
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

HPC Digital Twins for Evaluating Scheduling Policies, Incentive
Structures and their Impact on Power and Cooling

Matthias Maiterth∗

Wesley H. Brewer
Terry Jones
Feiyi Wang

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Arunavo Dey
Jaya S. Kuruvella
Tanzima Z. Islam

Texas State University
San Marcos, Texas, USA

Kevin Menear
Dmitry Duplyakin

National Renewable Energy
Laboratory

Golden, Colorado, USA

Rashadul Kabir
Colorado State University

Fort Collins, Colorado, USA

Tapasya Patki
Lawrence Livermore National

Laboratory
Livermore, California, USA

Abstract
Schedulers are critical for optimal resource utilization in high-
performance computing. Traditional methods to evaluate sched-
ulers are limited to post-deployment analysis, or simulators, which
do not model associated infrastructure. In this work, we present the
first-of-its-kind integration of scheduling and digital twins in HPC.
This enables what-if studies to understand the impact of parame-
ter configurations and scheduling decisions on the physical assets,
even before deployment, or regarching changes not easily realiz-
able in production. We (1) provide the first digital twin framework
extended with scheduling capabilities, (2) integrate various top-tier
HPC systems given their publicly available datasets, (3) implement
extensions to integrate external scheduling simulators. Finally, we
show how to (4) implement and evaluate incentive structures, as-
well-as (5) evaluate machine learning based scheduling, in such
novel digital-twin based meta-framework to prototype scheduling.
Our work enables what-if scenarios of HPC systems to evaluate
sustainability, and the impact on the simulated system.

CCS Concepts
• Computer systems organization; • General and reference
→ Cross-computing tools and techniques; • Computing method-
ologies→ Discrete-event simulation; Distributed simulation;
Simulation evaluation;

Keywords
Scheduling Simulators, Digital Twin, Data Center Digital Twin, Sys-
tem Simulator, Distributed Systems Simulation, Batch Scheduling

∗Corresponding author: maiterthm@ornl.gov

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC25-W, November 16–21, 2025, St. Louis, MO
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2025/11. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Matthias Maiterth, Wesley H. Brewer, Terry Jones, Feiyi Wang, Arunavo
Dey, Jaya S. Kuruvella, Tanzima Z. Islam, Kevin Menear, Dmitry Duplyakin,
Rashadul Kabir, and Tapasya Patki. 2025. HPC Digital Twins for Evaluating
Scheduling Policies, Incentive Structures and their Impact on Power and
Cooling. In Proceedings of The International Conference for High Performance
Computing, Networking, Storage, and Analysis – Workshops (SC25-W). ACM,
New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The increasing complexity of highly-efficient supercomputing cen-
ters fuels an ever increasing demand for more powerful models.
Digital twins (DTs) have emerged as a means of integrating system
telemetry, modeling and simulation, artificial intelligence (AI), and
system control mechanisms to create a virtual representation of
the physical system, modelling cooling, power, and workloads [6].

Aiming for optimal usage of high-performance computing (HPC)
systems, different stakeholders face various challenges. For exam-
ple: users seek feedback regarding job usage, estimated runtime, and
application efficiency; operators monitor and tune operational pa-
rameters based on load and conditions; center managers and vendors
seek insight into which machine aspects are the biggest barriers to
performance, and seek trends for future procurements. Data center
digital twins (DCDTs) can provide estimates and simulations and
even serve for design considerations and virtual prototyping of
future systems [6], without consuming the system’s own resources.

Scheduling is critical for efficient use of HPC [3, 29]. Therefore,
integrating scheduling into DTs of HPCs is necessary to form a
representative twin of the overall system. The sound integration
of scheduling capabilities into a DCDT extends its capability from
a reactive role to a predictive one, enabling what-if studies. A
representative yet modifiable scheduling simulator integrated into
a DCDT allows to study how a system responds to alteration of its
parameters. Production systems are not suitable for such changes,
unless service interruptions are acceptable. Similarly, scheduling
simulators in isolation or DCDT’s without these capability can not
answer such questions. Integrating a scheduler into a DCDT is
therefore a valuable contribution, revealing holistic insights into
the operation of our systems and optimization opportunities.

1

https://orcid.org/0000-0001-8698-460X
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In this paper, we introduce Scheduled-RAPS (S-RAPS) [10], which
extends the resource allocator and power simulator (RAPS), origi-
nally developed for the open-source digital twin framework ExaDigiT
by Brewer et al. [9]. We present what-if studies evaluating the inte-
gration of schedulers with digital twins. Specifically, we evaluate:

(1) Scheduling impact on system response – We explore
the impact of scheduling to understand a system’s power,
cooling, and workload response with our integration, a
factor not observable for scheduling simulators in isolation.

(2) Evaluation of incentive structures – We explore incen-
tive structures and impact of imposed reward metrics on
workloads and system — a case-study impossible with the
current state-of-the-art, without deploying to production.

(3) Machine learning (ML) for scheduling – We study ML
guided scheduling based on metrics usually not accessible to
scheduling simulators in isolation, or hardly trainable due
to limited data and context without an integrated DCDT.

(4) Integration with external schedulers – We demonstrate
the feasibility of our approach by extending scheduling-
integrated DCDT to interface with external schedulers.

This work extends to the original work of [9] and use open
datasets for validation and use-cases. Our contributions are:

• Integration of scheduling into DCDTs: Previous work
does not integrate scheduling simulators with digital twins.
Our research is the first to enable such integration, allowing
the exploration of “what-if” scenarios to study power and
cooling, given real workload and system data.

• Use of open datasets: Previous work has utilized open
datasets for post-mortem analysis; however, this work is
the first to utilize such datasets to simulate the anticipated
system behavior given altered scheduling parameters.

• Extension to other schedulers: As each system and sched-
uler setup is unique, we provide the extensions necessary
such that users can model and simulate their system and
their use-cases, providing wide applicability beyond what
is presented in this work.

The remainder of the paper is structured as follows: Section 2
presents background on digital twins and scheduling, and discusses
the open data sets used in this research. In Section 3, we introduce
S-RAPS. In Section 4, we present our evaluation and use-cases.
Section 5 discusses future work, and we conclude in Section 6.

2 Background
2.1 Related Work
2.1.1 Digital Twins for Operational Optimization: DT research has
surged in recent years, and useage of traditional modeling and
simulation techniques have found wider adoption for operation [39],
using data-driven approaches [32] and by coupling AI with online
decision making [40].

In the context of HPC, the work on ExaDigiT [9] is seminal as an
open-source framework, consisting of the RAPS module, a transient
thermo-fluid cooling module, and an visual analytics model of the
supercomputer and central energy plant. The work, however, only
presented an initial framework with large emphasis on the thermo-
fluid cooling simulator, as well as power loss modeling for job-trace

replay, without venturing into the explorative aspects. The initial
work does not include a batch scheduler and only replays the given
workloads, therefore unable to re-schedule for what-if analysis.

In turn, our work builds upon the ExaDigiT framework, with ex-
plicit focus on scheduling, introducing S-RAPS. We extend ExaDigiT
to support open data sets for additional systems, and explore use-
case driven analysis for HPC, and evaluate the impact of various
scheduling policies on power and cooling.

