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Abstract
Schedulers are critical for optimal resource utilization in high-
performance computing. Traditional methods to evaluate sched-
ulers are limited to post-deployment analysis, or simulators, which
do not model associated infrastructure. In this work, we present the
first-of-its-kind integration of scheduling and digital twins in HPC.
This enables what-if studies to understand the impact of parame-
ter configurations and scheduling decisions on the physical assets,
even before deployment, or regarching changes not easily realiz-
able in production. We (1) provide the first digital twin framework
extended with scheduling capabilities, (2) integrate various top-tier
HPC systems given their publicly available datasets, (3) implement
extensions to integrate external scheduling simulators. Finally, we
show how to (4) implement and evaluate incentive structures, as-
well-as (5) evaluate machine learning based scheduling, in such
novel digital-twin based meta-framework to prototype scheduling.
Our work enables what-if scenarios of HPC systems to evaluate
sustainability, and the impact on the simulated system.

CCS Concepts
• Computer systems organization; • General and reference
→ Cross-computing tools and techniques; • Computing method-
ologies→ Discrete-event simulation; Distributed simulation;
Simulation evaluation;

Keywords
Scheduling Simulators, Digital Twin, Data Center Digital Twin, Sys-
tem Simulator, Distributed Systems Simulation, Batch Scheduling
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1 Introduction
The increasing complexity of highly-efficient supercomputing cen-
ters fuels an ever increasing demand for more powerful models.
Digital twins (DTs) have emerged as a means of integrating system
telemetry, modeling and simulation, artificial intelligence (AI), and
system control mechanisms to create a virtual representation of
the physical system, modelling cooling, power, and workloads [6].

Aiming for optimal usage of high-performance computing (HPC)
systems, different stakeholders face various challenges. For exam-
ple: users seek feedback regarding job usage, estimated runtime, and
application efficiency; operators monitor and tune operational pa-
rameters based on load and conditions; center managers and vendors
seek insight into which machine aspects are the biggest barriers to
performance, and seek trends for future procurements. Data center
digital twins (DCDTs) can provide estimates and simulations and
even serve for design considerations and virtual prototyping of
future systems [6], without consuming the system’s own resources.

Scheduling is critical for efficient use of HPC [3, 29]. Therefore,
integrating scheduling into DTs of HPCs is necessary to form a
representative twin of the overall system. The sound integration
of scheduling capabilities into a DCDT extends its capability from
a reactive role to a predictive one, enabling what-if studies. A
representative yet modifiable scheduling simulator integrated into
a DCDT allows to study how a system responds to alteration of its
parameters. Production systems are not suitable for such changes,
unless service interruptions are acceptable. Similarly, scheduling
simulators in isolation or DCDT’s without these capability can not
answer such questions. Integrating a scheduler into a DCDT is
therefore a valuable contribution, revealing holistic insights into
the operation of our systems and optimization opportunities.
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In this paper, we introduce Scheduled-RAPS (S-RAPS) [10], which
extends the resource allocator and power simulator (RAPS), origi-
nally developed for the open-source digital twin framework ExaDigiT
by Brewer et al. [9]. We present what-if studies evaluating the inte-
gration of schedulers with digital twins. Specifically, we evaluate:

(1) Scheduling impact on system response – We explore
the impact of scheduling to understand a system’s power,
cooling, and workload response with our integration, a
factor not observable for scheduling simulators in isolation.

(2) Evaluation of incentive structures – We explore incen-
tive structures and impact of imposed reward metrics on
workloads and system — a case-study impossible with the
current state-of-the-art, without deploying to production.

(3) Machine learning (ML) for scheduling – We study ML
guided scheduling based on metrics usually not accessible to
scheduling simulators in isolation, or hardly trainable due
to limited data and context without an integrated DCDT.

(4) Integration with external schedulers – We demonstrate
the feasibility of our approach by extending scheduling-
integrated DCDT to interface with external schedulers.

This work extends to the original work of [9] and use open
datasets for validation and use-cases. Our contributions are:

• Integration of scheduling into DCDTs: Previous work
does not integrate scheduling simulators with digital twins.
Our research is the first to enable such integration, allowing
the exploration of “what-if” scenarios to study power and
cooling, given real workload and system data.

• Use of open datasets: Previous work has utilized open
datasets for post-mortem analysis; however, this work is
the first to utilize such datasets to simulate the anticipated
system behavior given altered scheduling parameters.

