanism is designed
to limit dynamic power usage without modifying the application

code or changing GPU scheduling policies [11]. Power capping
is commonly used to reduce energy consumption, lower thermal
output, and manage power-aware scheduling in large-scale sys-
tems, especially under facility-imposed power budgets or energy-
aware operational policies. At the hardware level, power capping
is implemented through a closed-loop feedback control mecha-
nism integrated into the GPU’s power management unit (PMU).
Modern GPUs, such as from AMD and NVIDIA, expose interfaces
that allow users or system software to set a target power limit via
driver-level APIs (e.g., nvidia-smi –power-limit or rocm-smi
–setpoweroverdrive). The PMU continuously monitors the power
draw by sampling telemetry signals such as current and voltage
levels across internal sensors (e.g., power rails for core, memory,
and subsystems). When the observed power exceeds the configured
cap, the GPU reduces its power consumption by dynamically ad-
justing performance-related knobs, including voltage levels, clock
frequencies, and active compute resources.

Power capping often leads to frequency throttling, where core
and memory clocks are scaled down temporarily to maintain power
below the target limit. The frequency scaling response is deter-
mined by hardware firmware or driver heuristics, and it may vary
depending on the workload’s characteristics (e.g., memory-bound
vs. compute-bound). Unlike frequency capping, power capping does
not set a fixed frequency but rather enforces a power envelope, al-
lowing the GPU to modulate its frequency and voltage adaptively in
response to workload dynamics. This makes power capping a more
flexible but also less predictable control mechanism. Moreover, the
granularity and effectiveness of power capping depend on the GPU
architecture, firmware support, and system-level thermal/power
headroom. In HPC systems, power capping can be used in coordina-
tion with job-schedulers to enforce power ceilings, improve power
predictability across jobs, and optimize the energy-performance
trade-off under global constraints.

2.3 Related Work
Recent efforts to improve energy efficiency in GPU-accelerated HPC
have explored power management strategies. In this subsection,
we describe past research across these techniques and highlight
the progression towards system-level optimization frameworks.
Tapasya et al. conducted one of the first large-scale comparisons
of power capping and frequency capping in GPU workloads using
over 5,300 runs of the MUMMI molecular dynamics application
on ddcMD [20]. Their results showed that reducing the power cap
from 300 W to 170 W caused negligible performance degradation,
while frequency capping introduced variability and instability. In
contrast, Allen et al. identified inefficiencies in default hardware
power caps on GPUs, finding up to 35% performance loss compared
to a smarter, application-informed distribution of power between
Streaming Multiprocessors (SMs) and memory subsystems [2].

Considering static capping policies, more recent studies have
proposed dynamic and feedback-driven power capping frameworks.
Kryzwaniak et al. introduced DEPO, a runtime system that adap-
tively adjusts NVIDIA power limits based on application behavior,
achieving 25–30% energy savings with <5% performance overhead
[12]. Similarly, Simmendinger et al. proposed a phase-aware dy-
namic capping mechanism that reacts to workload characteristics,



Characterizing the Impact of GPU Power Management on an Exascale System PMBS 2025, November, 2025, St. Louis, MO, USA

reducing power usage by 20% without measurable runtime penalty
[19]. Karimi et al. performed a telemetry-driven evaluation on Fron-
tier using three months of operational logs [10]. By developing a de-
composition model of GPU operational modes, the work projected
energy savings of up to 8.5% with substantial real-world impact, es-
timating over 1,400 MWh of energy reduction. Application-specific
studies have also informed the selection of optimal caps. Acun et
al. analyzed the behavior of MILC on NERSC’s Perlmutter system,
showing that a 200W cap (50% of A100 TDP) reduced energy by
28% with <15% slowdown [1]. At the architectural level, Patrou et
al. examined LSMS on NVIDIA’s GH200 Grace Hopper platform,
using multi-objective optimization (including energy-delay and
Euclidean metrics) to guide dynamic GPU caps [17].

Recent research has moved toward intelligent, learning-based
control systems. Yiming et al. (2024) proposed DRLCap, a deep rein-
forcement learning approach for dynamically adjusting frequency
caps across different GPU architectures [21]. DRLCap used system-
level profiling to detect program phase changes and optimized
frequency settings, achieving average GPU energy savings of 22%
on NVIDIA and 10% on AMD GPUs. User-aware and cooperative
strategies have also emerged. Angelelli et al. (2024) introduced an
Eco-Mode where users opt into power-capped execution volun-
tarily [3]. Simulations using real job traces from a Top500 system
showed that once 30% of users adopt the mode, job termination
rates under enforced caps drop, preserving system throughput and
avoiding penalties.

Finally, predictivemodels based on job characteristics are gaining
traction. Antici et al. developed a machine learning framework to
predict power consumption for CPU-based jobs on Fugaku, achiev-
ing 90% accuracy [4]. Ding et al. proposed a unified model com-
bining power variability, efficiency, and performance metrics to
guide capping decisions in HPC workloads [6]. In the context of
exascale GPU workloads, Lorenzon et al. introduced V-FORGE, a
frequency-aware and variability-tolerant scheduling framework
[14]. Their results on 400 AMDMI250X GPUs showed that selecting
appropriate GPU frequency per application-node combination led
to up to 41% EDP improvement, emphasizing the critical role of
hardware–software co-optimization in modern HPC systems.

