23
24
25
26
27
28
29

39
40
41
42
43
44

HPC Digital Twins for Evaluating Scheduling Policies, Incentive
Structures and their Impact on Power and Cooling

Matthias Maiterth*

Arunavo Dey

Kevin Menear

Wesley H. Brewer Jaya S. Kuruvella Dmitry Duplyakin
Terry Jones Tanzima Z. Islam National Renewable Energy
Feiyi Wang Texas State University Laboratory

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Rashadul Kabir
Colorado State University
Fort Collins, Colorado, USA

Abstract

Schedulers are critical for optimal resource utilization in high-
performance computing. Traditional methods to evaluate sched-
ulers are limited to post-deployment analysis, or simulators, which
do not model associated infrastructure. In this work, we present the
first-of-its-kind integration of scheduling and digital twins in HPC.
This enables what-if studies to understand the impact of parame-
ter configurations and scheduling decisions on the physical assets,
even before deployment, or regarching changes not easily realiz-
able in production. We (1) provide the first digital twin framework
extended with scheduling capabilities, (2) integrate various top-tier
HPC systems given their publicly available datasets, (3) implement
extensions to integrate external scheduling simulators. Finally, we
show how to (4) implement and evaluate incentive structures, as-
well-as (5) evaluate machine learning based scheduling, in such
novel digital-twin based meta-framework to prototype scheduling.
Our work enables what-if scenarios of HPC systems to evaluate
sustainability, and the impact on the simulated system.

CCS Concepts

« Computer systems organization; - General and reference
— Cross-computing tools and techniques; - Computing method-
ologies — Discrete-event simulation; Distributed simulation;
Simulation evaluation;

Keywords

Scheduling Simulators, Digital Twin, Data Center Digital Twin, Sys-
tem Simulator, Distributed Systems Simulation, Batch Scheduling

*Corresponding author: maiterthm@ornl.gov

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC25-W, November 1621, 2025, St. Louis, MO

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/11...$15.00
https://doi.org/XXXXXXX.XXXXXXX

San Marcos, Texas, USA

Golden, Colorado, USA

Tapasya Patki
Lawrence Livermore National
Laboratory
Livermore, California, USA

ACM Reference Format:

Matthias Maiterth, Wesley H. Brewer, Terry Jones, Feiyi Wang, Arunavo
Dey, Jaya S. Kuruvella, Tanzima Z. Islam, Kevin Menear, Dmitry Duplyakin,
Rashadul Kabir, and Tapasya Patki. 2025. HPC Digital Twins for Evaluating
Scheduling Policies, Incentive Structures and their Impact on Power and
Cooling. In Proceedings of The International Conference for High Performance
Computing, Networking, Storage, and Analysis — Workshops (SC25-W). ACM,
New York, NY, USA, 10 pages. https://doi.org/XXXXXXX XXXXXXX

1 Introduction

The increasing complexity of highly-efficient supercomputing cen-
ters fuels an ever increasing demand for more powerful models.
Digital twins (DTs) have emerged as a means of integrating system
telemetry, modeling and simulation, artificial intelligence (AI), and
system control mechanisms to create a virtual representation of
the physical system, modelling cooling, power, and workloads [6].

Aiming for optimal usage of high-performance computing (HPC)
systems, different stakeholders face various challenges. For exam-
ple: users seek feedback regarding job usage, estimated runtime, and
application efficiency; operators monitor and tune operational pa-
rameters based on load and conditions; center managers and vendors
seek insight into which machine aspects are the biggest barriers to
performance, and seek trends for future procurements. Data center
digital twins (DCDTs) can provide estimates and simulations and
even serve for design considerations and virtual prototyping of
future systems [6], without consuming the system’s own resources.

Scheduling is critical for efficient use of HPC [3, 29]. Therefore,
integrating scheduling into DTs of HPCs is necessary to form a
representative twin of the overall system. The sound integration
of scheduling capabilities into a DCDT extends its capability from
a reactive role to a predictive one, enabling what-if studies. A
representative yet modifiable scheduling simulator integrated into
a DCDT allows to study how a system responds to alteration of its
parameters. Production systems are not suitable for such changes,
unless service interruptions are acceptable. Similarly, scheduling
simulators in isolation or DCDT’s without these capability can not
answer such questions. Integrating a scheduler into a DCDT is
therefore a valuable contribution, revealing holistic insights into
the operation of our systems and optimization opportunities.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://orcid.org/0000-0001-8698-460X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

SC25-W, November 16-21, 2025, St. Louis, MO

In this paper, we introduce Scheduled-RAPS (S-RAPS) [10], which
extends the resource allocator and power simulator (RAPS), origi-
nally developed for the open-source digital twin framework ExaDigiT
by Brewer etal. [9]. We present what-if studies evaluating the inte-
gration of schedulers with digital twins. Specifically, we evaluate:

(1) Scheduling impact on system response — We explore
the impact of scheduling to understand a system’s power,
cooling, and workload response with our integration, a
factor not observable for scheduling simulators in isolation.

(2) Evaluation of incentive structures — We explore incen-
tive structures and impact of imposed reward metrics on
workloads and system — a case-study impossible with the
current state-of-the-art, without deploying to production.

(3) Machine learning (ML) for scheduling — We study ML
guided scheduling based on metrics usually not accessible to
scheduling simulators in isolation, or hardly trainable due
to limited data and context without an integrated DCDT.

(4) Integration with external schedulers — We demonstrate
the feasibility of our approach by extending scheduling-
integrated DCDT to interface with external schedulers.

This work extends to the original work of [9] and use open
datasets for validation and use-cases. Our contributions are:

o Integration of scheduling into DCDTs: Previous work
does not integrate scheduling simulators with digital twins.
Our research is the first to enable such integration, allowing
the exploration of “what-if” scenarios to study power and
cooling, given real workload and system data.

e Use of open datasets: Previous work has utilized open
datasets for post-mortem analysis; however, this work is
the first to utilize such datasets to simulate the anticipated
system behavior given altered scheduling parameters.

o Extension to other schedulers: As each system and sched-
uler setup is unique, we provide the extensions necessary
such that users can model and simulate their system and
their use-cases, providing wide applicability beyond what
is presented in this work.

The remainder of the paper is structured as follows: Section 2
presents background on digital twins and scheduling, and discusses
the open data sets used in this research. In Section 3, we introduce
S-RAPS. In Section 4, we present our evaluation and use-cases.
Section 5 discusses future work, and we conclude in Section 6.

2 Background
2.1 Related Work

2.1.1 Digital Twins for Operational Optimization: DT research has
surged in recent years, and useage of traditional modeling and
simulation techniques have found wider adoption for operation [39],
using data-driven approaches [32] and by coupling Al with online
decision making [40].

In the context of HPC, the work on ExaDigiT [9] is seminal as an
open-source framework, consisting of the RAPS module, a transient
thermo-fluid cooling module, and an visual analytics model of the
supercomputer and central energy plant. The work, however, only
presented an initial framework with large emphasis on the thermo-
fluid cooling simulator, as well as power loss modeling for job-trace

Maiterth et al.

replay, without venturing into the explorative aspects. The initial
work does not include a batch scheduler and only replays the given
workloads, therefore unable to re-schedule for what-if analysis.

In turn, our work builds upon the ExaDigiT framework, with ex-
plicit focus on scheduling, introducing S-RAPS. We extend ExaDigiT
to support open data sets for additional systems, and explore use-
case driven analysis for HPC, and evaluate the impact of various
scheduling policies on power and cooling.