2.1.2 Scheduling Simulators: Simulating scheduler behavior has
been an active area of research, consistently supporting advances
in HPC [7]. Popular examples of batch scheduling simulators are
Slurm Simulator [33–35], and scheduler specific alternatives such
as the work by Wilkinson et al. [?]. CQSim [30], which originated
in QSim is a prominent example outside of the Slurm ecosystem.
This is a non-exhaustive list, as simulators such as GridSim [11],
SimGrid [12], Bricks [38], Simbatch [20], Alea [24], AccaSim [19],
BBSched [17], ScSF [31], Batsim [15], as well as schedulers that
have built in simulators, such as Torque/Maui [23] and Moab Sched-
uler, played an important role in the development of scheduling
simulators and should not be left unmentioned.

These simulators generally are not focused on the systems infras-
tructure but the core of scheduling. With continuous progress in
scheduling simulators in general, the aim is to enable the integration
of such advanced scheduler developments into DTs. We designed
S-RAPS to leverage existing work such that users can interface with
other scheduling simulators, such as the Slurm Simulator or Fast-
Sim. This enables easy extensions to S-RAPS for studying power
and cooling. We demonstrate an integration of FastSim [41] into
S-RAPS in Sect. 4.2.2.

2.2 Open Datasets
In this work, we selected four open datasets for accessibility and
reproducibility, as shown in Table 1: PM100 [5] from Marconi100,
F-Data [4] from Fugaku, LAST [26] from Lassen, and Cirou’s dataset
[14] from Adastra. Additionally, we use a proprietary dataset from
Frontier due to its extensive verification and validation in the con-
text of DCDTs from previous work [9] for reproducibility.

The telemetry traces used for simulation vary according to the
data source, which we discuss as follows: • Marconi100: The Mar-
coni100 system at CINECA has two public datasets: the M100 [8]
and the PM100 dataset [5]. We use the PM100 data as it is pre-
curated. We filter jobs containing shared nodes as this is not yet
supported in our model. The data includes CPU, memory and node
power in a 20-second interval. As the data has been filtered, it does
not reflect the system’s full operational utilization. This means that
replay and reschedule will differ [5].
• Fugaku F-Data: F-Data [4] is a dataset containing job and per-
formance information with derived metrics for job classification
from Fugaku. It includes monthly data from March 2021 to April
2024, with the following job metrics: energy consumed, node power
(minimum, maximum and average), performance characteristics on
operations, memory activity and the resulting performance class
identified as either compute- or memory-bound.
• Lassen LAST: This is a 1.4-million-job dataset from the Lassen
supercomputer [26]. It includes information on job allocation, node
allocation, and job-step disposition. These are combined to get

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling SC25-W, November 16–21, 2025, St. Louis, MO

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 1: Systems and datasets used in study.

System Architecture Nodes Dataset Scheduler Job Count Characteristics

Frontier HPE/Cray EX 9600 Proprietary Slurm 1,238 job traces (15s), CPU/GPU power & temp.
Marconi100 IBM POWER9 980 PM100 [5] Slurm 231,238 job traces (20s), CPU/node power
Fugaku Fujitsu AF64FX 158,976 F-Data [4] Fujitsu TCS 116,977 job summary, node-level power only
Lassen IBM POWER9 792 LAST [26, 27] LSF 1,467,746 job summary, includes network tx/rx
Adastra HPE/Cray EX 356 Cirou [14] Slurm 30,570 job summary, job avg component power

usable information for each job allocated with accumulated energy
data. Lassen uses the IBM’s LSF Job scheduler [28].
•Adastra: CINES has published 15 days of the Adastra system [14],
including node power, memory power, and CPU power. The het-
erogeneous system has a CPU and GPU partitions. GPU power is
not provided, but can be derived from node power and the other
components. It uses Slurm [2], but no scheduling policy is stated.
• Frontier: The Frontier dataset was initially used to develop the
ExaDigiT DCDT. The dataset is an excerpt from the center’s con-
tinuous collection, obtained from both Slurm data, as well as Cray
EX Telemetry API, collected in the STREAM system [1]. The sched-
uling policy is a priority-based mechanism that uses a modified
first-in, first-out (FIFO) queue, boosted based on node count and
penalized on allocation overuse [16]. This dataset is the only one
not publicly available. Since it was used for initial verification of
RAPS[9], it was important for cross validation of S-RAPS.

3 Method & Design
In the following, we show the current state-of-the-art, the ExaDigiT
framework [9], with its resource allocator and power simulator
(RAPS), for context, and present our Scheduled-RAPS (S-RAPS) ex-
tension. We begin by discussing the mechanisms of the existing
simulation loop of the forward-time DCDT simulator by Brewer
et al. [9]. We then present S-RAPS, with its built-in scheduler and
how this ties into the DCDT simulators. We then show how S-RAPS
extends to external forward-time or event-based simulators. Finally,
we show how extensions for dataloaders allow us to load and sim-
ulate diverse datasets and systems, showing the true value of an
open-source digital twin framework.

3.1 Prior state of ExaDigiT
The original design of ExaDigiT consists of three main modules [9]:

(1) Modelica-based cooling model
(2) Resource allocator and power simulator (RAPS)
(3) Visual analytics model

ExaDigiT’s simulation is depicted in Fig. 1. The digital twin reads
a sequence of job traces or telemetry and placed on the system
simulator as recorded. For each timestamp, the observed node uti-
lization is replayed. The simulated utilization is converted to a
power profile, with power rectification and conversion losses ap-
plied [42]. The power and therefore generated heat is fed into a
cooling model [22, 25]. The cooling model simulates from cool-
ing distribution unit (CDU) to cooling towers, giving an accurate
representation of the system at each timestep.

Figure 1: Simplified OriginalExaDigiT overview in accor-
dance with Brewer et al. [9], with RAPS module on the right.

In the simulation, the RAPS module provides the inputs to the
cooling model and is also the main driver of the simulation loop.
This is outlined in Algorithm 1 of [9]:

(1) Initialization of system and data, and start of simulation.
(2) Simulation loop:

(a) Addition of newly arriving jobs to the job queue
(b) ScheduleJobs: selection and placement of available jobs

to available resources.
(c) Tick: management of resources, and calculation of com-

pute resource utilization, power and cooling

The original work processes jobs in a scheduler class, which con-
tains the DT’s replay mechanism. As shown in Fig. 1, this only con-
siders replay of recorded telemetry or synthetic data, not scheduling.
For a generic HPC digital twin, the ability to alter the scheduling
policy and resulting job placement is key. For this, we describe
the refactoring necessary to enable generic built-in scheduling and
allow for the integration of external schedulers with S-RAPS, en-
abling the scheduling scenarios we present in this paper.

3.2 S-RAPS: Scheduled - Resource Allocator and
Power Simulator

We now present the improved simulation loop for comprehensive
integration of schedulers within ExaDigiT’s RAPS, named S-RAPS.
Figure 2 shows the overhauled design of S-RAPS, enabling the in-
tegration of forward-time or event-based schedulers. Key changes
include refactoring and generalizing of the following five com-
ponents: (1) system initialization, (2) dataloaders, (3) simulation
engine, (4) scheduler abstraction, (5) systems accounting. This is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Scheduled-RAPS (S-RAPS): Integration of sched-
uling into the design of ExaDigiT’s resource allocator and
power simulator (RAPS).With improved configurationmech-
anisms, pluggable dataloaders, interface to build-in and ex-
ternals schedulers, and overhauled simulation loop.

accomplished while keeping the original RAPS simulation concept
with intended scheduling, resource management, and tick intact.