Our Contributions. Compared to previous studies that focus
on proposing new runtime frameworks, application-specific tuning
strategies, or predictive models for GPU power management, this
work takes a comprehensive empirical approach aimed at provid-
ing practical guidance to HPC users and system administrators.
Rather than introducing new mechanisms, our contribution lies in
characterizing and comparing the behavior of existing power and
frequency capping interfaces across a wide range of operational
settings. While recent works such as DEPO [12], DRLCap [21],
and V-FORGE [14] emphasize runtime adaptivity or learning-based
optimization, our study complements these efforts by offering a
systematic evaluation of 21 power cap levels and 31 frequency set-
tings on seven production-grade, GPU-accelerated scientific appli-
cations, including compute- and memory-bound workloads. Unlike
application-specific studies (e.g., MILC on A100 [1] or LSMS on
GH200 [17], our evaluation considers multiple applications and
scales, capturing both single-node and multi-node behavior on the
Frontier supercomputer. Finally, we believe that the resulting guide-
lines bridge the gap between theoretical potential and operational

applicability of power management strategies, offering a reference
for energy-aware configuration policies in Exascale HPC systems.

3 Methodology
In this section, we present the benchmarks selected for our evalua-
tion, provide details of the underlying infrastructure, and describe
the performance and energy-related metrics used in the analysis.

3.1 Benchmarks
We consider a representative set of seven GPU-accelerated applica-
tions from distinct benchmark suites and scientific domains, cover-
ing a wide range of computational patterns, memory access behav-
iors, and arithmetic intensities. Cholla, a multi-dimensional hy-
drodynamics code based on the Piecewise Parabolic Method (PPM)
for astrophysical simulations. It is a memory-intensive application
with floating-point 64 arithmetic precision 1. HACC - Hydro, a
gas-dynamics version of the Hardware Accelerated Cosmology
Code (HACC), focusing on hydrodynamics [8]. This application
has communication overhead depending on the simulation scale,
due to frequent data exchanges at domain boundaries. HACC is
also sensitive to both memory bandwidth and compute throughput.
Kripke, a performance proxy application that solves the 3D de-
terministic Sn (discrete ordinates) particle transport equations on
structured grids. It is designed to evaluate and stress-test the perfor-
mance of modern parallel architectures, focusing on memory access
patterns, spatial decomposition strategies, and execution charac-
teristics representative of production transport codes. LAMMPS,
a molecular dynamics application widely used in materials sci-
ence for simulating atomic and mesoscale systems. It supports a
broad range of interatomic potentials and models, and its GPU-
accelerated version offloads force computations and neighbor list
construction. Pennant, a proxy application for unstructured mesh
physics simulations involving Lagrangian hydrodynamics. Pennant
demonstrates complex memory access patterns and sensitivity to
both compute throughput and memory hierarchy performance [7].
PortUrb, a domain-specific urban flood simulation application
based on finite-volume shallow water solvers [15]. The application
is sensitive to memory bandwidth and mostly simple floating-point
operations over large data arrays. QuickSilver, a Monte Carlo
particle transport proxy application developed at LANL, is repre-
sentative of high-performance radiation transport workloads. It
exhibits irregular control flow and limited SIMD utilization [18].
Since Monte Carlo transport codes often rely on particle-based data
structures, they result in high irregular and latency-bound memory
access behavior.

We selected this set of applications because they exhibit different
performance characteristics in terms of FLOPs/s, FLOPs/byte, and
L2 cache hit rate, which are key indicators of computational inten-
sity, memory bandwidth demand, and cache utilization, as shown
in Table 1. For instance, HACC reaches a very high arithmetic in-
tensity and high L2 cache efficiency, while Kripke presents a much
lower compute intensity and lower L2 cache hit rate. Cholla and
Pennant show similar compute intensity but differ in throughput
and cache behavior. In addition to covering a broad spectrum of
computational and memory-access patterns, these applications are
1https://github.com/cholla-hydro/cholla



PMBS 2025, November, 2025, St. Louis, MO, USA

Table 1: Characteristics of each application considering the
average of all GPU kernels

FLOPs/
byte

FLOPs/s
L2Cache
Hit (%)

Cholla 0.62 6.58E+11 37.51
HACC 215.04 4.67E+12 84.02
Kripke 0.10 3.90E+10 62.68
Lampss 3.41 5.71E+12 51.78
Pennant 0.67 5.57E+11 45.11
PortUrb 11.45 1.08E+12 61.32
QuickSilver 1.83 1.61E+10 74.72

widely executed in HPC centers, ensuring that the analysis cap-
tures representative workload behaviors observed in production
environments.