• Extension to other schedulers: As each system and sched-
uler setup is unique, we provide the extensions necessary
such that users can model and simulate their system and
their use-cases, providing wide applicability beyond what
is presented in this work.

The remainder of the paper is structured as follows: Section 2
presents background on digital twins and scheduling, and discusses
the open data sets used in this research. In Section 3, we introduce
S-RAPS. In Section 4, we present our evaluation and use-cases.
Section 5 discusses future work, and we conclude in Section 6.

2 Background
2.1 Related Work
2.1.1 Digital Twins for Operational Optimization: DT research has
surged in recent years, and useage of traditional modeling and
simulation techniques have found wider adoption for operation [39],
using data-driven approaches [32] and by coupling AI with online
decision making [40].

In the context of HPC, the work on ExaDigiT [9] is seminal as an
open-source framework, consisting of the RAPS module, a transient
thermo-fluid cooling module, and an visual analytics model of the
supercomputer and central energy plant. The work, however, only
presented an initial framework with large emphasis on the thermo-
fluid cooling simulator, as well as power loss modeling for job-trace

replay, without venturing into the explorative aspects. The initial
work does not include a batch scheduler and only replays the given
workloads, therefore unable to re-schedule for what-if analysis.

In turn, our work builds upon the ExaDigiT framework, with ex-
plicit focus on scheduling, introducing S-RAPS. We extend ExaDigiT
to support open data sets for additional systems, and explore use-
case driven analysis for HPC, and evaluate the impact of various
scheduling policies on power and cooling.

2.1.2 Scheduling Simulators: Simulating scheduler behavior has
been an active area of research, consistently supporting advances
in HPC [7]. Popular examples of batch scheduling simulators are
Slurm Simulator [33–35], and scheduler specific alternatives such
as the work by Wilkinson et al. [? ]. CQSim [30], which originated
in QSim is a prominent example outside of the Slurm ecosystem.
This is a non-exhaustive list, as simulators such as GridSim [11],
SimGrid [12], Bricks [38], Simbatch [20], Alea [24], AccaSim [19],
BBSched [17], ScSF [31], Batsim [15], as well as schedulers that
have built in simulators, such as Torque/Maui [23] and Moab Sched-
uler, played an important role in the development of scheduling
simulators and should not be left unmentioned.

These simulators generally are not focused on the systems infras-
tructure but the core of scheduling. With continuous progress in
scheduling simulators in general, the aim is to enable the integration
of such advanced scheduler developments into DTs. We designed
S-RAPS to leverage existing work such that users can interface with
other scheduling simulators, such as the Slurm Simulator or Fast-
Sim. This enables easy extensions to S-RAPS for studying power
and cooling. We demonstrate an integration of FastSim [41] into
S-RAPS in Sect. 4.2.2.

2.2 Open Datasets
In this work, we selected four open datasets for accessibility and
reproducibility, as shown in Table 1: PM100 [5] from Marconi100,
F-Data [4] from Fugaku, LAST [26] from Lassen, and Cirou’s dataset
[14] from Adastra. Additionally, we use a proprietary dataset from
Frontier due to its extensive verification and validation in the con-
text of DCDTs from previous work [9] for reproducibility.

The telemetry traces used for simulation vary according to the
data source, which we discuss as follows: • Marconi100: The Mar-
coni100 system at CINECA has two public datasets: the M100 [8]
and the PM100 dataset [5]. We use the PM100 data as it is pre-
curated. We filter jobs containing shared nodes as this is not yet
supported in our model. The data includes CPU, memory and node
power in a 20-second interval. As the data has been filtered, it does
not reflect the system’s full operational utilization. This means that
replay and reschedule will differ [5].
• Fugaku F-Data: F-Data [4] is a dataset containing job and per-
formance information with derived metrics for job classification
from Fugaku. It includes monthly data from March 2021 to April
2024, with the following job metrics: energy consumed, node power
(minimum, maximum and average), performance characteristics on
operations, memory activity and the resulting performance class
identified as either compute- or memory-bound.
• Lassen LAST: This is a 1.4-million-job dataset from the Lassen
supercomputer [26]. It includes information on job allocation, node
allocation, and job-step disposition. These are combined to get

2
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Table 1: Systems and datasets used in study.