3.2.1 System initialization: The system initialization has been im-
proved to capture not only the system’s configuration, but also to
include information necessary for scheduler simulation. The rework
introduces cleaner abstractions and separation of concerns, with
future extensions in mind. The core loop of the simulator was refac-
tored introducing a simulation engine. During system initialization,
telemetry is used to initialize the job objects augmented with infor-
mation for scheduling. The telemetry is now also used to initialize
user-account information (clear or anonymized). The refactored
simulation engine separates resource manager and scheduler inter-
face, which loads either the build-in or external scheduler. Finally,
objects for tracking statistics of the simulation are initialized.

The HPC System configurations, their dataloaders, and the sched-
ulers are implemented as plugins. The specific configurations are
selectable on simulation start via the command line interface (CLI)
and are designed to be easily extensible. This helps with rapid
testing of configuration and experimental design: administrators
can easily represent their systems, and developers of scheduling
simulators can easily load their policies, once extended.

3.2.2 Dataloaders: A dataloader’s task is to load and parse the
telemetry data and generate the list of to-be-scheduled jobs. Each
job requires information on: submit time, start time, end time, time
limit, and the number of requested nodes (alternatively, the exact
set of nodes to which the job was assigned). This is a standard for
scheduling simulators as for example used in the standard workload
format (SWF) [13]. The dataloaders also load the job traces for replay
in the DCDT simulation. If traces are not available for a dataset,

Before Simulation After

Job 1 Job 4 Job 6

Job 3 Job 8

Job 2 Job 7

Job 5

Start Now End

t=0 t=20t=4

Figure 3: Example job trace, with job-submit time, -start time
and -end time. The time-stepped simulator triggers on each
time step, while the event based scheduling simulator only
has to react to triggered events (magenta arrows) such as start
of a job (job 4), end of a job (job 2), and submission of a new
job (job 5).

scalar values can for example represent a job’s average power,
energy, or other characteristics – depending on data availability.

When rescheduling, the job traces recorded may not coincide
with the time slice needed for the simulation. We treat such occur-
rence as missing data, using the last known value. Therefore, for
correct simulation the dataloader must identify the following key
times for each job:

• Job submit, start and end time
• Telemetry start and end time

Given the individual job times and the overall timespan of the
dataset, we can run the simulation within the range of the overall
telemetry. Additionally, this change enables us to either replay the
recorded data as is or simulate a new schedule.

An example of such timeline is presented in Fig. 3, showing a
simulation from 𝑡 = 0 to 𝑡 = 20, with submission times of jobs
indicated by dashed outline extending in front of the jobs, and ac-
tual execution indicated by the solid outline of the jobs. During
rescheduling, the jobs can be placed as early as they have been
submitted, which is ultimately decided by the selected scheduling
policy. Jobs that ended before start of the simulation time or were
submitted after end of the simulation time are dismissed. The simu-
lation of the power and cooling behavior can then be simulated as
implemented in tick of S-RAPS, with the modified timeline.1

3.2.3 Simulation engine: The simulation engine contains the main
simulation loop. At start of the simulation, the user selects explicit
simulation start and end time. Given this information, the system
state is prepared, and in case the dataset contains jobs before the
selected simulation start, these jobs are placed to prepopulate the
system. This allows us to represent the actual system condition
as observed in the telemetry at start of the simulation2,3. We can

1There are two edge cases to consider: jobs which originally started before the capture
time (see Fig. 3, Job 1) and jobs which ended after the capture time (see Fig. 3, Jobs 6, 7,
8). When simulating a new schedule, these jobs may therefore have no corresponding
telemetry at the associated simulation times. Therefore, when rescheduling these jobs
within the simulation time, these cases need to be flagged as they can cause potential
discrepancies in other simulations as no known ground truth is available to S-RAPS.
2This is often neglected by scheduling simulators, which ignore jobs before simulation
start, and therefore need time to fill up the queue and system, distorting the results.
3This also allows S-RAPS to simulate anticipated schedules and profiles from live-data.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling SC25-W, November 16–21, 2025, St. Louis, MO

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

then enter the main simulation loop. It is refactored into four well-
defined steps:

(1) Preparation of the time step: Before each iteration, the sys-
tem state is updated. For this, completed jobs are cleared
from the system, freeing resources, and updating the state
of nodes.

(2) Addition of eligible jobs to the job queue: Jobs that have
been submitted — according to simulation time — are added
to the job queue.

(3) Call of schedule: The jobs are scheduled according to the
job queue and selected scheduling policy, and placed on the
system in coordination with the resource manager.

(4) Call of tick: The engine’s tick function calls the sequence
of DCDT simulators and models, and increments the time.

These descriptions seem simple, but required major changes from
the simple replay mechanism of the original design. For example, in
the original replay mechanism, node placement was not enforced.
In the overhauled design, the exact node placement as specified in
the telemetry is used in replay mode. However, when rescheduling
the scheduler select the appropriate nodes. The resource manager
then completes the job placement, allocating nodes. Additionally,
the refactor resolved timing and allocation issues for nodes with
both ending and starting jobs coinciding in the same time step.

Regarding job eligibility, in the original replay mode, all jobs
were part of the job queue. Jobs were then placed on the system as
soon as indicated by their start time. With the updated design, jobs
can only be scheduled and placed once they have been submitted.
This also means that pre-computing a schedule is not possible as
the digital twin observes the jobs as they are submitted, just like a
real system. The scheduler is not aware of jobs not yet in the queue.

When calling the schedule function the loaded implementation
is triggered. This recomputes the order of the job queue according
to selected policy and coordinates with the resource manager to
place eligible jobs. The split of resource manager and scheduler
via this interface was a major improvement, separating the built-in
scheduling capabilities and enabling the use of external schedulers4.

The update to tick now also represents a clear separation of
concerns enabling easier replacement of simulation sub-modules,
where tick is only responsible for the simulation of physical sub-
systems. Our redesign of S-RAPS with the simulation engine puts
strong focus on extensibility and the use of plug-ins. This also
enables support for future site-specific customizations.

3.2.4 Scheduler abstraction: As outlined, the simulation engine
triggers the scheduler in each iteration of the simulation loop. Any
external scheduler and scheduling simulator has its own set of
logics regarding which events to track and react to. The abstraction
we use enables users who interface S-RAPS with their scheduling
simulator to implement the logic for triggering and sending these
events. Figure 3 illustrates such case, with the triggered evens for
time step 𝑡 = 4 shown as magenta arrows.

S-RAPS interfaces with the scheduler in case the simulator pro-
vides new information in a given iteration: (1) by triggering the
scheduler to recompute the schedule, or deciding to skip if no
4The original design included a reschedule functionality, however it simply redis-
tributed the job start times according to a Weibull distribution and was not representa-
tive of batch scheduling.

change has occurred; (2) it interprets the information returned from
the scheduler; and (3) S-RAPS then triggers the resource manager,
placing identified jobs on the system, and maintains the job queue.
This ensures that the remainder of the simulation can progress.

3.2.5 Built-in and external schedulers: The scheduler can be se-
lected via the --scheduler CLI option. Its policies are selected via
the --policy and --backfill options. The default is the build-in
scheduler which implements the policies: first-come, first-served
(FCFS), shortest-job-first (SJF), largest-job-first (LJF), and priority-
based scheduling. Additionally, the default scheduler also provides
the replay mechanism of the original RAPS implementation. Regard-
ing backill options the supported defaults are no-backfill, first-fit,
and easy (i.e. Earliest Available Start-time Yielding (EASY)[36]). All
options are extensible for use with external schedulers.