3.2 Testbed System
The experiments were conducted on the Frontier supercomputer
at the OLCF [5]. Each compute node is equipped with a 64-core
AMD-optimized 3rd Gen EPYC 7763 CPU, supporting two hardware
threads per core and 512 GB of DDR4 memory. The nodes feature
four AMD MI250X accelerators, each composed of two graphics
compute dies (GCDs), resulting in a total of eight GCDs per node.
Each GCD includes 64 GB of high-bandwidth memory (HBM3E).
For the purpose of this study, each GCD was treated as an inde-
pendent GPU, yielding 8 GPUs per node. The observed behaviors
discussed in the next sections reflect the interplay between applica-
tion characteristics and GPU hardware design, including memory
bandwidth constraints and the dynamic scaling behavior of this ar-
chitecture. To assess the behavior of power and frequency capping
techniques under different scalability conditions, all applications
were executed in two configurations: a single-node run, utilizing
all 8 GPUs, and a multi-node run using 32 nodes for a total of 256
GPUs.

The MI250X GPUs have a thermal design power (TDP) of 560W
and support frequency scalingwithin a range of 500MHz to 1700MHz.
In our frequency capping experiments, we evaluate 31 frequency
configurations in steps of 40MHz (i.e., 500MHz, 540MHz, ..., 1700MHz).
Similarly, for power capping, we explored 21 configurations rang-
ing from 140W to 560W, in steps of 20W. All configurations were
applied statically before execution using vendor-provided ROCm
tools. Applications were compiled using the AMD ROCm 6.2.4
stack, with hipcc and the flags -O3 and –offload-arch=gfx90a
for performance optimization and target-specific code generation.
For reproducibility, the experiments were executed with the en-
vironment modules craype-accel-amd-gfx90a and rocm/6.2.4
located on Frontier.

3.3 Evaluated Metrics
We consider two metrics: performance (Perf) and performance
per watt (Perf/Watt). Performance is defined as the inverse of the
total execution time, representing the rate at which the application
completes its workload. To assess energy efficiency, we calculate
performance per watt as the ratio between performance and the
average GPU power draw during execution. This metric quantifies
the computational output delivered per unit of power consumed.

To characterize power, energy, and other system-level metrics, we
leveraged Omnistat, an open-source, low-overhead monitoring
tool [16]. Omnistat was originally developed to collect statistics
from AMD Instinct™ GPUs2, such as the Instinct MI250X models
deployed on Frontier. For our application case studies on Frontier,
Omnistat was configured using a runtime control file to enable the
collection of core GPU metrics via the SMI interface. Additional
optional data, including reliability, availability, and service (RAS)
error counters, network traffic, and vendor-provided board-level
power and energy measurements [9] were also gathered. Using
Omnistat, we aggregated metrics on a per-SLURM job basis across
all compute hosts assigned to each application run, under various
frequency and power cap settings.

4 Evaluation
In this section, we first compare the raw performance and energy
efficiency for the execution of each application with the evaluated
frequency and power capping configurations on the single-node
and 32-node scenarios. Second, we describe the observed behavior
of selected applications through runtime traces. Then, we discuss
the implications of these results, outlining guidelines for selecting
the most appropriate power management strategy according to
application characteristics and execution scale.

4.1 Performance and Energy Evaluation
In this subsection, we present a comparative analysis of the GPU
power management strategies based on normalized performance
and performance-per-watt relative to the baseline configuration,
which reflects default system behavior without power or frequency
constraints. Figures 1 through 7 summarize results across applica-
tions and node counts, where normalized values above 1.0 indicate
improvements over the baseline. We highlight with a blue rectangle
the region corresponding to configurations that do not incur perfor-
mance degradation compared to the baseline (e.g., No Performance
Loss). This area represents the operating frequencies and power
capping values where energy efficiency gains can be achieved with-
out compromising application runtime. During the experiments, we
got a standard deviation of 2% in the performance measurements.
Therefore, results within this deviation range are considered statis-
tically equivalent to the optimal configuration. Overall, power and
frequency capping can enhance energy efficiency, though their ef-
fectiveness is application- and scale-dependent. Key factors include
the compute and memory characteristics of each application and
sensitivity to hardware throttling. For instance, moderate capping
levels often preserve performance while improving efficiency, but
aggressive frequency reductions typically incur significant perfor-
mance penalties. The following analysis groups applications by
their responsiveness to capping strategies.

Cholla, Pennant, and HACC (Figures 1,2, and 3) are examples of
applications that show significant improvements in performance
per watt when moderate power or frequency capping is applied,
particularly at the single-node level. For Cholla, Perf/Watt improves
by up to 34.7% at 900 MHz and 28% at 320 W, with performance re-
maining above 90% for frequency caps above 820 MHz. While these

2AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced
Micro Devices, Inc.



Characterizing the Impact of GPU Power Management on an Exascale System PMBS 2025, November, 2025, St. Louis, MO, USA

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

No performance loss

(a) Single-node execution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

No performance loss

(b) 32-node execution
Figure 1: Cholla behavior

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

(a) Single-node execution

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

(b) 32-node execution
Figure 2: Pennant behavior

gains are less pronounced at 32 nodes, improvements still reach
20% under frequency capping, and 8% with moderate power caps.
Similarly, Pennant reaches up to 18% improvements in Perf/Watt
at 360 W and 980-1020 MHz, with performance consistently above
80%. On 32 nodes, frequency capping between 740-1140 MHz yields
11% improvement with limited performance loss. HACC exhibits
a particularly broad operating range. At 1 node, Perf/Watt peaks
at 11% under both capping strategies with performance remaining
above 80%. At 32 nodes, it consistently maintains over 80% perfor-
mance and up to 6% energy efficiency improvements across 240-460
W and 940-1380 MHz. As observed, applications that exhibit this
behavior can benefit from moderate frequency reductions, allowing
for energy-aware tuning with minimal performance degradation.

