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1.J. Ling, J. Templeton, and A. Kurzawski, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, JFM, Vol 807, 2016, 155-166.
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Data-Driven RANS Closures

Reynolds stress Perturbation to a
modeled Reynolds stress
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1. M.F.Barone, J.Ray, and S.Domino, Feature Selection, Clustering, and Prototype Placement for Turbulence Datasets, AIAA Journal 2022 60:3, 1332-1346.

2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and
extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.
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., | Motivating Credibility for Scientific Machine Learning (SciML)

Machine learned models are used in lieu of, complementary to, or as surrogates for
science and engineering computational simulation models.
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2. E. Parish, D.S. Ching, N.E. Miller, S. J. Beresh and M. F. Barone. "Turbulence modeling for compressible flows using discrepancy tensor-basis neural networks and
extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.
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Discrepancy modes for an anisotropy tensor are
implemented in Sandia’s Parallel Aerodynamics Re-entry
Code (SPARC) which supports various discretization

High Fidelity Datasets for Training

A. Channel flow with Re = 180
B. Channel flow with Re = 395

C. Channel flow with Re = 590
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and extrapolation detection," AIAA 2023-2126. AIAA SCITECH 2023 Forum. January 2023.
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» Global iterative training procedure improves feature consistency.
» Complete consistency in response has not been achieved.

» The goal is to minimize overall inconsistency.

» ML models involve many hyperparameters.

» Considering various combinations of training datasets and testing hyperparameters
might help validate and improve the overall response consistency.
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High Fidelity Datasets for Training
——
A. Channel flow with Re = 180 Combination of Datasets

B. Channel flow with Re = 395 — (0)A,B,C,D,E,F G,H
C. Channel flow with Re =590 (1)B,C, D, E, F, G, H
D. Duct flow at Re = 3500 (2)A,C,D,E, F G, H
E. Flow over periodic hill (3)A,B,D,E,FG,H
F.HSBLatM =6, T,/T.=0.25 (4)A,B,C, D, E G, H

G.HSBLatM =6, T,/T,=0.76 (5)A,B,C,D,EFG

(6)A,B,C D, EFH

H.HSBLatM =14, T, /T.=0.18 _
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» The global iterative procedure was trained on various combinations of datasets
as described in the previous slide (w/o changing any hyperparameters).

]
|
» It was then tested on the channel flow dataset with Re = 590. ‘
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» Figures clearly show that the ML correction term follows the trend of the
"true” (DNS) data. However, there is a deviation in the buffer layer, which
IS consistent across all combinations of training datasets.

» Dataset combination (6) exhibits clear oscillations.
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» Reducing the depth and width of the neural network along with an optimum
epochs clearly reduces the overfitting problem.
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» Reducing the depth and width of the neural network along with an optimum
epochs clearly reduces the oscillatory behavior.

» However, there is still a deviation in the buffer layer, which is consistent across
all combinations of training datasets.
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» We then tested on the Periodic Hill, and the figure shows the velocity profiles as a
function of y for various x locations.

» The figures clearly show that the ML correction term performs better than the
standard k—e model.



Validating Training Datasets & Testing NASA Hump
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» Figure depicts the pressure coefficient and skin friction as a function of the
streamwise location for the k—e and k—e—ML models.

» We observe that the k—e—ML slightly under predicts the peak in pressure and friction
coefficient which needs to be improved.
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>

Performance Consistency: We conducted rigorous testing on a variety of in-distribution and
out-of-distribution datasets using different combinations of training datasets, which demonstrated
consistent performance across these combinations.

Hyperparameter Tuning: Some combinations of training datasets highlight the need for
hyperparameter tuning to reduce inconsistency in the anisotropy-based discrepancy term.

Network Depth Reduction: Reducing the depth and width of the network effectively along
with optimum epochs mitigates oscillation and overfitting, yet there remains inconsistent
behavior in the anisotropy-based ML correction with "true" DNS data.

Future Work: We will focus on explainable machine learning models for turbulence closures
utilizing SHAP (SHapley Additive exPlanations) & LIME (Local Interpretable Model-Agnostic
Explanations) analysis.
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Thank You for Your Time and Attention!

For questions or follow-up discussions:

Uma Balakrishnan, ubalakr@sandia.gov
William J.Rider, wjrider@sandia.gov
Matthew Barone, mbarone@sandia.gov
Eric J. Parish, ejparis@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract
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