While the default scheduler provides basic scheduling policies, it
does not provide implementations for best-fit, greedy, conservative,
or other more sophisticated implementations. For this, we provide
the interface for external schedulers and scheduling simulators.
As shown in Sect. 2.1.2, the numerous schedulers and scheduling
simulators all have their validity, and we do not compete but try to
enable them, and provide example integration in the source-code.

3.2.6 Systems accounting: The final major rework to discuss is the
addition of system accounting and statistics. The original RAPS
design kept track of general simulation and HPC system statistics,
with focus on the power and cooling simulation of the DCDT.
S-RAPS extends those and adds collection of statistics for jobs, users,
accounts, as well as scheduler-focused statistics. This allows users
to easily extend metrics of interest for their facility or experiments.

Previously tracked information includes: completed jobs, job
throughput, average system power, power loss, system power effi-
ciency, total energy consumed, and the cost estimates for carbon
emissions. S-RAPS adds more scheduler-specific information and
also aggregates according to user accounts, such as (non-exhaustive):
queued and running jobs average job size, histogram of job size
scheduled (small, medium, large, by node count), aggregate node
hours, average power and energy per job, their energy-delay-product
(EDP), energy-delay2-product (ED2P), average CPU and GPU uti-
lization, wait time, turnaround time, as well as area weighted re-
sponse time (the average turnaround time per unit of node-hour
across all scheduled jobs), and priority-weighted specific-response
time (average sensitivity-adjusted turnaround time per unit of node-
hour), which helps to capture packing efficiency and fairness [21].

By tracking this information for both the system and user ac-
counts, we can assess if a setting of the scheduler favors specific
jobs or users. The generated statistics can be compared and corre-
lated within a single simulation and across multiple simulations.
This allows us to investigate, e.g. how changes of the job-mix are
related to job-turnaround time and observed power swings. For
the user account metrics, we added the option to store and reload
collected user account statistics at the start of a run, supporting
aggregation of this information across simulations.

In summary, these changes establish capabilities for extracting
broader and deeper insight about jobs, users, and the system, which
standalone scheduling simulators cannot provide without integra-
tion into a DCDT framework. It is worth emphasizing that the
holistic modeling of power, cooling, and job behavior relies on the

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

integrated design of the full DCDT (Fig. 1), where interactions be-
tween subsystems are critical. Such cross-disciplinary dynamics
cannot be replicated by aggregating telemetry data in isolation,
even with comprehensive scheduling records.

4 Evaluation and Use-Cases
In the following, we evaluate the S-RAPS scheduler interfaces and
extensions, utilizing datasets from a diverse set of HPC systems
and external schedulers. In Sec. 4.1 we evaluate the rescheduling
mechanism with different policies and datasets. This is followed
by use-cases: interfacing and integration with external schedulers,
such as ScheduleFlow and FastSim in Sec. 4.2; incentive structures
in Section 4.3; and evaluating of ML-guided scheduling in Sec. 4.4.

4.1 Evaluation of the built-in scheduler
We implemented dataloaders for Frontier, Marconi100, Lassen, Fu-
gaku, Adastra, given the datasets of Table 1. Each system provides
slighly different information with telemetry for Adastra, Fugaku,
and Lassen providing average values for utilization, while Mar-
coni100 and Frontier provide traces for their jobs’ resource utiliza-
tion. A system and its associated dataloader is selected with the
--system CLI option. We present Figs. 4, 5, and 6, where each plot
shows full-system power as calculated by the power model and sys-
tem utilization according to node occupancy5. Figure 6 additionally
shows power usage effectiveness (PUE) and the water temperature
arriving at the cooling towers, as simulated by the cooling model.
We show replay according to the telemetry (replay, blue), as well
as FCFS scheduling (fcfs-nobf, teal), FCFS scheduling with EASY
backfill (fcfs-easy, orange), and priority scheduling with first-fit
backfill (ffbf) (priority-ffbf, brown). Priorities are used as provided
by the datasets and respective documentation.

Figure 4 shows day 50 of the PM100 dataset, from 17:00 to the
next day at 10:00. The replay utilization curve (blue) is near 80%,
with a filling job queue. The rescheduled runs achieve very high
utilization at 100% continued utilization using backfill. In the plot,
the system shows higher aggregate power in the non-backfilled ap-
proach (teal). The statistics show that average power consumption
(−2%) per job and job size (−5%) decreased using either backfilled
policy. In combination, the adjusted job placement and start times
result in smoothing of the aggregate load, mitigating the power
jump at 21:00, observed in the non-backfilled schedule.

Figure 5 shows 15 days of replay and reschedule of the Adastra
dataset. As the system utilization is lower and queues not filling up,
the choice of scheduling algorithm makes little difference. Note-
worthy is that with information on the jobs’ power profiles and
correct estimates of runtimes, the S-RAPS simulator can match the
observed changes in both utilization and simulated power.

Figure 6 shows the same snapshot, as presented in the origi-
nal paper by Brewer et al. [9], with the cooling model of Kumar
et al. [25]. We apply the same scheduling policies as used in the
previous cases. The utilization plot shows that the system is making
space for three full-system runs, emptying the nodes. Then, the
three full-system runs are executed, and afterwards a normal job

5The datasets do not contain reservations and job dependencies, nor was information
about down or drained nodes available. This information could greatly increase the
accuracy of schedules, especially when linking the DCDT to a live system.

750

800

850

900

Po
w

er
[k

W
]

Power

fcfs-nobf
fcfs-easy
priority-�bf
replay

18:00 21:00 0:00
Day 51

3:00 6:00 9:00

Time [hours/days]

0.6

0.8

1.0

Ut
ili

za
tio

n
[%

]

Utilization

fcfs-nobf
fcfs-easy
priority-�bf
replay

Figure 4: Replay and reschedule of the data from the PM100
Dataset (offset 50 days +17h). Showing FCFS with no back-
fill (fcfs-nobf), FCFS with EASY backfill (fcfs-easy), priority
scheduling with first-fit backfill (priority-ffbf) and replay as
jobs were executed, for system power and utilization.

300

400

500

600

700

Po
w

er
[k

W
]

Power

fcfs-nobf
fcfs-easy
priority-�bf
replay

0:00 day 3 day 6 day 9 day 12 day 15
Time [hours/days]

0.00

0.25

0.50

0.75

1.00

Ut
ili

za
tio

n
[%

]

Utilization

fcfs-nobf
fcfs-easy
priority-�bf
replay

Figure 5: Replay and Reschedule of 15 days of Adastra (full
dataset [14]). Replay is shown in blue, while all rescheduled
runs (FCFS & priority) overlap almost exactly (brown line).
Given known job-power profiles and schedule information,
the simulator can predict and match the observed power
profile, seen as matching timed up/down-swings.

mix of varied size and lower total power is observed. The different
power, PUE6 and return temperature behavior for the different
scheduling policies is clearly visible with regard to how each policy
clears the system for the large scale runs. Regarding differences of
replay to reschedule, S-RAPS is able to place the large 9216 node
jobs earlier (fcfs-nobf, fcfs-easy and priority-ffbf, all overlap and
start them at the same time). While freeing nodes for the large
6Power is modeled using [25]. PUE for the actual system is at an average of 1.06%.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling SC25-W, November 16–21, 2025, St. Louis, MO