PortUrb (Figure 4) shows a clear trade-off between energy ef-
ficiency and execution time, especially in single-node runs. Fre-
quency capping leads to up to 15% Perf/Watt improvement at 1020
MHz, but performance drops to 77% of the baseline. Power cap-
ping also helps when applied moderately (460-500 W), with 6%
Perf/Watt improvement and little impact on performance, but ag-
gressive power limits cause severe slowdowns without proportional
energy gains. On 32 nodes, the application becomes less responsive
to power capping, with only frequency capping maintaining a slight

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

(a) Single-node execution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

(b) 32-node execution
Figure 3: HACC behavior

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

Perf
Perf/Watt

(a) Single-node execution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

(b) 32-node execution
Figure 4: PortUrb behavior

energy advantage, highlighting the limited benefit of capping at
scale for workloads that are sensitive to core frequency.

Kripke and LAMMPS (Figures 5 and 6) demonstrate robust per-
formance across a wide range of cap configurations, with small but
consistent improvements in energy efficiency. For Kripke, Perf/Watt
increases by up to 7% under frequency capping around 980-1020
MHz, with performance above 94%, and similar gains under mod-
erate power caps (200-360 W). At 32 nodes, Perf/Watt remains 5%
above baseline across 740-1540 MHz, confirming its low sensitiv-
ity to power management. LAMMPS, on the other hand, is largely
unaffected by power capping, maintaining near-baseline perfor-
mance and Perf/Watt across all configurations. However, frequency
capping introduces more pronounced effects. While performance
drops below 50% at low frequencies, energy efficiency peaks at 13%
above baseline around 900-1220 MHz on 32 nodes. In this scenario,
while LAMMPS resists power-related throttling, it can still benefit
from selecting ideal frequency reductions, especially in large-scale
runs.

QuickSilver (Figure 7) represents a class of applications for which
power management strategies yields minimal benefit. On a single
node, Perf/Watt remains effectively unchanged across all tested



PMBS 2025, November, 2025, St. Louis, MO, USA

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

No performance loss No performance loss

(a) Single-node execution

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

(b) 32-node execution
Figure 5: Kripke behavior

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

No performance loss

(a) Single-node execution

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

No performance loss No performance loss

(b) 32-node execution
Figure 6: LAMMPS behavior

power and frequency settings. This suggests the application al-
ready operates near its optimal energy-performance point, possibly
due to latency-bound behavior or limited GPU utilization. At 32
nodes, small improvements (up to 8%) in energy efficiency can be
achieved with minor frequency reductions (e.g., at 1660 MHz) with-
out sacrificing performance, though the gains are not significant
enough to warrant aggressive tuning.

4.2 Application-Aware Evaluation of GPU
Power Management Strategies

As we discussed in the previous section, the impact of GPU power
management strategies on performance and energy efficiency varies
significantly depending on the application characteristics and the
system scale. While both techniques can lead to energy efficiency
gains, their relative effectiveness is neither uniform nor interchange-
able across all workloads. Figure 8 illustrates the energy efficiency
gains over the baseline along with the impact on the application
performance across all applications, when considering the configu-
ration for power capping and frequency capping that delivers the
best Perf/Watt outcome.

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

No performance lossNo performance loss

(a) Single-node execution

0.2

0.4

0.6

0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

50
1

58
0

66
0

74
0

82
0

90
0

98
0

10
60

11
40

12
20

13
00

13
80

14
60

15
40

16
20

17
00

R
el

at
iv

e 
P

er
fo

rm
an

ce

GPU Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

14
0

18
0

22
0

26
0

30
0

34
0

38
0

42
0

46
0

50
0

54
0

R
el

at
iv

e 
P

er
f/

W
at

t

GPU Power Capping (W)

Perf
Perf/Watt

(b) 32-node execution
Figure 7: QuickSilver behavior

-30%

-20%

-10%

0%

10%

20%

30%

40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

1
-n

o
d

e

3
2

-n
o

d
e

Cholla HACC Kripke LAMMPS Pennant PortUrb QS Average

Im
p

a
ct

 o
n

 P
er

fo
rm

a
n

ce

P
er

f/
W

a
tt

 G
a

in
s Gains Freq. Cap Gains Power Cap

Impact Freq. Cap Impact Power Cap

Figure 8: Energy efficiency gains and performance impact of
the frequency and power capping configurations that yielded
the best Perf/Watt results

At the single-node level, frequency capping often provides a
better trade-off between energy efficiency and performance. For
instance, Cholla achieves a 34.7% gain in Perf/Watt with only 2.3%
performance degradation, while power capping results in a slightly
lower energy efficiency gain (28.0%) and a significantly higher
performance loss (14.4%). This trend is also observed in Pennant,
where frequency and power capping yield similar energy benefits
(18.1% for frequency and 16.8% for power capping), but frequency
capping incurs a lower performance penalty (19.2% vs. 24.5%).

