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Expanding explosion gases create a complex 3D interface 
with strong surface instabilities

• Assessing the fireball’s evolving 
surface requires robust, quantifiable 
metrics

• Focus on understanding interactions 
from initial shock emergence to 
reshock events

• The goal of this work is to characterize 
the expanding product gases as a 
function of time and height of burst



• Previous experiments 
characterized the fireball surface 
in free-air explosions

• Documented time-dependent 
growth, interface evolution, and 
mixing zone properties

• This baseline enables the study of 
ground effects by comparing free-
air results with near-ground 
fireball dynamics
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Fireball dynamics in free-air explosions provide foundational insights

Experimental setup for free-air explosion tests (Source: Peterson, 2023, Figure 2.16)

Image processing steps for fireball edge extraction (Source: Peterson, 2023, Figure 2.17)
Peterson. Christian. Characterization of the Interface Between Detonation 
Product Gases and Ambient Air in an Explosion. New Mexico Tech, 2023
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A test series was conducted here with molded spherical C4 charges 
to study the impact of height of burst on the evolution of the gas cloud

• Three cameras were used, each operating at a different frame rate: 200 
kHz, 50 kHz, and 35 kHz

• Captured the evolution of the fireball’s surface, focusing on the moment just 
before the shock wave emergence and extending observations to include 
reshock phenomena

Cameras 35 m 
off-frame



• Higher burst heights result in a slower acceleration as the shock front 
passes through, causing a brief reshock event followed by turbulent mixing

• Lower burst heights lead to a faster, more intense upward and outward 
acceleration of the fireball
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Reshock effects vary with burst height near the ground



• Background subtraction: Highlights key features, including shock 
interactions

• Edge detection (Canny method): Precisely identifies fireball and gas cloud 
contours

• Morphological enhancements: Cleans and extracts the fireball's projected 
boundary from complex visual data
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Image processing was used to isolate critical features in the 
explosive event imagery
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The fireball surface location is extracted as a function of time 
from each high-speed image

• Both Rayleigh-Taylor and Richtmyer-
Meshkov effects influence initial 
expansion, with Richtmyer-Meshkov 
dominating during the reshock phase

• Time-resolved radius observations 
track growth stages and surface 
evolution over time
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Examining reshock dynamics in the expanding fireball

• Higher heights: weaker reshock and smoother surface evolution
• Lower heights: ground interactions amplify reshock, driving the 

transition from linear to nonlinear mixing



• Pressure transducers embedded in a custom in-ground box recorded 
ground-level pressure

• Ground-level data helps to understand shock wave impact and pressure 
distribution across the surface
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Surface-embedded pressure transducer setup for ground-level 
shock wave measurement

Pressure transducers 
spaced apart by 1 ft

Free-air pressure 
transducers in line 
with the charge
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Charge-height aligned pressure measurement for shock 
wave propagation measurement

• Pressure transducers at the explosive charge height measured shock waves directly
• Comparing in-air and ground-level traces provided a way to determine where the reflected shock is 

in relation to the center of the charge once the fireball has engulfed the pressure transducers



• Data collected during 
experimentation shows the 
effect the fireball has on 
reflected shock pressure

• Large pressure differences 
between when the fireball is in 
contact with the ground and 
when it is only in air
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Ground-level overpressure as a function of height of burst
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Initial findings indicate an influence of burst height on fireball development 
and evolution, as well as ground shock intensity and distribution

• Burst height directly influences the symmetry and peak intensity of the fireball
• Ground shock characteristics, such as peak pressure and propagation speed, vary 

significantly with burst height
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