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0.0

0.2

0.4

0.6

0.8

1.0

Ut
ili

za
tio

n
[%

]

Utilization
fcfs-nobf
fcfs-easy
priority-�bf
replay

10000

15000

20000

25000

Po
w

er
[k

W
]

Power fcfs-nobf
fcfs-easy
priority-�bf
replay

1.1

1.2

1.3

PU
E

PUE fcfs-nobf
fcfs-easy
priority-�bf
replay

0:00 6:00 12:00 18:00 24:00
Time [hours]

24

26

28

30

Te
m

pe
ra

tu
re

[°C
] Cooling Tower

Return
Temperature

fcfs-nobf
fcfs-easy
priority-�bf
replay

Figure 6: Replay and reschedule of the data used in [9]. Show-
ing FCFSwith no backfill (fcfs-nobf), FCFSwith EASY backfill
(fcfs-easy), priority scheduling with first-fit backfill (priority-
ffbf) and replay. The plots show system utilization, system
power, as well as PUE8 and cooling tower return temperature
as simulated given the cooling model provided by [25].

runs, the backfilled policies are able to achieve higher utilization
compared to replay. This, however, is due to the fact that we do not
have access to node status, such as information on down or drained
nodes. The backfilled policies smooth out the power (and cooling
temperature) jump observed in the fcfs-nobf case, after the large
runs, in similar fashion as described for Fig. 4.

4.2 Evaluation with external schedulers
The integration of external scheduling simulators — ScheduleFlow
and FastSim — serve to highlight opportunities for community
extensions and future exploration.

4.2.1 ScheduleFlow Scheduler: To prototype the integration of ex-
ternal schedulers, we implemented an interface to ScheduleFlow by
Gainaru et al. [18]. The scheduler is event-based and maintains its
own internal system state. We implement the interface as described

Figure 7: The results of simulating a synthetic job trace run-
ning on Frontier with the FastSim scheduler. The simulated
job schedule is passed to ExaDigiT, which can then compute
the resource usage over time.

in Sec. 3.2.4 and trigger the necessary internal ScheduleFlow func-
tionality. Hereby, we couple the event-based scheduler of Schedule-
Flow with the forward-time simulation of S-RAPS. As ScheduleFlow
is not designed for this use-case, nor optimized for performance,
this initiates frequent recalculation of the schedule incurring large
overheads. The proof of concept was evaluated using synthetic
runs, but shows poor performance for any of the real datasets. The
main purpose is however achieved: we are able to trigger external
schedulers, which allows them to interact with the DCDT simula-
tions made available via S-RAPS. This serves as template for other
schedulers, as successfully demonstrated by FastSim.

4.2.2 FastSim Scheduler: FastSim [41] is a lightweight emulation
of the Slurm scheduler software. This external tool can simulate
cluster behavior up to thousands of times faster than real-time.
This integration moves the ExaDigiT DCDT towards the capacity
to forecast future events. In Fig. 7, we show a dip followed by a spike
in Frontier’s power usage on Tuesday morning, as simulated by
FastSim using a synthetic job trace developed for Frontier based on
the workload statistics in [9]. Accurate forecasting of such events
can inform energy-aware scheduling to mitigate the effects of such
significant fluctuation in the power draw.

To integrate this simulator with S-RAPS, FastSim was modified
by developing a plugin mode option. When operating in this plugin
mode, FastSim responds to a request for the system state at a time
step specified by the driving simulator. FastSim then processes any
events which have occurred up until the requested time step and
responds with a list of running jobs indexed by job ID. When trig-
gered by S-RAPS, the returned list is used to allocate resources and
subsequently continue in the simulation procedure of S-RAPS. This
process requires both S-RAPS and FastSim to maintain separate
copies of the system state, which reduces communication between
the two simulators at the cost of additional computational overhead.
While this process is effective for the real-time simulation necessary
for a DT, for the purpose of historical job trace rescheduling, we
found it was faster to run FastSim and RAPS sequentially, with Fast-
Sim handling the job scheduling and RAPS managing the resources.
To generate the results seen in Figure 7, a synthetic job trace of
5,324 jobs run over a period of 15 days was simulated using this
sequential approach. The entire simulation time was completed in

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0:00 6:00 12:00 18:00 24:00
Time [hours]

10000

15000

20000

25000

Po
w

er
[k

W
]

Power
replay
acct avg power-�bf
acct low avg power-�bf
acct edp-�bf
acct fugaku pts-�bf

Figure 8: Studying the effects of incentive structures by using
account information for prioritization. AnAccount’s priority
is based on the accumulated job behavior in the replay case
(blue). Reprioritization based on this behavior is shown based
on descending average power (orange), ascending average
power (purple), EDP (red), and Fugaku points (green).

31 minutes and 24 seconds, amounting to a simulation speedup of
688x compared to real time.

4.3 Use-Case: Incentive Structures
By incorporating information on user accounts, S-RAPS is able to
mimic implementations of scheduling incentives and their impact
on jobs and system. In the presented use-case, we study the ability
to calculate a Fugaku point score according to Solórzano et al. [37].
For any completed job, its statistics are accumulated to the issuing
account. This information can be accumulated across multiple sim-
ulations or used for prioritization, as described in the redeeming
phase of [37]. The implementation is added in schedulers/experimen-
tal.py of [10], which has policies to derive priorities from account
based on: Fugaku Points, power usage, accumulated EDP, ED2P, and
others.

In Fig. 8, we show the resulting power plots when applying
different redeeming mechanisms to the same day as in Fig. 6. For the
collection phase the replay policy (blue) was used, to illustrate the
example. The prioritization for the policies is based on an account’s
previous behavior on: average power (orange, higher is better), low
average power (purple, lower is better), EDP (red), Fugaku points
(green). Fugaku points reward low average energy consumption in
the collection phase. The high power demand of the three large jobs
in the collection was not rewarded in the redeeming phase (green),
while the generally low power profile was rewarded as intended
in [37]. This example illustrates how S-RAPS can be used to run
what-if studies that are difficult to realize on production systems.

4.4 Use-Case: Using ML for scheduling decisions
To demonstrate S-RAPS utility, we evaluate a new machine learning
(ML) guided scheduling policy prototyped using S-RAPS.

4.4.1 Training Phase: (1) Clustering. We partition historical jobs
into behavioral clusters using both static (e.g., job size) and dynamic
(e.g., power traces) features using K-means clustering. (2) Classifi-
cation. Since dynamic features are unavailable at submission, we
train a Random Forest model to learn the relationships between job
characteristics (using pre-submission features) and the target met-
ric. This enables real-time mapping during inference time, without

Scoring

Data
Preprocessing Clustering

(a) Training Pipeline

1
2

3
4

S-RAPS

ML-priority

(b) End-to-end ML-guided scheduling policy study pipeline integrated
into S-RAPS

Jobs with predicted
resource usage

Classifier
Predictive
model per
cluster

Inference pipeline
New jobs
with static
features

Historical job
telemetry

Figure 9: Overview of the ML-guided scheduling pipeline.

requiring telemetry for new jobs. (3) Prediction. For each cluster,
we train a model to predict target metrics such as runtime, power,
memory – based on static inputs.

4.4.2 Inference Phase: Upon job submission, we normalizes static
features, predict the cluster label, invoke the corresponding model,
and estimate performance. This design avoids global approxima-
tions and ensures predictions are tied to the job’s class.