System Architecture Nodes Dataset Scheduler Job Count Characteristics

Frontier HPE/Cray EX 9600 Proprietary Slurm 1,238 job traces (15s), CPU/GPU power & temp.
Marconi100 IBM POWER9 980 PM100 [5] Slurm 231,238 job traces (20s), CPU/node power
Fugaku Fujitsu AF64FX 158,976 F-Data [4] Fujitsu TCS 116,977 job summary, node-level power only
Lassen IBM POWER9 792 LAST [26, 27] LSF 1,467,746 job summary, includes network tx/rx
Adastra HPE/Cray EX 356 Cirou [14] Slurm 30,570 job summary, job avg component power

usable information for each job allocated with accumulated energy
data. Lassen uses the IBM’s LSF Job scheduler [28].
•Adastra: CINES has published 15 days of the Adastra system [14],
including node power, memory power, and CPU power. The het-
erogeneous system has a CPU and GPU partitions. GPU power is
not provided, but can be derived from node power and the other
components. It uses Slurm [2], but no scheduling policy is stated.
• Frontier: The Frontier dataset was initially used to develop the
ExaDigiT DCDT. The dataset is an excerpt from the center’s con-
tinuous collection, obtained from both Slurm data, as well as Cray
EX Telemetry API, collected in the STREAM system [1]. The sched-
uling policy is a priority-based mechanism that uses a modified
first-in, first-out (FIFO) queue, boosted based on node count and
penalized on allocation overuse [16]. This dataset is the only one
not publicly available. Since it was used for initial verification of
RAPS[9], it was important for cross validation of S-RAPS.

3 Method & Design
In the following, we show the current state-of-the-art, the ExaDigiT
framework [9], with its resource allocator and power simulator
(RAPS), for context, and present our Scheduled-RAPS (S-RAPS) ex-
tension. We begin by discussing the mechanisms of the existing
simulation loop of the forward-time DCDT simulator by Brewer
et al. [9]. We then present S-RAPS, with its built-in scheduler and
how this ties into the DCDT simulators. We then show how S-RAPS
extends to external forward-time or event-based simulators. Finally,
we show how extensions for dataloaders allow us to load and sim-
ulate diverse datasets and systems, showing the true value of an
open-source digital twin framework.

3.1 Prior state of ExaDigiT
The original design of ExaDigiT consists of three main modules [9]:

(1) Modelica-based cooling model
(2) Resource allocator and power simulator (RAPS)
(3) Visual analytics model

ExaDigiT’s simulation is depicted in Fig. 1. The digital twin reads
a sequence of job traces or telemetry and placed on the system
simulator as recorded. For each timestamp, the observed node uti-
lization is replayed. The simulated utilization is converted to a
power profile, with power rectification and conversion losses ap-
plied [42]. The power and therefore generated heat is fed into a
cooling model [22, 25]. The cooling model simulates from cool-
ing distribution unit (CDU) to cooling towers, giving an accurate
representation of the system at each timestep.

Figure 1: Simplified OriginalExaDigiT overview in accor-
dance with Brewer et al. [9], with RAPS module on the right.

In the simulation, the RAPS module provides the inputs to the
cooling model and is also the main driver of the simulation loop.
This is outlined in Algorithm 1 of [9]:

(1) Initialization of system and data, and start of simulation.
(2) Simulation loop:

(a) Addition of newly arriving jobs to the job queue
(b) ScheduleJobs: selection and placement of available jobs

to available resources.
(c) Tick: management of resources, and calculation of com-

pute resource utilization, power and cooling

The original work processes jobs in a scheduler class, which con-
tains the DT’s replay mechanism. As shown in Fig. 1, this only con-
siders replay of recorded telemetry or synthetic data, not scheduling.
For a generic HPC digital twin, the ability to alter the scheduling
policy and resulting job placement is key. For this, we describe
the refactoring necessary to enable generic built-in scheduling and
allow for the integration of external schedulers with S-RAPS, en-
abling the scheduling scenarios we present in this paper.

3.2 S-RAPS: Scheduled - Resource Allocator and
Power Simulator

We now present the improved simulation loop for comprehensive
integration of schedulers within ExaDigiT’s RAPS, named S-RAPS.
Figure 2 shows the overhauled design of S-RAPS, enabling the in-
tegration of forward-time or event-based schedulers. Key changes
include refactoring and generalizing of the following five com-
ponents: (1) system initialization, (2) dataloaders, (3) simulation
engine, (4) scheduler abstraction, (5) systems accounting. This is

3
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Figure 2: Scheduled-RAPS (S-RAPS): Integration of sched-
uling into the design of ExaDigiT’s resource allocator and
power simulator (RAPS).With improved configurationmech-
anisms, pluggable dataloaders, interface to build-in and ex-
ternals schedulers, and overhauled simulation loop.

accomplished while keeping the original RAPS simulation concept
with intended scheduling, resource management, and tick intact.