On the other hand, power capping was more effective than fre-
quency capping for some applications, especially at the single-node
level. In HACC, power capping yielded the highest energy efficiency
gain (11.3%) with a performance impact of 10%, while frequency
capping achieved slightly lower efficiency (9.6%) but with a signif-
icantly larger performance penalty (-19.6%). At scale, the perfor-
mance impact of frequency capping worsened, reaching a 27.1%
slowdown at 32 nodes, despite comparable energy gains (9.3%).
Power capping, on the other hand, offered lower energy savings
(5.8%) but preserved performance more effectively. To investigate
the underlying behavior, we collected OmniStat traces for the con-
figurations that achieved peak Perf/Watt for HACC (Figure 9). The
traces provide a temporal view of GPU power draw and operating
frequency throughout the application’s execution. The values are
the average of the eight GPU IDs (for frequency) and the four sock-
ets (for power) along all 32 nodes. Under frequency capping (980
MHz), illustrated in Figures 9 (a) and (c), all GPUs operated at a fixed
frequency with minimal variation, leading to stable power draw



Characterizing the Impact of GPU Power Management on an Exascale System PMBS 2025, November, 2025, St. Louis, MO, USA

600

800

1000

1200

1400

1600

1800

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501

G
P

U
 F

re
q

. 
(M

H
z)

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

GPU 6 GPU 7

0

100

200

300

400

500

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 6501 7001 7501

G
P

U
 P

o
w

er
 (

W
) Socket 0 Socket 2

Socket 4 Socket 6

600

800

1000

1200

1400

1600

1800

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

4
0

0
1

4
5

0
1

5
0

0
1

5
5

0
1

6
0

0
1

6
5

0
1

7
0

0
1

7
5

0
1

G
P

U
 F

re
q

. 
(M

H
z)

Timestamps (every 0.1s)

0

100

200

300

400

500

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

4
0

0
1

4
5

0
1

5
0

0
1

5
5

0
1

6
0

0
1

6
5

0
1

7
0

0
1

7
5

0
1

G
P

U
 P

o
w

er
 (

W
)

Timestamps (every 0.1s)

a

b

c

d

Figure 9: Execution traces for HACC on 32 nodes under the
configurations that achieved the highest energy efficiency:
frequency capping at 980 MHz and power capping at 360 W.
Subfigures (a) and (c) depict GPU frequency and power draw
over time for the frequency-capped execution, while (b) and
(d) present the corresponding metrics for the power-capped
execution.

around 300 W. While this configuration enforces consistent power
use, it prevents dynamic frequency scaling, reducing performance
potential. In contrast, under power capping (360 W), shown in Fig-
ures 9 (b) and (d), the GPU power draw remains tightly constrained
at the cap, but frequency fluctuates dynamically. In particular, some
GPUs reach up to 1700 MHz during phases with lower power de-
mands, exploiting available headroom to accelerate execution. This
adaptive behavior enabled better performance compared to the
highest energy efficiency frequency capping configuration, high-
lighting the benefits of power-constrained frequency scaling in this
type of application.

For Kripke, both capping strategies yield modest energy effi-
ciency improvements at the single-node level (7.0% for frequency
capping and 3.9% for power capping) with comparable performance
overheads, making either option equally viable. At 32 nodes, how-
ever, power capping becomes less effective, providing no measur-
able improvement in Perf/Watt, whereas frequency capping main-
tains a 5.6% gain with a limited performance loss of 4.3%. A similar
pattern emerges for LAMMPS at scale, frequency capping at 1120
MHz achieves a 13.2% increase in energy efficiency, while power
capping at 280 W results in only a marginal 3.6% gain. In both
cases, the performance degradation remains minimal (≈ 4% under
frequency capping and just 1% under power capping). To further
investigate these differences, we collected runtime traces using Om-
niStat for the LAMMPS configurations that delivered the highest
energy efficiency, following the same methodology used for HACC.
As shown in Figure 10, frequency capping at 1120 MHz leads to
uniformly reduced operating frequencies across all GPUs, resulting
in lower power consumption without compromising performance.
In contrast, under power capping at 280 W, GPU frequencies scale
up to 1700 MHz, increasing power draw without yielding additional
performance benefits. This behavior reflects the memory-bound na-
ture of LAMMPS, where increases in core frequency do not translate
into proportional performance gains due to limitations in memory
throughput.

600

800

1000

1200

1400

1600

1800

1 501

G
P

U
 F

re
q

. 
(M

H
z)

GPU 0 GPU 1 GPU 2

GPU 3 GPU 4 GPU 5

GPU 6 GPU 7

a

600

800

1000

1200

1400

1600

1800

1 101 201 301 401 501

G
P

U
 F

re
q

. 
(M

H
z)

Timestamps (every 0.1s)

b

60

80

100

120

140

160

1 501

G
P

U
 P

o
w

er
 (

W
) Socket 0 Socke 2

Socket 4 Socket 6

60

80

100

120

140

160

1 101 201 301 401 501

G
P

U
 P

o
w

er
 (

W
)

Timestamps (every 0.1s)

c

d

Figure 10: Execution traces for LAMMPS on 32 nodes un-
der the configurations that achieved the highest energy effi-
ciency: frequency capping at 1180 MHz and power capping
at 280 W. Subfigures (a) and (c) depict GPU frequency and
power draw over time for the frequency-capped execution,
while (b) and (d) present the corresponding metrics for the
power-capped execution.