2.1.2 Scheduling Simulators: Simulating scheduler behavior has
been an active area of research, consistently supporting advances
in HPC [7]. Popular examples of batch scheduling simulators are
Slurm Simulator [33-35], and scheduler specific alternatives such
as the work by Wilkinson etal. [?]. CQSim [30], which originated
in QSim is a prominent example outside of the Slurm ecosystem.
This is a non-exhaustive list, as simulators such as GridSim [11],
SimGrid [12], Bricks [38], Simbatch [20], Alea [24], AccaSim [19],
BBSched [17], ScSF [31], Batsim [15], as well as schedulers that
have built in simulators, such as Torque/Maui [23] and Moab Sched-
uler, played an important role in the development of scheduling
simulators and should not be left unmentioned.

These simulators generally are not focused on the systems infras-
tructure but the core of scheduling. With continuous progress in
scheduling simulators in general, the aim is to enable the integration
of such advanced scheduler developments into DTs. We designed
S-RAPS to leverage existing work such that users can interface with
other scheduling simulators, such as the Slurm Simulator or Fast-
Sim. This enables easy extensions to S-RAPS for studying power
and cooling. We demonstrate an integration of FastSim [41] into
S-RAPS in Sect. 4.2.2.

2.2 Open Datasets

In this work, we selected four open datasets for accessibility and
reproducibility, as shown in Table 1: PM100 [5] from Marconil00,
F-Data [4] from Fugaku, LAST [26] from Lassen, and Cirou’s dataset
[14] from Adastra. Additionally, we use a proprietary dataset from
Frontier due to its extensive verification and validation in the con-
text of DCDTs from previous work [9] for reproducibility.

The telemetry traces used for simulation vary according to the
data source, which we discuss as follows: ® Marconi100: The Mar-
conil00 system at CINECA has two public datasets: the M100 [8]
and the PM100 dataset [5]. We use the PM100 data as it is pre-
curated. We filter jobs containing shared nodes as this is not yet
supported in our model. The data includes CPU, memory and node
power in a 20-second interval. As the data has been filtered, it does
not reflect the system’s full operational utilization. This means that
replay and reschedule will differ [5].

e Fugaku F-Data: F-Data [4] is a dataset containing job and per-
formance information with derived metrics for job classification
from Fugaku. It includes monthly data from March 2021 to April
2024, with the following job metrics: energy consumed, node power
(minimum, maximum and average), performance characteristics on
operations, memory activity and the resulting performance class
identified as either compute- or memory-bound.

e Lassen LAST: This is a 1.4-million-job dataset from the Lassen
supercomputer [26]. It includes information on job allocation, node
allocation, and job-step disposition. These are combined to get

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling

SC25-W, November 16-21, 2025, St. Louis, MO

Table 1: Systems and datasets used in study.

System Architecture Nodes Dataset Scheduler Job Count Characteristics

Frontier HPE/Cray EX 9600 Proprietary Slurm 1,238 job traces (15s), CPU/GPU power & temp.
Marconil00 IBM POWER9 980 PM100 [5] Slurm 231,238 job traces (20s), CPU/node power

Fugaku Fujitsu AF64FX 158,976 F-Data [4] Fujitsu TCS 116,977 job summary, node-level power only
Lassen IBM POWER9 792 LAST [26,27] LSF 1,467,746 job summary, includes network tx/rx
Adastra HPE/Cray EX 356 Cirou [14] Slurm 30,570 job summary, job avg component power

usable information for each job allocated with accumulated energy
data. Lassen uses the IBM’s LSF Job scheduler [28].

o Adastra: CINES has published 15 days of the Adastra system [14],
including node power, memory power, and CPU power. The het-
erogeneous system has a CPU and GPU partitions. GPU power is
not provided, but can be derived from node power and the other
components. It uses Slurm [2], but no scheduling policy is stated.
o Frontier: The Frontier dataset was initially used to develop the
ExaDigiT DCDT. The dataset is an excerpt from the center’s con-
tinuous collection, obtained from both Slurm data, as well as Cray
EX Telemetry API, collected in the STREAM system [1]. The sched-
uling policy is a priority-based mechanism that uses a modified
first-in, first-out (FIFO) queue, boosted based on node count and
penalized on allocation overuse [16]. This dataset is the only one
not publicly available. Since it was used for initial verification of
RAPS[9], it was important for cross validation of S-RAPS.

3 Method & Design

In the following, we show the current state-of-the-art, the ExaDigiT
framework [9], with its resource allocator and power simulator
(RAPS), for context, and present our Scheduled-RAPS (S-RAPS) ex-
tension. We begin by discussing the mechanisms of the existing
simulation loop of the forward-time DCDT simulator by Brewer
etal. [9]. We then present S-RAPS, with its built-in scheduler and
how this ties into the DCDT simulators. We then show how S-RAPS
extends to external forward-time or event-based simulators. Finally,
we show how extensions for dataloaders allow us to load and sim-
ulate diverse datasets and systems, showing the true value of an
open-source digital twin framework.

3.1 Prior state of ExaDigiT

The original design of ExaDigiT consists of three main modules [9]:

(1) Modelica-based cooling model
(2) Resource allocator and power simulator (RAPS)
(3) Visual analytics model

ExaDigiT’s simulation is depicted in Fig. 1. The digital twin reads
a sequence of job traces or telemetry and placed on the system
simulator as recorded. For each timestamp, the observed node uti-
lization is replayed. The simulated utilization is converted to a
power profile, with power rectification and conversion losses ap-
plied [42]. The power and therefore generated heat is fed into a
cooling model [22, 25]. The cooling model simulates from cool-
ing distribution unit (CDU) to cooling towers, giving an accurate
representation of the system at each timestep.

Physical Twin

Digital Twin

Central Energy Plant
Cooling Model

Thermo-Fluid| | Sontrol
System
Model Model

Compute
PUE

deploy

Supercomputer
Allocator and Power
Workload Generator
Telemetry Synthetic
<L

£ Telemetry &

Job Scheduler
Replay Simulated
—

Visual Analytics System Power

Utilization Model

({() simulation Server

Deployed Cooling Model

Figure 1: Simplified OriginalExaDigiT overview in accor-
dance with Brewer et al. [9], with RAPS module on the right.

In the simulation, the RAPS module provides the inputs to the
cooling model and is also the main driver of the simulation loop.
This is outlined in Algorithm 1 of [9]:

(1) Initialization of system and data, and start of simulation.
(2) Simulation loop:
(a) Addition of newly arriving jobs to the job queue
(b) ScheduleJobs: selection and placement of available jobs
to available resources.
(c) Tick: management of resources, and calculation of com-
pute resource utilization, power and cooling

The original work processes jobs in a scheduler class, which con-
tains the DT’s replay mechanism. As shown in Fig. 1, this only con-
siders replay of recorded telemetry or synthetic data, not scheduling.
For a generic HPC digital twin, the ability to alter the scheduling
policy and resulting job placement is key. For this, we describe
the refactoring necessary to enable generic built-in scheduling and
allow for the integration of external schedulers with S-RAPS, en-
abling the scheduling scenarios we present in this paper.