3.2.1 System initialization: The system initialization has been im-
proved to capture not only the system’s configuration, but also to
include information necessary for scheduler simulation. The rework
introduces cleaner abstractions and separation of concerns, with
future extensions in mind. The core loop of the simulator was refac-
tored introducing a simulation engine. During system initialization,
telemetry is used to initialize the job objects augmented with infor-
mation for scheduling. The telemetry is now also used to initialize
user-account information (clear or anonymized). The refactored
simulation engine separates resource manager and scheduler inter-
face, which loads either the build-in or external scheduler. Finally,
objects for tracking statistics of the simulation are initialized.

The HPC System configurations, their dataloaders, and the sched-
ulers are implemented as plugins. The specific configurations are
selectable on simulation start via the command line interface (CLI)
and are designed to be easily extensible. This helps with rapid
testing of configuration and experimental design: administrators
can easily represent their systems, and developers of scheduling
simulators can easily load their policies, once extended.

3.2.2 Dataloaders: A dataloader’s task is to load and parse the
telemetry data and generate the list of to-be-scheduled jobs. Each
job requires information on: submit time, start time, end time, time
limit, and the number of requested nodes (alternatively, the exact
set of nodes to which the job was assigned). This is a standard for
scheduling simulators as for example used in the standard workload
format (SWF) [13]. The dataloaders also load the job traces for replay
in the DCDT simulation. If traces are not available for a dataset,

Before Simulation After

Job 1 Job 4 Job 6

Job 3 Job 8

Job 2 Job 7

Job 5

Start Now End

t=0 t=20t=4

Figure 3: Example job trace, with job-submit time, -start time
and -end time. The time-stepped simulator triggers on each
time step, while the event based scheduling simulator only
has to react to triggered events (magenta arrows) such as start
of a job (job 4), end of a job (job 2), and submission of a new
job (job 5).

scalar values can for example represent a job’s average power,
energy, or other characteristics – depending on data availability.

When rescheduling, the job traces recorded may not coincide
with the time slice needed for the simulation. We treat such occur-
rence as missing data, using the last known value. Therefore, for
correct simulation the dataloader must identify the following key
times for each job:

• Job submit, start and end time
• Telemetry start and end time

Given the individual job times and the overall timespan of the
dataset, we can run the simulation within the range of the overall
telemetry. Additionally, this change enables us to either replay the
recorded data as is or simulate a new schedule.

An example of such timeline is presented in Fig. 3, showing a
simulation from 𝑡 = 0 to 𝑡 = 20, with submission times of jobs
indicated by dashed outline extending in front of the jobs, and ac-
tual execution indicated by the solid outline of the jobs. During
rescheduling, the jobs can be placed as early as they have been
submitted, which is ultimately decided by the selected scheduling
policy. Jobs that ended before start of the simulation time or were
submitted after end of the simulation time are dismissed. The simu-
lation of the power and cooling behavior can then be simulated as
implemented in tick of S-RAPS, with the modified timeline.1

3.2.3 Simulation engine: The simulation engine contains the main
simulation loop. At start of the simulation, the user selects explicit
simulation start and end time. Given this information, the system
state is prepared, and in case the dataset contains jobs before the
selected simulation start, these jobs are placed to prepopulate the
system. This allows us to represent the actual system condition
as observed in the telemetry at start of the simulation2,3. We can

1There are two edge cases to consider: jobs which originally started before the capture
time (see Fig. 3, Job 1) and jobs which ended after the capture time (see Fig. 3, Jobs 6, 7,
8). When simulating a new schedule, these jobs may therefore have no corresponding
telemetry at the associated simulation times. Therefore, when rescheduling these jobs
within the simulation time, these cases need to be flagged as they can cause potential
discrepancies in other simulations as no known ground truth is available to S-RAPS.
2This is often neglected by scheduling simulators, which ignore jobs before simulation
start, and therefore need time to fill up the queue and system, distorting the results.
3This also allows S-RAPS to simulate anticipated schedules and profiles from live-data.
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then enter the main simulation loop. It is refactored into four well-
defined steps:

(1) Preparation of the time step: Before each iteration, the sys-
tem state is updated. For this, completed jobs are cleared
from the system, freeing resources, and updating the state
of nodes.