4.3 Discussion
The results presented in the previous sections demonstrate that
GPU powermanagement can be a practical and effectivemechanism
to optimize energy consumption in HPC environments. Importantly,
both techniques can be applied at runtime without requiring modi-
fications to application source code, making them attractive options
for users and system administrators aiming to balance energy effi-
ciency and performance.

From a system-level perspective, power and frequency capping
offer distinct trade-offs that can be tailored to specific applica-
tion characteristics and operational goals. Frequency capping of-
ten delivers higher energy efficiency, especially at large scales,
with relatively low performance penalties for applications that are
compute-bound or resilient to moderate reductions in GPU clock
speed. For instance, in applications such as LAMMPS and Kripke,
frequency limits between 900-1200 MHz improved performance
per watt without significant slowdown, highlighting a viable strat-
egy for reducing energy consumption in production workflows.
Conversely, power capping is more effective in single-node sce-
narios or workloads with high variability in GPU resource usage.
By enforcing a fixed power budget, GPUs can opportunistically
adjust their operating frequency depending on computational de-
mand, allowing dynamic performance scaling within a constrained
power envelope. This approach proved beneficial for applications
like HACC, where power capping preserved higher frequency dur-
ing compute-intensive phases without exceeding energy limits,
yielding better overall performance compared to fixed frequency
capping.

These findings suggest a guideline-based approach to runtime
energy optimization. For memory-bound or latency-sensitive appli-
cations where increasing frequency yields minimal performance
benefit, moderate frequency capping can reduce energy usage with-
out affecting time-to-solution. For compute-intensive workloads
with predictable GPU utilization, power capping can dynamically
balance performance and energy, especially when configured near



PMBS 2025, November, 2025, St. Louis, MO, USA

the GPU’s energy-efficiency operating point. When operating at
scale, frequency capping tends to scale better, as it reduces energy
consumption while preserving synchronization and workload bal-
ance. Finally, aggressive capping (e.g., <700 MHz or <240 W) should
be avoided unless energy savings are prioritized over performance,
as such configurations often degrade efficiency and increase overall
job time.

From an operational cost perspective, applying power manage-
ment can significantly reduce both power consumption and cool-
ing requirements, particularly for long-running jobs and large-
scale simulations. In environments where energy usage is directly
billed, such as cloud platforms or metered HPC centers, these reduc-
tions lead to measurable savings. Furthermore, as energy efficiency
becomes a key criterion in system acquisition, procurement de-
cisions, and institutional sustainability initiatives, the ability to
reduce power draw without modifying application source code
makes power management an attractive and non-invasive opti-
mization technique. Moreover, GPU capping strategies provide a
low-overhead and portable mechanism to tune energy usage based
on workload behavior and execution scale. When appropriately con-
figured, they enable users and administrators to achieve substantial
improvements in energy efficiency with minimal performance loss.

5 Concluding Remarks
This paper presented a comprehensive evaluation of GPU power
management techniques across a representative set of benchmarks.
The analysis considered single-node and multi-node configurations,
aiming to quantify trade-offs between performance and energy
efficiency in HPC workloads. All evaluations were performed on
the Frontier system, providing insights grounded in an exascale-
class architecture.

Our results show that frequency capping often delivers higher
energy efficiency with limited performance degradation. For exam-
ple, Cholla and Pennant exhibited gains of up to 34.7% and 18.1%
in performance-per-watt, respectively, under frequency capping,
with performance losses contained to under 20%. Power capping, by
contrast, proved more effective for bursty or irregular GPU usage
patterns, such as in HACC, where it achieved an 11.3% improve-
ment in energy efficiency with a lower performance penalty than
frequency capping. For memory-bound applications like LAMMPS,
moderate frequency limits (900–1200 MHz) yielded the best trade-
off, reaching up to 13.2% improvement in energy efficiency with
negligible impact on runtime. These results confirm that power
management strategies can be tuned to application profiles to im-
prove system-level energy proportionality.

While the sensitivity of each application to power and frequency
capping is primarily determined by its computational and memory
access characteristics, the resulting performance–energy trade-offs
are also influenced by the architectural features of the hardware. In
particular, the MI250 GPU exhibits specific behaviors in its DVFS
mechanism and power limit enforcement, which affect the efficiency
of runtime power management. Consequently, the effectiveness of
a given power management strategy cannot be generalized across
hardware generations. This highlights the need for continuous

reassessment of energy optimization approaches as new GPU ar-
chitectures are introduced, since static tuning methods may not
transfer reliably across platforms.