Jobs are ranked via a score computed from predicted metrics and
selected static features with the equation:

𝑆 (𝑋𝑖) =
∑𝐾
𝑗=1 𝛼 𝑗 · exp

(√︃
𝑋

𝑗

𝑖
+ 1

−1)
.

Where 𝑆 (𝑋𝑖) denotes the score of job𝑋𝑖 .𝑋 𝑗
𝑖

denotes the 𝑗-th feature
of the 𝑖-th job. 𝛼 𝑗 is the coefficient of feature 𝑗 . The exponential
function captures fine-grained differences, allowing prioritization
based on predicted system-level impact. Unlike single-objective
schedulers, this supports trade-offs across throughput, wait time,
turnaround, and energy.

4.4.3 Evaluation: Some datasets (e.g., PM100) report time-series
metrics, while others provide scalar summaries. Since timeseries
data is inherently noisy and high-dimensional, this causes inac-
curacies in the clustering. Hence, we extract summary statistics
from timeseries metrics such as maximum, minimum, and standard
deviation to retain key behavioral patterns.

In the Fugaku dataset, under low system load (16% requested
node utilization), as observed in the left yellow-marked region in
Fig. 10(a), all scheduling policies exhibit similar behavior. This hap-
pens because with abundance in resources, most jobs are scheduled
immediately, resulting in minimal queuing delay and limited in-
fluence of scheduling policy. In contrast, under high load, right
yellow-marked region in Fig. 10(a), when aggregate job demand ex-
ceeds available nodes, the ML-guided policy reduces power spikes
per timestep by prioritizing smaller jobs over larger ones.

To evaluate the broader impact of scheduling policies on the
overall efficiency of the system, we analyze the policies for a time
window with higher resource constraints and variable job sizes.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HPC Digital Twins for Evaluating Scheduling Policies, Incentive Structures and their Impact on Power and Cooling SC25-W, November 16–21, 2025, St. Louis, MO

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

35 36 37 38 39 40 41 42

900

1000

1100

1200

1300

1400

1500

1600

1700

sjf fcfs ljf priority ml

Time [days]

Po
w

er
 [

kW
]

ML Performs Better
under high system load

Policies overlapping under low system load

SJF FCFS LJF Priority ML

(a) Power Consumption vs timestep for Fugaku

Average
Wait time

Average
Turnaround Time

Avg Aggregate
Node Hours

Avg EDP^2Inverse Total
Jobs Completed

Inverse
Job Throughput

Average
Runtime

Inverse Avg
CPU util

Inverse Avg
GPU util Priority-Weighted

Specific Response Time

Avg Energy

Area-Weighted Avg
Response Time

0 0.2 0.4 0.6 0.8 1

sjf fcfs ljf priority mlSJF FCFS LJF Priority ML

(b) L2-Normalized multi-objective comparison among policies for
Fugaku

Figure 10: Comparison of various scheduling policies. (a) Un-
der high system load, ML-guided policy yields lower power
per timestep. and (b) It also improves overall system effi-
ciency across multiple metrics (lower is better).

Figure 10(b) shows consistent trends across datasets: (1) the ML-
guided policy achieves the best trade-off across multiple objectives–
including lower average wait time, turnaround, and energy con-
sumption, compared to the baseline. (2) Under high load, ML-
guided policy consistently yields the lowest job turnaround time
and energy-delay product, increasing science per energy spent.

5 Discussion and Future Work
The presented capabilities show a novel way of utilizing operational
data — now generally collect during operation — to better under-
stand and predict the behavior of our systems. This work allows
studying scenarios and extensions for system- and simulation-needs
expanding potential use-cases. We enable integration of arbitrary
scheduler and job-trace datasets and allow replay and rescheduling
to study their characteristics and exercise what-if scenarios. We
are able to seamlessly interact with system specific cooling models
which can be easily generated [22], while the power simulation
is not a mere aggregation of synchronized trace information, but
an accurate computation of component behavior [42]. The work
presented allows any user to model their system with the existing

tools, and study use-cases based user behavior, job-mix, and the
scheduler, extending beyond system, cooling, and location.

The examples show this clearly: the use-cases presented in Sec. 4.1
and Sec 4.2 demonstrate what impact scheduling makes on the
power response of a system. Sec. 4.4 shows how S-RAPS allowed
to prototype new algorithms, potentially avoiding averse effects.

For future work, identified gaps are the current need of job traces,
and power profiles. Figure 5 showed that with perfect information
of the job profile, we can accurately predict the systems power
swings. However, if this information is not available, we have to
rely on user estimates, or fingerprinting and prediction, which are
prime candidates for future work.

6 Conclusion
This work provides the first data center digital twin extended
for scheduling. We show how we build on a community-driven
approach, with the ExaDigiT effort, and integrate scheduling ca-
pability into this interacting systems of simulators. We present
Scheduled-RAPS (S-RAPS) the scheduler extension of ExaDigiT’s
RAPS and show how we can study scheduler-induced what-if sce-
narios and observe the connected digital twin simulations.

This is a first-of-its-kind study, which demonstrates significant
improvements over the state of the art, by enabling other schedulers
to tie into DCDTs via S-RAPS, as shown for the two external sched-
uling simulators, ScheduleFlow and FastSim. Finally, we provided
case-studies on how the work is used to simulate a scheduling power
dip using FastSim, we showed how S-RAPS can be used to study
incentive structures for schedulers and showed how ML-guided
schedulers can be studied using S-RAPS as interface to digital twins.

Acknowledgments
This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Part of
this work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and
was supported by the LLNL-LDRD Program under Project No. 24-SI-005 (LLNL-CONF-
2004842). This material is based upon work supported by the U.S. Department of
Energy, Office of Science under Award Number DE-SC0022843 (ECRP). Part of this
work was authored in part by the National Renewable Energy Laboratory for the U.S.
Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

References
[1] Ryan Adamson, Tim Osborne, Corwin Lester, and Rachel Palumbo. 2023.

STREAM: A Scalable Federated HPC Telemetry Platform. In Proceedings of the
Cray User Group 2023. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN
(United States). https://www.osti.gov/biblio/1995656

[2] Naima Alaoui Ismaili, Philippe Wautelet, Juan Escobar Munoz, and Gabriel
Hautreux. 2023. Porting and optimizing Meso-NH to AMD MI250X GPUs. In
Proceedings of the SC’23 Workshops of the International Conference on High Per-
formance Computing, Network, Storage, and Analysis. 1900–1905.

[3] William Allcock, Paul Rich, Yuping Fan, and Zhiling Lan. 2017. Experience and
Practice of Batch Scheduling on Leadership Supercomputers at Argonne. In 21st
Workshop on Job Scheduling Strategies for Parallel Processing held in conjunction
with IPDPS 2017 (Orlando, FL, US, 06/02/2017 - 06/02/2017). Springer, Orlando,
Florida, 1 – 24,. https://doi.org/10.1007/978-3-319-77398-8_1

[4] Francesco Antici, Andrea Bartolini, Jens Domke, Zeynep Kiziltan, and Keiji
Yamamoto. 2024. F-DATA: A Fugaku Workload Dataset for Job-centric Predictive
Modelling in HPC Systems. https://doi.org/10.5281/zenodo.11467483

[5] Francesco Antici, Mohsen Seyedkazemi Ardebili, Andrea Bartolini, and Zeynep
Kiziltan. 2023. PM100: A job power consumption dataset of a large-scale pro-
duction HPC system. In Proceedings of the SC’23 Workshops of the International
Conference on High Performance Computing, Network, Storage, and Analysis. Zen-
odo, Denver, CO, 1812–1819.