3.2 S-RAPS: Scheduled - Resource Allocator and
Power Simulator

We now present the improved simulation loop for comprehensive
integration of schedulers within ExaDigiT’s RAPS, named S-RAPS.
Figure 2 shows the overhauled design of S-RAPS, enabling the in-
tegration of forward-time or event-based schedulers. Key changes
include refactoring and generalizing of the following five com-
ponents: (1) system initialization, (2) dataloaders, (3) simulation
engine, (4) scheduler abstraction, (5) systems accounting. This is

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

SC25-W, November 16-21, 2025, St. Louis, MO

Input Configuration Telemetry Dataset
system.json F-Data
scheduler.json PM100
powerjson LAST Job objects
cooling.json Frontier
CPU Trace
Resource Allocator & Power Simulator GPU Trace
Network TX/RX
Workload Generation Account
Ingest and preprocess jobs Nodes
Submit time
Wall time
Schedulers
1 Default
Resource Management Replay
allocate/free nodes
] External:
Power Model Tick HPE FastSim
system accounting: FluxSim

power, ﬁ_ooling, ScheduleFlow
system utilization CQSim

Cooling Model

Figure 2: Scheduled-RAPS (S-RAPS): Integration of sched-
uling into the design of ExaDigiT’s resource allocator and
power simulator (RAPS). With improved configuration mech-
anisms, pluggable dataloaders, interface to build-in and ex-
ternals schedulers, and overhauled simulation loop.

accomplished while keeping the original RAPS simulation concept
with intended scheduling, resource management, and tick intact.

3.2.1 System initialization: The system initialization has been im-
proved to capture not only the system’s configuration, but also to
include information necessary for scheduler simulation. The rework
introduces cleaner abstractions and separation of concerns, with
future extensions in mind. The core loop of the simulator was refac-
tored introducing a simulation engine. During system initialization,
telemetry is used to initialize the job objects augmented with infor-
mation for scheduling. The telemetry is now also used to initialize
user-account information (clear or anonymized). The refactored
simulation engine separates resource manager and scheduler inter-
face, which loads either the build-in or external scheduler. Finally,
objects for tracking statistics of the simulation are initialized.

The HPC System configurations, their dataloaders, and the sched-
ulers are implemented as plugins. The specific configurations are
selectable on simulation start via the command line interface (CLI)
and are designed to be easily extensible. This helps with rapid
testing of configuration and experimental design: administrators
can easily represent their systems, and developers of scheduling
simulators can easily load their policies, once extended.

3.2.2 Dataloaders: A dataloader’s task is to load and parse the
telemetry data and generate the list of to-be-scheduled jobs. Each
job requires information on: submit time, start time, end time, time
limit, and the number of requested nodes (alternatively, the exact
set of nodes to which the job was assigned). This is a standard for
scheduling simulators as for example used in the standard workload
format (SWF) [13]. The dataloaders also load the job traces for replay
in the DCDT simulation. If traces are not available for a dataset,

Maiterth et al.

t=20
Simulation After
v Job 6 \
Job 8
S [Job7 !
Start Now End

Figure 3: Example job trace, with job-submit time, -start time
and -end time. The time-stepped simulator triggers on each
time step, while the event based scheduling simulator only
has to react to triggered events (magenta arrows) such as start
of a job (job 4), end of a job (job 2), and submission of a new
job (job 5).

scalar values can for example represent a job’s average power,
energy, or other characteristics - depending on data availability.

When rescheduling, the job traces recorded may not coincide
with the time slice needed for the simulation. We treat such occur-
rence as missing data, using the last known value. Therefore, for
correct simulation the dataloader must identify the following key
times for each job:

e Job submit, start and end time
o Telemetry start and end time

Given the individual job times and the overall timespan of the
dataset, we can run the simulation within the range of the overall
telemetry. Additionally, this change enables us to either replay the
recorded data as is or simulate a new schedule.

An example of such timeline is presented in Fig. 3, showing a
simulation from ¢ = 0 to t = 20, with submission times of jobs
indicated by dashed outline extending in front of the jobs, and ac-
tual execution indicated by the solid outline of the jobs. During
rescheduling, the jobs can be placed as early as they have been
submitted, which is ultimately decided by the selected scheduling
policy. Jobs that ended before start of the simulation time or were
submitted after end of the simulation time are dismissed. The simu-
lation of the power and cooling behavior can then be simulated as
implemented in tick of S-RAPS, with the modified timeline.!

3.2.3 Simulation engine: The simulation engine contains the main
simulation loop. At start of the simulation, the user selects explicit
simulation start and end time. Given this information, the system
state is prepared, and in case the dataset contains jobs before the
selected simulation start, these jobs are placed to prepopulate the
system. This allows us to represent the actual system condition
as observed in the telemetry at start of the simulation®3. We can

There are two edge cases to consider: jobs which originally started before the capture
time (see Fig. 3, Job 1) and jobs which ended after the capture time (see Fig. 3, Jobs 6, 7,
8). When simulating a new schedule, these jobs may therefore have no corresponding
telemetry at the associated simulation times. Therefore, when rescheduling these jobs
within the simulation time, these cases need to be flagged as they can cause potential
discrepancies in other simulations as no known ground truth is available to S-RAPS.
2This is often neglected by scheduling simulators, which ignore jobs before simulation
start, and therefore need time to fill up the queue and system, distorting the results.

3This also allows S-RAPS to simulate anticipated schedules and profiles from live-data.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling

then enter the main simulation loop. It is refactored into four well-
defined steps:

(1) Preparation of the time step: Before each iteration, the sys-
tem state is updated. For this, completed jobs are cleared
from the system, freeing resources, and updating the state
of nodes.

(2) Addition of eligible jobs to the job queue: Jobs that have
been submitted — according to simulation time — are added
to the job queue.

(3) Call of schedule: The jobs are scheduled according to the
job queue and selected scheduling policy, and placed on the
system in coordination with the resource manager.

(4) Call of tick: The engine’s tick function calls the sequence
of DCDT simulators and models, and increments the time.

These descriptions seem simple, but required major changes from
the simple replay mechanism of the original design. For example, in
the original replay mechanism, node placement was not enforced.
In the overhauled design, the exact node placement as specified in
the telemetry is used in replay mode. However, when rescheduling
the scheduler select the appropriate nodes. The resource manager
then completes the job placement, allocating nodes. Additionally,
the refactor resolved timing and allocation issues for nodes with
both ending and starting jobs coinciding in the same time step.

Regarding job eligibility, in the original replay mode, all jobs
were part of the job queue. Jobs were then placed on the system as
soon as indicated by their start time. With the updated design, jobs
can only be scheduled and placed once they have been submitted.
This also means that pre-computing a schedule is not possible as
the digital twin observes the jobs as they are submitted, just like a
real system. The scheduler is not aware of jobs not yet in the queue.

When calling the schedule function the loaded implementation
is triggered. This recomputes the order of the job queue according
to selected policy and coordinates with the resource manager to
place eligible jobs. The split of resource manager and scheduler
via this interface was a major improvement, separating the built-in
scheduling capabilities and enabling the use of external schedulers®.

The update to tick now also represents a clear separation of
concerns enabling easier replacement of simulation sub-modules,
where tick is only responsible for the simulation of physical sub-
systems. Our redesign of S-RAPS with the simulation engine puts
strong focus on extensibility and the use of plug-ins. This also
enables support for future site-specific customizations.

3.2.4 Scheduler abstraction: As outlined, the simulation engine
triggers the scheduler in each iteration of the simulation loop. Any
external scheduler and scheduling simulator has its own set of
logics regarding which events to track and react to. The abstraction
we use enables users who interface S-RAPS with their scheduling
simulator to implement the logic for triggering and sending these
events. Figure 3 illustrates such case, with the triggered evens for
time step ¢t = 4 shown as magenta arrows.