The results presented in this study are relevant for system op-
erators and users aiming to reduce energy consumption in GPU-
accelerated high-performance computing environments without
requiring modifications to application code. By identifying config-
urations that improve energy efficiency with minimal impact on
performance, this work contributes to the development of practical
and portable techniques for energy-aware execution. As a next
step, we plan to explore runtime mechanisms that can adjust cap-
ping parameters automatically based on workload characteristics
and system state, improving the adaptability and effectiveness of
resource management in heterogeneous systems.

Acknowledgments
This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

References
[1] Fatih Acun, Zhengji Zhao, Brian Austin, Ayse K. Coskun, and Nicholas J. Wright.

2024. Analysis of Power Consumption andGPUPower Capping forMILC. In SC24-
W: Workshops of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 1856–1861. doi:10.1109/SCW63240.2024.00232

[2] Tyler Allen, Xizhou Feng, and Rong Ge. 2020. Performance Optimization in
Power-Capped GPU Computing. Poster presented at the International Con-
ference for High Performance Computing, Networking, Storage, and Analysis
(SC20). https://sc20.supercomputing.org/proceedings/src_poster/poster_files/
spostg111s2-file2.pdf Poster, evaluating miniFE on Titan XP, showing up to 35 %
performance loss under default GPU power capping and proposing application-
aware SM/memory power allocation.

[3] Luc Angelelli, Danilo Carastan-Santos, and Pierre-François Dutot. 2024. Run Your
HPC Jobs innbsp;Eco-Mode: Revealing thenbsp;Potential ofnbsp;User-Assisted
Power Capping innbsp;Supercomputing Systems. In Job Scheduling Strategies for
Parallel Processing: 27th International Workshop, JSSPP 2024, San Francisco, CA,
USA, May 31, 2024, Revised Selected Papers (San Francisco, USA). Springer-Verlag,
Berlin, Heidelberg, 181–196. doi:10.1007/978-3-031-74430-3_10

[4] Francesco Antici, Andrea Borghesi, Jens Domke, and Zeynep Kiziltan. 2025.
UoPC: A User-Based Online Framework to Predict Job Power Consumption in
HPC Systems. In ISC High Performance 2025 Research Paper Proceedings (40th
International Conference). 1–12.

[5] Scott Atchley, Christopher Zimmer, John Lange, David Bernholdt, Veronica Me-
lesse Vergara, Thomas Beck, Michael Brim, Reuben Budiardja, Sunita Chan-
drasekaran, Markus Eisenbach, Thomas Evans, Matthew Ezell, Nicholas Frontiere,
Antigoni Georgiadou, Joe Glenski, Philipp Grete, Steven Hamilton, John Hol-
men, Axel Huebl, Daniel Jacobson, Wayne Joubert, Kim Mcmahon, Elia Merzari,
Stan Moore, Andrew Myers, Stephen Nichols, Sarp Oral, Thomas Papatheodore,
Danny Perez, David M. Rogers, Evan Schneider, Jean-Luc Vay, and P. K. Yeung.
2023. Frontier: Exploring Exascale. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (Denver, CO,
USA) (SC ’23). Association for Computing Machinery, New York, NY, USA, Article
52, 16 pages. doi:10.1145/3581784.3607089

[6] Nan Ding, Oscar Antepara, Zhengji Zhao, Brian Austin, Leonid Oliker, Nicholas J.
Wright, and Samuel Williams. 2025. Maximizing Power-Constrained Supercom-
puting Throughput. In ISC High Performance 2025 Research Paper Proceedings
(40th International Conference). 1–13.

[7] Charles R. Ferenbaugh. 2015. PENNANT: an unstructured mesh mini-app for
advanced architecture research. Concurr. Comput.: Pract. Exper. 27, 17 (Dec. 2015),
4555–4572. doi:10.1002/cpe.3422

[8] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope,
and Katrin Heitmann. 2013. HACC: Extreme scaling and performance across
diverse architectures. In SC ’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. 1–10. doi:10.
1145/2503210.2504566

[9] HPE Cray Supercomputing. 2025. PM Counters. https://support.hpe.
com/hpesc/public/docDisplay?docId=dp00005587en_us&page=operations-
hpcm/os/PM_Counters.html. Accessed: 2025-07-20.

https://doi.org/10.1109/SCW63240.2024.00232
https://sc20.supercomputing.org/proceedings/src_poster/poster_files/spostg111s2-file2.pdf
https://sc20.supercomputing.org/proceedings/src_poster/poster_files/spostg111s2-file2.pdf
https://doi.org/10.1007/978-3-031-74430-3_10
https://doi.org/10.1145/3581784.3607089
https://doi.org/10.1002/cpe.3422
https://doi.org/10.1145/2503210.2504566
https://doi.org/10.1145/2503210.2504566
https://support.hpe.com/hpesc/public/docDisplay?docId=dp00005587en_us&page=operations-hpcm/os/PM_Counters.html
https://support.hpe.com/hpesc/public/docDisplay?docId=dp00005587en_us&page=operations-hpcm/os/PM_Counters.html
https://support.hpe.com/hpesc/public/docDisplay?docId=dp00005587en_us&page=operations-hpcm/os/PM_Counters.html


Characterizing the Impact of GPU Power Management on an Exascale System PMBS 2025, November, 2025, St. Louis, MO, USA