9

https://www.osti.gov/biblio/1995656
https://doi.org/10.1007/978-3-319-77398-8_1
https://doi.org/10.5281/zenodo.11467483

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[6] Jyotika Athavale, Cullen Bash, Wesley Brewer, Matthias Maiterth, Dejan Milojicic,
Harry Petty, and Soumyendu Sarkar. 2024. Digital Twins for Data Centers.
Computer 57, 10 (2024), 151–158. https://doi.org/10.1109/MC.2024.3436945

[7] Robin Boëzennec, Fanny Dufossé, and Guillaume Pallez. 2024. Qualitatively
Analyzing Optimization Objectives in the Design of HPC Resource Manager.
ACM Trans. Model. Perform. Eval. Comput. Syst. 9, 4, Article 15 (Dec. 2024),
28 pages. https://doi.org/10.1145/3701986

[8] Andrea Borghesi, Carmine Di Santi, Martin Molan, Mohsen Seyedkazemi Arde-
bili, Alessio Mauri, Massimiliano Guarrasi, Daniela Galetti, Mirko Cestari,
Francesco Barchi, Luca Benini, et al. 2023. M100 exadata: a data collection
campaign on the cineca’s marconi100 tier-0 supercomputer. Scientific Data 10, 1
(2023), 288.

[9] Wesley Brewer, Matthias Maiterth, Vineet Kumar, Rafal Wojda, Sedrick
Bouknight, Jesse Hines, Woong Shin, Scott Greenwood, David Grant, Wes-
ley Williams, and Feiyi Wang. 2024. A Digital Twin Framework for Liquid-
cooled Supercomputers as Demonstrated at Exascale. In Proceedings of the
International Conference for High Performance Computing, Networking, Stor-
age, and Analysis (SC ’24). IEEE Press, Atlanta, GA, USA, Article 23, 18 pages.
https://doi.org/10.1109/SC41406.2024.00029

[10] Wesley Brewer, Rafal Wojda, Matthias Maiterth, Sedrick Bouknight, Jesse Hines,
Jake Webb, Rashadul Kabir, Bertrand Cirou, and Kevin Menear. 2025. exadig-
it/RAPS – S-RAPS branch. https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?
ref_type=tags.

[11] Rajkumar Buyya and Manzur Murshed. 2002. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for grid
computing. Concurrency and computation: practice and experience 14, 13-15
(2002), 1175–1220.

[12] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2014. Versatile, scalable, and accurate simulation of distributed applications
and platforms. J. Parallel and Distrib. Comput. 74, 10 (2014), 2899–2917. https:
//doi.org/10.1016/j.jpdc.2014.06.008

[13] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. 1999. Bench-
marks and Standards for the Evaluation of Parallel Job Schedulers. In Job Sched-
uling Strategies for Parallel Processing, Dror G. Feitelson and Larry Rudolph (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 67–90.

[14] Cirou. 2024. Adastra jobs MI250 15days. https://doi.org/10.5281/zenodo.14007065
[15] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.

2016. Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator. In 20th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP). Chicago, United States. https://hal.science/hal-01333471

[16] Oak Ridge Leadership Computing Facility. [n. d.]. Frontier User Guide. https:
//docs.olcf.ornl.gov/systems/frontier_user_guide.html

[17] Yuping Fan, Zhiling Lan, Paul Rich, William E. Allcock, Michael E. Papka, Brian
Austin, and David Paul. 2019. Scheduling Beyond CPUs for HPC. In Proceedings
of the 28th International Symposium on High-Performance Parallel and Distributed
Computing (Phoenix, AZ, USA) (HPDC ’19). Association for Computing Machin-
ery, New York, NY, USA, 97–108. https://doi.org/10.1145/3307681.3325401

[18] Ana Gainaru, Hongyang Sun, Guillaume Aupy, Yuankai Huo, Bennett A Land-
man, and Padma Raghavan. 2019. On-the-fly scheduling versus reservation-based
scheduling for unpredictable workflows. The International Journal of High Per-
formance Computing Applications 33, 6 (2019), 1140–1158. https://doi.org/10.
1177/1094342019841681 arXiv:https://doi.org/10.1177/1094342019841681

[19] Cristian Galleguillos, Alina Sîrbu, Zeynep Kiziltan, Ozalp Babaoglu, Andrea
Borghesi, and Thomas Bridi. 2018. Data-Driven Job Dispatching in HPC Sys-
tems. In Machine Learning, Optimization, and Big Data, Giuseppe Nicosia, Panos
Pardalos, Giovanni Giuffrida, and Renato Umeton (Eds.). Springer International
Publishing, Cham, 449–461.

[20] Jean-Sébastien Gay and Yves Caniou. 2006. Simbatch: an API for simulating and
predicting the performance of parallel resources and batch systems. Research
Report.

[21] Alexander V. Goponenko, Kenneth Lamar, Christina Peterson, Benjamin A. Allan,
Jim M. Brandt, and Damian Dechev. 2022. Metrics for Packing Efficiency and
Fairness of HPC Cluster Batch Job Scheduling. In 2022 IEEE 34th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD). IEEE, Bordeaux, France, 241–252. https://doi.org/10.1109/SBAC-PAD55451.
2022.00035

[22] S. Greenwood, V. Kumar, and W. Brewer. 2024. Thermo-fluid Modeling Frame-
work for Supercomputer Digital Twins: Part 2, Automated Cooling Models. In
America Modelica Conference. Modelica Association, 210–219.

[23] David Jackson, Quinn Snell, and Mark Clement. 2001. Core Algorithms of the
Maui Scheduler. In Job Scheduling Strategies for Parallel Processing. Springer
Berlin Heidelberg, Berlin, Heidelberg, 87–102.

[24] Dalibor Klusáček, Mehmet Soysal, and Frédéric Suter. 2019. Alea–complex
job scheduling simulator. In International Conference on Parallel Processing and
Applied Mathematics. Springer, Bialystok, Poland, 217–229.

[25] Vineet Kumar, Scott Greenwood, Wes Brewer, Wesley Williams, David Grant, and
Nathan Parkison. 2024. Thermo-Fluid Modeling Framework for Supercomputer

Digital Twins: Part 1, Demonstration at Exascale. In PROCEEDINGS OF THE
AMERICAN MODELICA CONFERENCE 2024. Oak Ridge National Laboratory
(ORNL), Oak Ridge, TN (United States). https://www.osti.gov/biblio/2480044

[26] Lawrence Livermore National Laboratory. 2024. Livermore Archive for System
Telemetry (LAST). https://github.com/LLNL/LAST

[27] Tapasya Patki, Adam Bertsch, Ian Karlin, Dong H Ahn, Brian Van Essen, Barry
Rountree, Bronis R de Supinski, and Nathan Besaw. 2021. Monitoring large
scale supercomputers: A case study with the lassen supercomputer. In 2021 IEEE
International Conference on Cluster Computing (CLUSTER). IEEE, Portland, OR,
United States, 468–480.

[28] Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing gpu power and frequency
capping: A case study with the mummi workflow. In 2019 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS). IEEE, 31–39.