(2) Addition of eligible jobs to the job queue: Jobs that have
been submitted — according to simulation time — are added
to the job queue.

(3) Call of schedule: The jobs are scheduled according to the
job queue and selected scheduling policy, and placed on the
system in coordination with the resource manager.

(4) Call of tick: The engine’s tick function calls the sequence
of DCDT simulators and models, and increments the time.

These descriptions seem simple, but required major changes from
the simple replay mechanism of the original design. For example, in
the original replay mechanism, node placement was not enforced.
In the overhauled design, the exact node placement as specified in
the telemetry is used in replay mode. However, when rescheduling
the scheduler select the appropriate nodes. The resource manager
then completes the job placement, allocating nodes. Additionally,
the refactor resolved timing and allocation issues for nodes with
both ending and starting jobs coinciding in the same time step.

Regarding job eligibility, in the original replay mode, all jobs
were part of the job queue. Jobs were then placed on the system as
soon as indicated by their start time. With the updated design, jobs
can only be scheduled and placed once they have been submitted.
This also means that pre-computing a schedule is not possible as
the digital twin observes the jobs as they are submitted, just like a
real system. The scheduler is not aware of jobs not yet in the queue.

When calling the schedule function the loaded implementation
is triggered. This recomputes the order of the job queue according
to selected policy and coordinates with the resource manager to
place eligible jobs. The split of resource manager and scheduler
via this interface was a major improvement, separating the built-in
scheduling capabilities and enabling the use of external schedulers4.

The update to tick now also represents a clear separation of
concerns enabling easier replacement of simulation sub-modules,
where tick is only responsible for the simulation of physical sub-
systems. Our redesign of S-RAPS with the simulation engine puts
strong focus on extensibility and the use of plug-ins. This also
enables support for future site-specific customizations.

3.2.4 Scheduler abstraction: As outlined, the simulation engine
triggers the scheduler in each iteration of the simulation loop. Any
external scheduler and scheduling simulator has its own set of
logics regarding which events to track and react to. The abstraction
we use enables users who interface S-RAPS with their scheduling
simulator to implement the logic for triggering and sending these
events. Figure 3 illustrates such case, with the triggered evens for
time step 𝑡 = 4 shown as magenta arrows.

S-RAPS interfaces with the scheduler in case the simulator pro-
vides new information in a given iteration: (1) by triggering the
scheduler to recompute the schedule, or deciding to skip if no
4The original design included a reschedule functionality, however it simply redis-
tributed the job start times according to a Weibull distribution and was not representa-
tive of batch scheduling.

change has occurred; (2) it interprets the information returned from
the scheduler; and (3) S-RAPS then triggers the resource manager,
placing identified jobs on the system, and maintains the job queue.
This ensures that the remainder of the simulation can progress.

3.2.5 Built-in and external schedulers: The scheduler can be se-
lected via the --scheduler CLI option. Its policies are selected via
the --policy and --backfill options. The default is the build-in
scheduler which implements the policies: first-come, first-served
(FCFS), shortest-job-first (SJF), largest-job-first (LJF), and priority-
based scheduling. Additionally, the default scheduler also provides
the replay mechanism of the original RAPS implementation. Regard-
ing backill options the supported defaults are no-backfill, first-fit,
and easy (i.e. Earliest Available Start-time Yielding (EASY)[36]). All
options are extensible for use with external schedulers.

While the default scheduler provides basic scheduling policies, it
does not provide implementations for best-fit, greedy, conservative,
or other more sophisticated implementations. For this, we provide
the interface for external schedulers and scheduling simulators.
As shown in Sect. 2.1.2, the numerous schedulers and scheduling
simulators all have their validity, and we do not compete but try to
enable them, and provide example integration in the source-code.

3.2.6 Systems accounting: The final major rework to discuss is the
addition of system accounting and statistics. The original RAPS
design kept track of general simulation and HPC system statistics,
with focus on the power and cooling simulation of the DCDT.
S-RAPS extends those and adds collection of statistics for jobs, users,
accounts, as well as scheduler-focused statistics. This allows users
to easily extend metrics of interest for their facility or experiments.