S-RAPS interfaces with the scheduler in case the simulator pro-
vides new information in a given iteration: (1) by triggering the
scheduler to recompute the schedule, or deciding to skip if no

4The original design included a reschedule functionality, however it simply redis-
tributed the job start times according to a Weibull distribution and was not representa-
tive of batch scheduling.

SC25-W, November 16-21, 2025, St. Louis, MO

change has occurred; (2) it interprets the information returned from
the scheduler; and (3) S-RAPS then triggers the resource manager,
placing identified jobs on the system, and maintains the job queue.
This ensures that the remainder of the simulation can progress.

3.25 Built-in and external schedulers: The scheduler can be se-
lected via the --scheduler CLI option. Its policies are selected via
the —-policy and --backfill options. The default is the build-in
scheduler which implements the policies: first-come, first-served
(FCFS), shortest-job-first (SJF), largest-job-first (LJF), and priority-
based scheduling. Additionally, the default scheduler also provides
the replay mechanism of the original RAPS implementation. Regard-
ing backill options the supported defaults are no-backfill, first-fit,
and easy (i.e. Earliest Available Start-time Yielding (EASY)[36]). All
options are extensible for use with external schedulers.

While the default scheduler provides basic scheduling policies, it
does not provide implementations for best-fit, greedy, conservative,
or other more sophisticated implementations. For this, we provide
the interface for external schedulers and scheduling simulators.
As shown in Sect. 2.1.2, the numerous schedulers and scheduling
simulators all have their validity, and we do not compete but try to
enable them, and provide example integration in the source-code.

3.2.6 Systems accounting: The final major rework to discuss is the
addition of system accounting and statistics. The original RAPS
design kept track of general simulation and HPC system statistics,
with focus on the power and cooling simulation of the DCDT.
S-RAPS extends those and adds collection of statistics for jobs, users,
accounts, as well as scheduler-focused statistics. This allows users
to easily extend metrics of interest for their facility or experiments.

Previously tracked information includes: completed jobs, job
throughput, average system power, power loss, system power effi-
ciency, total energy consumed, and the cost estimates for carbon
emissions. S-RAPS adds more scheduler-specific information and
also aggregates according to user accounts, such as (non-exhaustive):
queued and running jobs average job size, histogram of job size
scheduled (small, medium, large, by node count), aggregate node
hours, average power and energy per job, their energy-delay-product
(EDP), energy-delay?-product (ED?P), average CPU and GPU uti-
lization, wait time, turnaround time, as well as area weighted re-
sponse time (the average turnaround time per unit of node-hour
across all scheduled jobs), and priority-weighted specific-response
time (average sensitivity-adjusted turnaround time per unit of node-
hour), which helps to capture packing efficiency and fairness [21].

By tracking this information for both the system and user ac-
counts, we can assess if a setting of the scheduler favors specific
jobs or users. The generated statistics can be compared and corre-
lated within a single simulation and across multiple simulations.
This allows us to investigate, e.g. how changes of the job-mix are
related to job-turnaround time and observed power swings. For
the user account metrics, we added the option to store and reload
collected user account statistics at the start of a run, supporting
aggregation of this information across simulations.

In summary, these changes establish capabilities for extracting
broader and deeper insight about jobs, users, and the system, which
standalone scheduling simulators cannot provide without integra-
tion into a DCDT framework. It is worth emphasizing that the
holistic modeling of power, cooling, and job behavior relies on the

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

581
582
583
584

586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

SC25-W, November 16-21, 2025, St. Louis, MO

integrated design of the full DCDT (Fig. 1), where interactions be-
tween subsystems are critical. Such cross-disciplinary dynamics
cannot be replicated by aggregating telemetry data in isolation,
even with comprehensive scheduling records.

4 Evaluation and Use-Cases

In the following, we evaluate the S-RAPS scheduler interfaces and
extensions, utilizing datasets from a diverse set of HPC systems
and external schedulers. In Sec. 4.1 we evaluate the rescheduling
mechanism with different policies and datasets. This is followed
by use-cases: interfacing and integration with external schedulers,
such as ScheduleFlow and FastSim in Sec. 4.2; incentive structures
in Section 4.3; and evaluating of ML-guided scheduling in Sec. 4.4.

4.1 Evaluation of the built-in scheduler

We implemented dataloaders for Frontier, Marconi100, Lassen, Fu-
gaku, Adastra, given the datasets of Table 1. Each system provides
slighly different information with telemetry for Adastra, Fugaku,
and Lassen providing average values for utilization, while Mar-
conil00 and Frontier provide traces for their jobs’ resource utiliza-
tion. A system and its associated dataloader is selected with the
--system CLI option. We present Figs. 4, 5, and 6, where each plot
shows full-system power as calculated by the power model and sys-
tem utilization according to node occupancy. Figure 6 additionally
shows power usage effectiveness (PUE) and the water temperature
arriving at the cooling towers, as simulated by the cooling model.
We show replay according to the telemetry (replay, blue), as well
as FCFS scheduling (fcfs-nobf; teal), FCFS scheduling with EASY
backfill (fcfs-easy, orange), and priority scheduling with first-fit
backfill (ftbf) (priority-ffbf, brown). Priorities are used as provided
by the datasets and respective documentation.

Figure 4 shows day 50 of the PM100 dataset, from 17:00 to the
next day at 10:00. The replay utilization curve (blue) is near 80%,
with a filling job queue. The rescheduled runs achieve very high
utilization at 100% continued utilization using backfill. In the plot,
the system shows higher aggregate power in the non-backfilled ap-
proach (teal). The statistics show that average power consumption
(—2%) per job and job size (—5%) decreased using either backfilled
policy. In combination, the adjusted job placement and start times
result in smoothing of the aggregate load, mitigating the power
jump at 21:00, observed in the non-backfilled schedule.

Figure 5 shows 15 days of replay and reschedule of the Adastra
dataset. As the system utilization is lower and queues not filling up,
the choice of scheduling algorithm makes little difference. Note-
worthy is that with information on the jobs’ power profiles and
correct estimates of runtimes, the S-RAPS simulator can match the
observed changes in both utilization and simulated power.

Figure 6 shows the same snapshot, as presented in the origi-
nal paper by Brewer etal. [9], with the cooling model of Kumar
etal. [25]. We apply the same scheduling policies as used in the
previous cases. The utilization plot shows that the system is making
space for three full-system runs, emptying the nodes. Then, the
three full-system runs are executed, and afterwards a normal job

5The datasets do not contain reservations and job dependencies, nor was information
about down or drained nodes available. This information could greatly increase the
accuracy of schedules, especially when linking the DCDT to a live system.

Maiterth et al.