[29] Chris N. Potts and Mikhail Y. Kovalyov. 2000. Scheduling with batching: A
review. European Journal of Operational Research 120, 2 (2000), 228–249. https:
//doi.org/10.1016/S0377-2217(99)00153-8

[30] Dongxu Ren, Wei Tang, Xu Yang, Yuping Fan, and Zhiling Lan. 2017. https:
//github.com/SPEAR-IIT/CQSim

[31] Gonzalo P Rodrigo, Erik Elmroth, Per-Olov Östberg, and Lavanya Ramakrishnan.
2017. ScSF: A scheduling simulation framework. In Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, Cham, DE, 152–173.

[32] Greyce N. Schroeder, Charles Steinmetz, Carlos E. Pereira, and Danubia B. Espin-
dola. 2016. Digital Twin Data Modeling with AutomationML and a Communica-
tion Methodology for Data Exchange. IFAC-PapersOnLine 49, 30 (2016), 12–17.
https://doi.org/10.1016/j.ifacol.2016.11.115 4th IFAC Symposium on Telematics
Applications TA 2016.

[33] Nikolay A. Simakov, Robert L. DeLeon, Martins D. Innus, Matthew D. Jones,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.
Slurm Simulator: Improving Slurm Scheduler Performance on Large HPC systems
by Utilization of Multiple Controllers and Node Sharing. In Proceedings of the
Practice and Experience on Advanced Research Computing: Seamless Creativity
(Pittsburgh, PA, USA) (PEARC ’18). Association for Computing Machinery, New
York, NY, USA, Article 25, 8 pages. https://doi.org/10.1145/3219104.3219111

[34] Nikolay A. Simakov, Robert L. Deleon, Yuqing Lin, Phillip S. Hoffmann, and
William R. Mathias. 2022. Developing Accurate Slurm Simulator. In Practice
and Experience in Advanced Research Computing 2022: Revolutionary: Computing,
Connections, You (Boston, MA, USA) (PEARC ’22). Association for Computing
Machinery, New York, NY, USA, Article 59, 4 pages. https://doi.org/10.1145/
3491418.3535178

[35] Nikolay A. Simakov, Martins D. Innus, Matthew D. Jones, Robert L. DeLeon,
Joseph P. White, Steven M. Gallo, Abani K. Patra, and Thomas R. Furlani. 2018.
A Slurm Simulator: Implementation and Parametric Analysis. In High Perfor-
mance Computing Systems. Performance Modeling, Benchmarking, and Simulation,
Stephen Jarvis, Steven Wright, and Simon Hammond (Eds.). Springer Interna-
tional Publishing, Cham, Germany, 197–217.

[36] Joseph Skovira, Waiman Chan, Honbo Zhou, and David A. Lifka. 1996. The EASY
- LoadLeveler API Project. In Job Scheduling Strategies for Parallel Processing,
IPPS’96 Workshop, Honolulu, Haiwai, USA, April 16, 1996, Proceedings (Lecture
Notes in Computer Science, Vol. 1162), Dror G. Feitelson and Larry Rudolph (Eds.).
Springer, 41–47. https://doi.org/10.1007/BFB0022286

[37] Ana Luisa Veroneze Solórzano, Kento Sato, Keiji Yamamoto, Fumiyoshi Shoji,
Jim M. Brandt, Benjamin Schwaller, Sara Petra Walton, Jennifer Green, and
Devesh Tiwari. 2024. Toward Sustainable HPC: In-Production Deployment of
Incentive-Based Power Efficiency Mechanism on the Fugaku Supercomputer. ,
16 pages. https://doi.org/10.1109/SC41406.2024.00030

[38] Atsuko Takefusa, Satoshi Matsuoka, Kento Aida, Hidemoto Nakada, and Umpei
Nagashima. 1999. Overview of a Performance Evaluation System for Global
Computing Scheduling Algorithms. In Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing (HPDC ’99). IEEE Com-
puter Society, USA, 11.

[39] Fei Tao, He Zhang, Ang Liu, and Andrew Y. C. Nee. 2019. Digital Twin in Industry:
State-of-the-Art. IEEE Transactions on Industrial Informatics 15 (2019), 2405–2415.
https://api.semanticscholar.org/CorpusID:68170459

[40] Yi-Ping Chen Vispi Karkaria, Ying-Kuan Tsai and Wei Chen. 2025. An
optimization-centric review on integrating artificial intelligence and digital twin
technologies in manufacturing. Engineering Optimization 57, 1 (2025), 161–207.
https://doi.org/10.1080/0305215X.2024.2434201

[41] Alex Wilkinson, Jess Jones, Harvey Richardson, Tim Dykes, and Utz-Uwe Haus.
2023. A Fast Simulator to Enable HPC Scheduling Strategy Comparisons. In
High Performance Computing: ISC High Performance 2023 International Workshops,
Hamburg, Germany, May 21–25, 2023, Revised Selected Papers. Springer-Verlag,
Berlin, Heidelberg, 320–333. https://doi.org/10.1007/978-3-031-40843-4_24

[42] Rafal P. Wojda, Matthias Maiterth, Sedrick Bouknight, and Wesley Brewer. 2024.
Dynamic Modeling of Power Conversion Stages for an Exascale Supercomputer.
In 2024 IEEE Energy Conversion Congress and Exposition (ECCE). 1595–1601.
https://doi.org/10.1109/ECCE55643.2024.10861715

10

https://doi.org/10.1109/MC.2024.3436945
https://doi.org/10.1145/3701986
https://doi.org/10.1109/SC41406.2024.00029
https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?ref_type=tags
https://code.ornl.gov/exadigit/raps/-/tree/S-RAPS?ref_type=tags
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.5281/zenodo.14007065
https://hal.science/hal-01333471
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://doi.org/10.1145/3307681.3325401
https://doi.org/10.1177/1094342019841681
https://doi.org/10.1177/1094342019841681
https://arxiv.org/abs/https://doi.org/10.1177/1094342019841681
https://doi.org/10.1109/SBAC-PAD55451.2022.00035
https://doi.org/10.1109/SBAC-PAD55451.2022.00035
https://www.osti.gov/biblio/2480044
https://github.com/LLNL/LAST
https://doi.org/10.1016/S0377-2217(99)00153-8
https://doi.org/10.1016/S0377-2217(99)00153-8
https://github.com/SPEAR-IIT/CQSim
https://github.com/SPEAR-IIT/CQSim
https://doi.org/10.1016/j.ifacol.2016.11.115
https://doi.org/10.1145/3219104.3219111
https://doi.org/10.1145/3491418.3535178
https://doi.org/10.1145/3491418.3535178
https://doi.org/10.1007/BFB0022286
https://doi.org/10.1109/SC41406.2024.00030
https://api.semanticscholar.org/CorpusID:68170459
https://doi.org/10.1080/0305215X.2024.2434201
https://doi.org/10.1007/978-3-031-40843-4_24
https://doi.org/10.1109/ECCE55643.2024.10861715

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Open Datasets

	3 Method & Design
	3.1 Prior state of ExaDigiT
	3.2 S-RAPS: Scheduled - Resource Allocator and Power Simulator

	4 Evaluation and Use-Cases
	4.1 Evaluation of the built-in scheduler
	4.2 Evaluation with external schedulers
	4.3 Use-Case: Incentive Structures
	4.4 Use-Case: Using ML for scheduling decisions

	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