[10] Ahmad Maroof Karimi, Matthias Maiterth, Woong Shin, Naw Safrin Sattar, Hao
Lu, and Feiyi Wang. 2025. Exploring the Frontiers of Energy Efficiency using
Power Management at System Scale. In Proceedings of the SC ’24 Workshops of
the International Conference on High Performance Computing, Network, Storage,
and Analysis (Atlanta, GA, USA) (SC-W ’24). IEEE Press, 1835–1844. doi:10.1109/
SCW63240.2024.00230

[11] Toshiya Komoda, Shingo Hayashi, Takashi Nakada, Shinobu Miwa, and Hiroshi
Nakamura. 2013. Power capping of CPU-GPU heterogeneous systems through
coordinating DVFS and task mapping. In 2013 IEEE 31st International Conference
on Computer Design (ICCD). 349–356. doi:10.1109/ICCD.2013.6657064

[12] Adam Krzywaniak, Pawel Czarnul, and Jerzy Proficz. 2023. Dynamic GPU power
capping with online performance tracing for energy efficient GPU computing
using DEPO tool. Future Generation Computer Systems 145 (03 2023). doi:10.1016/
j.future.2023.03.041

[13] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic voltage and frequency
scaling: The laws of diminishing returns. In Proceedings of the 2010 international
conference on Power aware computing and systems. 1–8.

[14] Arthur F. Lorenzon, Antonio Carlos S. Beck, Philippe O. A. Navaux, and Bronson
Messer. 2025. Energy-Efficient GPU Allocation and Frequency Management
in Exascale Computing Systems. In ISC High Performance 2025 Research Paper
Proceedings (40th International Conference). 1–11.

[15] M. Norman, M. Gopalakrishnan Meena, K. Gottiparthi, N. Koukpaizan, and S.
Nichols. 2025. PortUrb: A Performance Portable, High-Order, Moist Atmospheric

Large Eddy Simulation Model with Variable-Friction Immersed Boundaries. EGU-
sphere 2025 (2025), 1–36. doi:10.5194/egusphere-2025-1135

[16] Omnistat. 2025. Omnistat: Scale-out cluster telemetry. https://github.com/
ROCm/omnistat Accessed: 2025-07-20.

[17] Maria Patrou, Thomas Wang, Wael Elwasif, Markus Eisenbach, Ross Miller,
William Godoy, and Oscar Hernandez. 2025. Power-Capping Metric Evaluation
for Improving Energy Efficiency in HPC Applications. arXiv:2505.21758 [cs.DC]
https://arxiv.org/abs/2505.21758

[18] David F. Richards, Ryan C. Bleile, Patrick S. Brantley, Shawn A. Dawson,
Michael Scott McKinley, and Matthew J. O’Brien. 2017. Quicksilver: A Proxy App
for the Monte Carlo Transport Code Mercury. In 2017 IEEE International Confer-
ence on Cluster Computing (CLUSTER). 866–873. doi:10.1109/CLUSTER.2017.121

[19] Christian Simmendinger, Marcel Marquardt, Jan Mäder, and Ralf Schneider. 2024.
PowerSched - Managing Power Consumption in Overprovisioned Systems. In
2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER
Workshops). 1–8. doi:10.1109/CLUSTERWorkshops61563.2024.00012

[20] Patki Tapasya, Zachary Frye, Harsh Bhatia, Francesco Natale, James Glosli, Helgi
Ingólfsson, and Barry Rountree. 2019. Comparing GPU Power and Frequency Cap-
ping: A Case Study with the MuMMIWorkflow. 31–39. doi:10.1109/WORKS49585.
2019.00009

[21] Wang Yiming, Meng Hao, Hui He, Weizhe Zhang, Qiuyuan Tang, Xiaoyang Sun,
and Zheng Wang. 2024. DRLCap: Runtime GPU Frequency Capping with Deep
Reinforcement Learning. IEEE Transactions on Sustainable Computing PP (09
2024), 1–15. doi:10.1109/TSUSC.2024.3362697

https://doi.org/10.1109/SCW63240.2024.00230
https://doi.org/10.1109/SCW63240.2024.00230
https://doi.org/10.1109/ICCD.2013.6657064
https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/10.1016/j.future.2023.03.041
https://doi.org/10.5194/egusphere-2025-1135
https://github.com/ROCm/omnistat
https://github.com/ROCm/omnistat
https://arxiv.org/abs/2505.21758
https://arxiv.org/abs/2505.21758
https://doi.org/10.1109/CLUSTER.2017.121
https://doi.org/10.1109/CLUSTERWorkshops61563.2024.00012
https://doi.org/10.1109/WORKS49585.2019.00009
https://doi.org/10.1109/WORKS49585.2019.00009
https://doi.org/10.1109/TSUSC.2024.3362697

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Frequency Capping
	2.2 GPU Power Capping
	2.3 Related Work

	3 Methodology
	3.1 Benchmarks
	3.2 Testbed System
	3.3 Evaluated Metrics

	4 Evaluation
	4.1 Performance and Energy Evaluation
	4.2 Application-Aware Evaluation of GPU Power Management Strategies
	4.3 Discussion

	5 Concluding Remarks
	References