900 n
E 850 - i
g
2 800 - i T fefs-nobf
£ ! fefs-easy
750 F — priority-fbf
Power replay
| | | | | ;
1.0 q
X
s 08 4
o
bt
<
= —— fefs-nobf
% 0.6 - fefs-easy -
e e —— priority-ffbf
Utilization ey
1 1 1 1 1 I
18:00 21:00 0:00 3:00 6:00 9:00

Day 51
Time [hours/days]

Figure 4: Replay and reschedule of the data from the PM100
Dataset (offset 50 days +17h). Showing FCFS with no back-
fill (fcfs-nobf), FCFS with EASY backfill (fcfs-easy), priority
scheduling with first-fit backfill (priority-ffbf) and replay as
jobs were executed, for system power and utilization.

fefs-nobf
fefs-easy

priority-ffbf |

~
fefs-nobf
ffs-easy =
priority-ffbf
replay
L

Utilization
000 v v
0:00 day 3 day 6 day 9 day 12 day 15

Time [hours/days]

Figure 5: Replay and Reschedule of 15 days of Adastra (full
dataset [14]). Replay is shown in blue, while all rescheduled
runs (FCFS & priority) overlap almost exactly (brown line).
Given known job-power profiles and schedule information,
the simulator can predict and match the observed power
profile, seen as matching timed up/down-swings.

mix of varied size and lower total power is observed. The different
power, PUE® and return temperature behavior for the different
scheduling policies is clearly visible with regard to how each policy
clears the system for the large scale runs. Regarding differences of
replay to reschedule, S-RAPS is able to place the large 9216 node
jobs earlier (fcfs-nobf, fcfs-easy and priority-ffbf, all overlap and
start them at the same time). While freeing nodes for the large

®Power is modeled using [25]. PUE for the actual system is at an average of 1.06%.

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling

1.0F] .
E 0.8 -
5 0.6 B
s
No04r 4
— ~——— fefs-nobf
5 0.2 fefs-easy
’ —— priority-ffbf
0.0 F —— replay
M | |
25000 |- ‘ [P —
fcfs-easy
— —— priority-ffbf
3 20000 - — replay
i
€ 15000
z
o
=1
m WMW
| | _ | | |
T T T T T
I IE ~——— fefs-nobf
1.3F P fefs-easy
: —— priority-ffbf
replay
L:';'] 1.2+ 4
a
11k 4
| | | | |
T T T T T
. ——— fefs-nobf
— 3oL Cooling Tower fefseasy |
8 Return priority-fibf
© — replay
5 og | Temperature J
=
-
& 26 | 4
g
=
24 4
| | | | |
0:00 6:00 12:00 18:00 24:00

Time [hours]

Figure 6: Replay and reschedule of the data used in [9]. Show-
ing FCFS with no backfill (fcfs-nobf), FCFS with EASY backfill
(fcfs-easy), priority scheduling with first-fit backfill (priority-
ffbf) and replay. The plots show system utilization, system
power, as well as PUE® and cooling tower return temperature
as simulated given the cooling model provided by [25].

runs, the backfilled policies are able to achieve higher utilization
compared to replay. This, however, is due to the fact that we do not
have access to node status, such as information on down or drained
nodes. The backfilled policies smooth out the power (and cooling
temperature) jump observed in the fcfs-nobf case, after the large
runs, in similar fashion as described for Fig. 4.

4.2 Evaluation with external schedulers

The integration of external scheduling simulators — ScheduleFlow
and FastSim — serve to highlight opportunities for community
extensions and future exploration.

4.2.1 ScheduleFlow Scheduler: To prototype the integration of ex-
ternal schedulers, we implemented an interface to ScheduleFlow by
Gainaru et al. [18]. The scheduler is event-based and maintains its
own internal system state. We implement the interface as described

SC25-W, November 16-21, 2025, St. Louis, MO

—— Simulated Power

-
&

Power Usage (MW)
=
S

0
Mon. Mon. Mon. Tues. Tues. Tues. Tues. Tues. Tues. Tues.
6PM 8PM 10PM 12AM 2AM 4AM 6AM 8AM 10AM 12PM

Figure 7: The results of simulating a synthetic job trace run-
ning on Frontier with the FastSim scheduler. The simulated
job schedule is passed to ExaDigiT, which can then compute
the resource usage over time.

in Sec. 3.2.4 and trigger the necessary internal ScheduleFlow func-
tionality. Hereby, we couple the event-based scheduler of Schedule-
Flow with the forward-time simulation of S-RAPS. As ScheduleFlow
is not designed for this use-case, nor optimized for performance,
this initiates frequent recalculation of the schedule incurring large
overheads. The proof of concept was evaluated using synthetic
runs, but shows poor performance for any of the real datasets. The
main purpose is however achieved: we are able to trigger external
schedulers, which allows them to interact with the DCDT simula-
tions made available via S-RAPS. This serves as template for other
schedulers, as successfully demonstrated by FastSim.

4.2.2 FastSim Scheduler: FastSim [41] is a lightweight emulation
of the Slurm scheduler software. This external tool can simulate
cluster behavior up to thousands of times faster than real-time.
This integration moves the ExaDigiT DCDT towards the capacity
to forecast future events. In Fig. 7, we show a dip followed by a spike
in Frontier’s power usage on Tuesday morning, as simulated by
FastSim using a synthetic job trace developed for Frontier based on
the workload statistics in [9]. Accurate forecasting of such events
can inform energy-aware scheduling to mitigate the effects of such
significant fluctuation in the power draw.

To integrate this simulator with S-RAPS, FastSim was modified
by developing a plugin mode option. When operating in this plugin
mode, FastSim responds to a request for the system state at a time
step specified by the driving simulator. FastSim then processes any
events which have occurred up until the requested time step and
responds with a list of running jobs indexed by job ID. When trig-
gered by S-RAPS, the returned list is used to allocate resources and
subsequently continue in the simulation procedure of S-RAPS. This
process requires both S-RAPS and FastSim to maintain separate
copies of the system state, which reduces communication between
the two simulators at the cost of additional computational overhead.
While this process is effective for the real-time simulation necessary
for a DT, for the purpose of historical job trace rescheduling, we
found it was faster to run FastSim and RAPS sequentially, with Fast-
Sim handling the job scheduling and RAPS managing the resources.
To generate the results seen in Figure 7, a synthetic job trace of
5,324 jobs run over a period of 15 days was simulated using this
sequential approach. The entire simulation time was completed in

755
756
757
758

760
761
762
763

764

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870

SC25-W, November 16-21, 2025, St. Louis, MO

T
25000 -
Power
—— replay ™
'E‘ 20000 acct_avg-power-fibf T
= —— acct_low_avg_power-ffbf
— —— acct_edp-ffbf
§ 15000 - acet fugaku_pts-fbf il
o
~
10000 b(n
]
|

Time [hours]

Figure 8: Studying the effects of incentive structures by using
account information for prioritization. An Account’s priority
is based on the accumulated job behavior in the replay case
(blue). Reprioritization based on this behavior is shown based
on descending average power (orange), ascending average
power (purple), EDP (red), and Fugaku points (green).

31 minutes and 24 seconds, amounting to a simulation speedup of
688x compared to real time.

4.3 Use-Case: Incentive Structures

By incorporating information on user accounts, S-RAPS is able to
mimic implementations of scheduling incentives and their impact
on jobs and system. In the presented use-case, we study the ability
to calculate a Fugaku point score according to Soldérzano etal. [37].
For any completed job, its statistics are accumulated to the issuing
account. This information can be accumulated across multiple sim-
ulations or used for prioritization, as described in the redeeming
phase of [37]. The implementation is added in schedulers/experimen-
tal.py of [10], which has policies to derive priorities from account
based on: Fugaku Points, power usage, accumulated EDP, ED?P, and
others.

In Fig. 8, we show the resulting power plots when applying
different redeeming mechanisms to the same day as in Fig. 6. For the
collection phase the replay policy (blue) was used, to illustrate the
example. The prioritization for the policies is based on an account’s
previous behavior on: average power (orange, higher is better), low
average power (purple, lower is better), EDP (red), Fugaku points
(green). Fugaku points reward low average energy consumption in
the collection phase. The high power demand of the three large jobs
in the collection was not rewarded in the redeeming phase (green),
while the generally low power profile was rewarded as intended
in [37]. This example illustrates how S-RAPS can be used to run
what-if studies that are difficult to realize on production systems.

4.4 Use-Case: Using ML for scheduling decisions

To demonstrate S-RAPS utility, we evaluate a new machine learning
(ML) guided scheduling policy prototyped using S-RAPS.

4.4.1 Training Phase: (1) Clustering. We partition historical jobs
into behavioral clusters using both static (e.g., job size) and dynamic
(e.g., power traces) features using K-means clustering. (2) Classifi-
cation. Since dynamic features are unavailable at submission, we
train a Random Forest model to learn the relationships between job
characteristics (using pre-submission features) and the target met-
ric. This enables real-time mapping during inference time, without

Maiterth et al.

Data
] — . >
- Preprocessing l

Historical job
R @ «— Classifier

telemetry
(a) Training Pipeline

Predictive
model per
cluster

I |

———
E- ol
New jobs |T———|—|

with static Inference pipeline

Jobs with predicted ML-priority
resource usage

features

(b) End-to-end ML-guided scheduling policy study pipeline integrated
into S-RAPS

Figure 9: Overview of the ML-guided scheduling pipeline.

requiring telemetry for new jobs. (3) Prediction. For each cluster,
we train a model to predict target metrics such as runtime, power,
memory — based on static inputs.

4.4.2 Inference Phase: Upon job submission, we normalizes static
features, predict the cluster label, invoke the corresponding model,
and estimate performance. This design avoids global approxima-
tions and ensures predictions are tied to the job’s class.

Jobs are ranked via a score computed from predicted metrics and
selected static features with the equation:

S(Xi) = Zle aj - exp(\/)ﬁ_l).

Where S(X;) denotes the score of job X;. XZ.J denotes the j-th feature
of the i-th job. a; is the coefficient of feature j. The exponential
function captures fine-grained differences, allowing prioritization
based on predicted system-level impact. Unlike single-objective
schedulers, this supports trade-offs across throughput, wait time,
turnaround, and energy.

4.4.3 Evaluation: Some datasets (e.g., PM100) report time-series
metrics, while others provide scalar summaries. Since timeseries
data is inherently noisy and high-dimensional, this causes inac-
curacies in the clustering. Hence, we extract summary statistics
from timeseries metrics such as maximum, minimum, and standard
deviation to retain key behavioral patterns.

In the Fugaku dataset, under low system load (16% requested
node utilization), as observed in the left yellow-marked region in
Fig. 10(a), all scheduling policies exhibit similar behavior. This hap-
pens because with abundance in resources, most jobs are scheduled
immediately, resulting in minimal queuing delay and limited in-
fluence of scheduling policy. In contrast, under high load, right
yellow-marked region in Fig. 10(a), when aggregate job demand ex-
ceeds available nodes, the ML-guided policy reduces power spikes
per timestep by prioritizing smaller jobs over larger ones.

To evaluate the broader impact of scheduling policies on the
overall efficiency of the system, we analyze the policies for a time
window with higher resource constraints and variable job sizes.

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling

1700
1600
1500
= 1400
=<
5 1300 ML Performs Better
; .
5 1200 under high system load
1100 Policies overlapping under low system load
1000
900 FCFS wmmm LJF wmmm Priority s ML
35 36 37 38 39 40 41 42
Time [days]

(a) Power Consumption vs timestep for Fugaku

Inverse Total Avg EDP"2

Jobs Completed

Avg Aggregate
Node Hours

Inverse
Job Throughput

Average
Turnaround Time

Average
Runtime

Average
0.2 0.4 0.6 0.8 1Wait time

Inverse Avg
CPU util

Area-Weighted Avg
Response Time

Inverse Avg
GPU util Priority-Weighted
Specific Response Time

SJF FCFS wmmm LJF mmm Priority mss= ML

Avg Energy

(b) L2-Normalized multi-objective comparison among policies for
Fugaku

Figure 10: Comparison of various scheduling policies. (a) Un-
der high system load, ML-guided policy yields lower power
per timestep. and (b) It also improves overall system effi-
ciency across multiple metrics (lower is better).

Figure 10(b) shows consistent trends across datasets: (1) the ML-
guided policy achieves the best trade-off across multiple objectives-
including lower average wait time, turnaround, and energy con-
sumption, compared to the baseline. (2) Under high load, ML-
guided policy consistently yields the lowest job turnaround time
and energy-delay product, increasing science per energy spent.

5 Discussion and Future Work

The presented capabilities show a novel way of utilizing operational
data — now generally collect during operation — to better under-
stand and predict the behavior of our systems. This work allows
studying scenarios and extensions for system- and simulation-needs
expanding potential use-cases. We enable integration of arbitrary
scheduler and job-trace datasets and allow replay and rescheduling
to study their characteristics and exercise what-if scenarios. We
are able to seamlessly interact with system specific cooling models
which can be easily generated [22], while the power simulation
is not a mere aggregation of synchronized trace information, but
an accurate computation of component behavior [42]. The work
presented allows any user to model their system with the existing

SC25-W, November 16-21, 2025, St. Louis, MO

tools, and study use-cases based user behavior, job-mix, and the
scheduler, extending beyond system, cooling, and location.

The examples show this clearly: the use-cases presented in Sec. 4.1
and Sec 4.2 demonstrate what impact scheduling makes on the
power response of a system. Sec. 4.4 shows how S-RAPS allowed
to prototype new algorithms, potentially avoiding averse effects.

For future work, identified gaps are the current need of job traces,
and power profiles. Figure 5 showed that with perfect information
of the job profile, we can accurately predict the systems power
swings. However, if this information is not available, we have to
rely on user estimates, or fingerprinting and prediction, which are
prime candidates for future work.

6 Conclusion

This work provides the first data center digital twin extended
for scheduling. We show how we build on a community-driven
approach, with the ExaDigiT effort, and integrate scheduling ca-
pability into this interacting systems of simulators. We present
Scheduled-RAPS (S-RAPS) the scheduler extension of ExaDigiT’s
RAPS and show how we can study scheduler-induced what-if sce-
narios and observe the connected digital twin simulations.

This is a first-of-its-kind study, which demonstrates significant
improvements over the state of the art, by enabling other schedulers
to tie into DCDTs via S-RAPS, as shown for the two external sched-
uling simulators, ScheduleFlow and FastSim. Finally, we provided
case-studies on how the work is used to simulate a scheduling power
dip using FastSim, we showed how S-RAPS can be used to study
incentive structures for schedulers and showed how ML-guided
schedulers can be studied using S-RAPS as interface to digital twins.

Acknowledgments

This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-000R22725. Part of
this work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and
was supported by the LLNL-LDRD Program under Project No. 24-SI-005 (LLNL-CONF-
2004842). This material is based upon work supported by the U.S. Department of
Energy, Office of Science under Award Number DE-SC0022843 (ECRP). Part of this
work was authored in part by the National Renewable Energy Laboratory for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-08G028308.

References

[1] Ryan Adamson, Tim Osborne, Corwin Lester, and Rachel Palumbo. 2023.
STREAM: A Scalable Federated HPC Telemetry Platform. In Proceedings of the
Cray User Group 2023. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN
(United States). https://www.osti.gov/biblio/1995656

Naima Alaoui Ismaili, Philippe Wautelet, Juan Escobar Munoz, and Gabriel

Hautreux. 2023. Porting and optimizing Meso-NH to AMD MI250X GPUs. In

Proceedings of the SC’23 Workshops of the International Conference on High Per-

formance Computing, Network, Storage, and Analysis. 1900-1905.

[3] William Allcock, Paul Rich, Yuping Fan, and Zhiling Lan. 2017. Experience and
Practice of Batch Scheduling on Leadership Supercomputers at Argonne. In 21st
Workshop on Job Scheduling Strategies for Parallel Processing held in conjunction
with IPDPS 2017 (Orlando, FL, US, 06/02/2017 - 06/02/2017). Springer, Orlando,
Florida, 1 - 24,. https://doi.org/10.1007/978-3-319-77398-8_1

[4] Francesco Antici, Andrea Bartolini, Jens Domke, Zeynep Kiziltan, and Keiji

Yamamoto. 2024. F-DATA: A Fugaku Workload Dataset for Job-centric Predictive

Modelling in HPC Systems. https://doi.org/10.5281/zenodo.11467483

Francesco Antici, Mohsen Seyedkazemi Ardebili, Andrea Bartolini, and Zeynep

Kiziltan. 2023. PM100: A job power consumption dataset of a large-scale pro-

duction HPC system. In Proceedings of the SC’23 Workshops of the International

Conference on High Performance Computing, Network, Storage, and Analysis. Zen-

odo, Denver, CO, 1812-1819.

[2

[5

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://www.osti.gov/biblio/1995656
https://doi.org/10.1007/978-3-319-77398-8_1
https://doi.org/10.5281/zenodo.11467483

1045
1046
1047
1048

1049

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

SC25-W, November 16-21, 2025, St. Louis, MO

[10]

(1]

[12]

[13

(17

[18]

[19]

[20]

[21

[22]

[24]

[25]

Jyotika Athavale, Cullen Bash, Wesley Brewer, Matthias Maiterth, Dejan Milojicic,
Harry Petty, and Soumyendu Sarkar. 2024. Digital Twins for Data Centers.
Computer 57, 10 (2024), 151-158. https://doi.org/10.1109/MC.2024.3436945
Robin Boézennec, Fanny Dufossé, and Guillaume Pallez. 2024. Qualitatively
Analyzing Optimization Objectives in the Design of HPC Resource Manager.
ACM Trans. Model. Perform. Eval. Comput. Syst. 9, 4, Article 15 (Dec. 2024),
28 pages. https://doi.org/10.1145/3701986

Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Arde-
bili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari,
Francesco Barchi, Luca Benini, et al. 2023. M100 exadata: a data collection
campaign on the cineca’s marconil00 tier-0 supercomputer. Scientific Data 10, 1
(2023), 288.

Wesley Brewer, Matthias Maiterth, Vineet Kumar, Rafal Wojda, Sedrick
Bouknight, Jesse Hines, Woong Shin, Scott Greenwood, David Grant, Wes-
ley Williams, and Feiyi Wang. 2024. A Digital Twin Framework for Liquid-
cooled Supercomputers as Demonstrated at Exascale. In Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age, and Analysis (SC "24). IEEE Press, Atlanta, GA, USA, Article 23, 18 pages.
https://doi.org/10.1109/SC41406.2024.00029

Wesley Brewer, Rafal Wojda, Matthias Maiterth, Sedrick Bouknight, Jesse Hines,
Jake Webb, Rashadul Kabir, Bertrand Cirou, and Kevin Menear. 2025. exadig-
it/RAPS - S-RAPS branch. https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?
ref_type=tags.

Rajkumar Buyya and Manzur Murshed. 2002. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for grid
computing. Concurrency and computation: practice and experience 14, 13-15
(2002), 1175-1220.

Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, scalable, and accurate simulation of distributed applications
and platforms. J. Parallel and Distrib. Comput. 74, 10 (2014), 2899-2917. https:
//doi.org/10.1016/j.jpdc.2014.06.008

Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. 1999. Bench-
marks and Standards for the Evaluation of Parallel Job Schedulers. In Job Sched-
uling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 67-90.

Cirou. 2024. Adastra jobs MI250 15days. https://doi.org/10.5281/zenodo.14007065
Pierre-Francois Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
2016. Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator. In 20th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP). Chicago, United States. https://hal.science/hal-01333471
Oak Ridge Leadership Computing Facility. [n. d.]. Frontier User Guide. https:
//docs.olcf.ornl.gov/systems/frontier_user_guide.html

Yuping Fan, Zhiling Lan, Paul Rich, William E. Allcock, Michael E. Papka, Brian
Austin, and David Paul. 2019. Scheduling Beyond CPUs for HPC. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed
Computing (Phoenix, AZ, USA) (HPDC ’19). Association for Computing Machin-
ery, New York, NY, USA, 97-108. https://doi.org/10.1145/3307681.3325401
Ana Gainaru, Hongyang Sun, Guillaume Aupy, Yuankai Huo, Bennett A Land-
man, and Padma Raghavan. 2019. On-the-fly scheduling versus reservation-based
scheduling for unpredictable workflows. The International Journal of High Per-
formance Computing Applications 33, 6 (2019), 1140-1158. https://doi.org/10.
1177/1094342019841681 arXiv:https://doi.org/10.1177/1094342019841681
Cristian Galleguillos, Alina Sirbu, Zeynep Kiziltan, Ozalp Babaoglu, Andrea
Borghesi, and Thomas Bridi. 2018. Data-Driven Job Dispatching in HPC Sys-
tems. In Machine Learning, Optimization, and Big Data, Giuseppe Nicosia, Panos
Pardalos, Giovanni Giuffrida, and Renato Umeton (Eds.). Springer International
Publishing, Cham, 449-461.

Jean-Sébastien Gay and Yves Caniou. 2006. Simbatch: an API for simulating and
predicting the performance of parallel resources and batch systems. Research
Report.

Alexander V. Goponenko, Kenneth Lamar, Christina Peterson, Benjamin A. Allan,
Jim M. Brandt, and Damian Dechev. 2022. Metrics for Packing Efficiency and
Fairness of HPC Cluster Batch Job Scheduling. In 2022 IEEE 34th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD).IEEE, Bordeaux, France, 241-252. https://doi.org/10.1109/SBAC-PAD55451.
2022.00035

S. Greenwood, V. Kumar, and W. Brewer. 2024. Thermo-fluid Modeling Frame-
work for Supercomputer Digital Twins: Part 2, Automated Cooling Models. In
America Modelica Conference. Modelica Association, 210-219.

David Jackson, Quinn Snell, and Mark Clement. 2001. Core Algorithms of the
Maui Scheduler. In Job Scheduling Strategies for Parallel Processing. Springer
Berlin Heidelberg, Berlin, Heidelberg, 87-102.

Dalibor Klusacek, Mehmet Soysal, and Frédéric Suter. 2019. Alea-complex
job scheduling simulator. In International Conference on Parallel Processing and
Applied Mathematics. Springer, Bialystok, Poland, 217-229.

Vineet Kumar, Scott Greenwood, Wes Brewer, Wesley Williams, David Grant, and
Nathan Parkison. 2024. Thermo-Fluid Modeling Framework for Supercomputer

10

[26]

[27

[29

[30]

(31

[32

[33

(34

&
2

[36

[37]

[38

(39]

[40

[41

[42

Maiterth et al.

Digital Twins: Part 1, Demonstration at Exascale. In PROCEEDINGS OF THE
AMERICAN MODELICA CONFERENCE 2024. Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN (United States). https://www.osti.gov/biblio/2480044
Lawrence Livermore National Laboratory. 2024. Livermore Archive for System
Telemetry (LAST). https://github.com/LLNL/LAST

Tapasya Patki, Adam Bertsch, Ian Karlin, Dong H Ahn, Brian Van Essen, Barry
Rountree, Bronis R de Supinski, and Nathan Besaw. 2021. Monitoring large
scale supercomputers: A case study with the lassen supercomputer. In 2021 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, Portland, OR,
United States, 468-480.

Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing gpu power and frequency
capping: A case study with the mummi workflow. In 2019 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS). IEEE, 31-39.

Chris N. Potts and Mikhail Y. Kovalyov. 2000. Scheduling with batching: A
review. European Journal of Operational Research 120, 2 (2000), 228-249. https:
//doi.org/10.1016/S0377-2217(99)00153-8

Dongxu Ren, Wei Tang, Xu Yang, Yuping Fan, and Zhiling Lan. 2017.
//github.com/SPEAR-IIT/CQSim

Gonzalo P Rodrigo, Erik Elmroth, Per-Olov Ostberg, and Lavanya Ramakrishnan.
2017. ScSF: A scheduling simulation framework. In Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, Cham, DE, 152-173.

Greyce N. Schroeder, Charles Steinmetz, Carlos E. Pereira, and Danubia B. Espin-
dola. 2016. Digital Twin Data Modeling with AutomationML and a Communica-
tion Methodology for Data Exchange. IFAC-PapersOnLine 49, 30 (2016), 12-17.
https://doi.org/10.1016/j.ifacol.2016.11.115 4th IFAC Symposium on Telematics
Applications TA 2016.

Nikolay A. Simakov, Robert L. DeLeon, Martins D. Innus, Matthew D. Jones,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.
Slurm Simulator: Improving Slurm Scheduler Performance on Large HPC systems
by Utilization of Multiple Controllers and Node Sharing. In Proceedings of the
Practice and Experience on Advanced Research Computing: Seamless Creativity
(Pittsburgh, PA, USA) (PEARC ’18). Association for Computing Machinery, New
York, NY, USA, Article 25, 8 pages. https://doi.org/10.1145/3219104.3219111
Nikolay A. Simakov, Robert L. Deleon, Yuqing Lin, Phillip S. Hoffmann, and
William R. Mathias. 2022. Developing Accurate Slurm Simulator. In Practice
and Experience in Advanced Research Computing 2022: Revolutionary: Computing,
Connections, You (Boston, MA, USA) (PEARC ’22). Association for Computing
Machinery, New York, NY, USA, Article 59, 4 pages. https://doi.org/10.1145/
3491418.3535178

Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert L. DeLeon,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.
A Slurm Simulator: Implementation and Parametric Analysis. In High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking, and Simulation,
Stephen Jarvis, Steven Wright, and Simon Hammond (Eds.). Springer Interna-
tional Publishing, Cham, Germany, 197-217.

Joseph Skovira, Waiman Chan, Honbo Zhou, and David A. Lifka. 1996. The EASY
- LoadLeveler API Project. In Job Scheduling Strategies for Parallel Processing,
IPPS’96 Workshop, Honolulu, Haiwai, USA, April 16, 1996, Proceedings (Lecture
Notes in Computer Science, Vol. 1162), Dror G. Feitelson and Larry Rudolph (Eds.).
Springer, 41-47. https://doi.org/10.1007/BFB0022286

Ana Luisa Veroneze Solorzano, Kento Sato, Keiji Yamamoto, Fumiyoshi Shoji,
Jim M. Brandt, Benjamin Schwaller, Sara Petra Walton, Jennifer Green, and
Devesh Tiwari. 2024. Toward Sustainable HPC: In-Production Deployment of
Incentive-Based Power Efficiency Mechanism on the Fugaku Supercomputer. ,
16 pages. https://doi.org/10.1109/SC41406.2024.00030

Atsuko Takefusa, Satoshi Matsuoka, Kento Aida, Hidemoto Nakada, and Umpei
Nagashima. 1999. Overview of a Performance Evaluation System for Global
Computing Scheduling Algorithms. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing (HPDC ’99). IEEE Com-
puter Society, USA, 11.

Fei Tao, He Zhang, Ang Liu, and Andrew Y. C. Nee. 2019. Digital Twin in Industry:
State-of-the-Art. IEEE Transactions on Industrial Informatics 15 (2019), 2405-2415.
https://api.semanticscholar.org/CorpusID:68170459

Yi-Ping Chen Vispi Karkaria, Ying-Kuan Tsai and Wei Chen. 2025. An
optimization-centric review on integrating artificial intelligence and digital twin
technologies in manufacturing. Engineering Optimization 57, 1 (2025), 161-207.
https://doi.org/10.1080/0305215X.2024.2434201

Alex Wilkinson, Jess Jones, Harvey Richardson, Tim Dykes, and Utz-Uwe Haus.
2023. A Fast Simulator to Enable HPC Scheduling Strategy Comparisons. In
High Performance Computing: ISC High Performance 2023 International Workshops,
Hamburg, Germany, May 21-25, 2023, Revised Selected Papers. Springer-Verlag,
Berlin, Heidelberg, 320-333. https://doi.org/10.1007/978-3-031-40843-4_24
Rafal P. Wojda, Matthias Maiterth, Sedrick Bouknight, and Wesley Brewer. 2024.
Dynamic Modeling of Power Conversion Stages for an Exascale Supercomputer.
In 2024 IEEE Energy Conversion Congress and Exposition (ECCE). 1595-1601.
https://doi.org/10.1109/ECCE55643.2024.10861715

https:

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

https://doi.org/10.1109/MC.2024.3436945
https://doi.org/10.1145/3701986
https://doi.org/10.1109/SC41406.2024.00029
https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?ref_type=tags
https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?ref_type=tags
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.5281/zenodo.14007065
https://hal.science/hal-01333471
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://doi.org/10.1145/3307681.3325401
https://doi.org/10.1177/1094342019841681
https://doi.org/10.1177/1094342019841681
https://arxiv.org/abs/https://doi.org/10.1177/1094342019841681
https://doi.org/10.1109/SBAC-PAD55451.2022.00035
https://doi.org/10.1109/SBAC-PAD55451.2022.00035
https://www.osti.gov/biblio/2480044
https://github.com/LLNL/LAST
https://doi.org/10.1016/S0377-2217(99)00153-8
https://doi.org/10.1016/S0377-2217(99)00153-8
https://github.com/SPEAR-IIT/CQSim
https://github.com/SPEAR-IIT/CQSim
https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/10.1145/3219104.3219111
https://doi.org/10.1145/3491418.3535178
https://doi.org/10.1145/3491418.3535178
https://doi.org/10.1007/BFB0022286
https://doi.org/10.1109/SC41406.2024.00030
https://api.semanticscholar.org/CorpusID:68170459
https://doi.org/10.1080/0305215X.2024.2434201
https://doi.org/10.1007/978-3-031-40843-4_24
https://doi.org/10.1109/ECCE55643.2024.10861715

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Open Datasets

	3 Method & Design
	3.1 Prior state of ExaDigiT
	3.2 S-RAPS: Scheduled - Resource Allocator and Power Simulator

	4 Evaluation and Use-Cases
	4.1 Evaluation of the built-in scheduler
	4.2 Evaluation with external schedulers
	4.3 Use-Case: Incentive Structures
	4.4 Use-Case: Using ML for scheduling decisions

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