Previously tracked information includes: completed jobs, job
throughput, average system power, power loss, system power effi-
ciency, total energy consumed, and the cost estimates for carbon
emissions. S-RAPS adds more scheduler-specific information and
also aggregates according to user accounts, such as (non-exhaustive):
queued and running jobs average job size, histogram of job size
scheduled (small, medium, large, by node count), aggregate node
hours, average power and energy per job, their energy-delay-product
(EDP), energy-delay2-product (ED2P), average CPU and GPU uti-
lization, wait time, turnaround time, as well as area weighted re-
sponse time (the average turnaround time per unit of node-hour
across all scheduled jobs), and priority-weighted specific-response
time (average sensitivity-adjusted turnaround time per unit of node-
hour), which helps to capture packing efficiency and fairness [21].

By tracking this information for both the system and user ac-
counts, we can assess if a setting of the scheduler favors specific
jobs or users. The generated statistics can be compared and corre-
lated within a single simulation and across multiple simulations.
This allows us to investigate, e.g. how changes of the job-mix are
related to job-turnaround time and observed power swings. For
the user account metrics, we added the option to store and reload
collected user account statistics at the start of a run, supporting
aggregation of this information across simulations.

In summary, these changes establish capabilities for extracting
broader and deeper insight about jobs, users, and the system, which
standalone scheduling simulators cannot provide without integra-
tion into a DCDT framework. It is worth emphasizing that the
holistic modeling of power, cooling, and job behavior relies on the
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integrated design of the full DCDT (Fig. 1), where interactions be-
tween subsystems are critical. Such cross-disciplinary dynamics
cannot be replicated by aggregating telemetry data in isolation,
even with comprehensive scheduling records.

4 Evaluation and Use-Cases
In the following, we evaluate the S-RAPS scheduler interfaces and
extensions, utilizing datasets from a diverse set of HPC systems
and external schedulers. In Sec. 4.1 we evaluate the rescheduling
mechanism with different policies and datasets. This is followed
by use-cases: interfacing and integration with external schedulers,
such as ScheduleFlow and FastSim in Sec. 4.2; incentive structures
in Section 4.3; and evaluating of ML-guided scheduling in Sec. 4.4.

4.1 Evaluation of the built-in scheduler
We implemented dataloaders for Frontier, Marconi100, Lassen, Fu-
gaku, Adastra, given the datasets of Table 1. Each system provides
slighly different information with telemetry for Adastra, Fugaku,
and Lassen providing average values for utilization, while Mar-
coni100 and Frontier provide traces for their jobs’ resource utiliza-
tion. A system and its associated dataloader is selected with the
--system CLI option. We present Figs. 4, 5, and 6, where each plot
shows full-system power as calculated by the power model and sys-
tem utilization according to node occupancy5. Figure 6 additionally
shows power usage effectiveness (PUE) and the water temperature
arriving at the cooling towers, as simulated by the cooling model.
We show replay according to the telemetry (replay, blue), as well
as FCFS scheduling (fcfs-nobf, teal), FCFS scheduling with EASY
backfill (fcfs-easy, orange), and priority scheduling with first-fit
backfill (ffbf) (priority-ffbf, brown). Priorities are used as provided
by the datasets and respective documentation.

Figure 4 shows day 50 of the PM100 dataset, from 17:00 to the
next day at 10:00. The replay utilization curve (blue) is near 80%,
with a filling job queue. The rescheduled runs achieve very high
utilization at 100% continued utilization using backfill. In the plot,
the system shows higher aggregate power in the non-backfilled ap-
proach (teal). The statistics show that average power consumption
(−2%) per job and job size (−5%) decreased using either backfilled
policy. In combination, the adjusted job placement and start times
result in smoothing of the aggregate load, mitigating the power
jump at 21:00, observed in the non-backfilled schedule.

Figure 5 shows 15 days of replay and reschedule of the Adastra
dataset. As the system utilization is lower and queues not filling up,
the choice of scheduling algorithm makes little difference. Note-
worthy is that with information on the jobs’ power profiles and
correct estimates of runtimes, the S-RAPS simulator can match the
observed changes in both utilization and simulated power.

Figure 6 shows the same snapshot, as presented in the origi-
nal paper by Brewer et al. [9], with the cooling model of Kumar
et al. [25]. We apply the same scheduling policies as used in the
previous cases. The utilization plot shows that the system is making
space for three full-system runs, emptying the nodes. Then, the
three full-system runs are executed, and afterwards a normal job

5The datasets do not contain reservations and job dependencies, nor was information
about down or drained nodes available. This information could greatly increase the
accuracy of schedules, especially when linking the DCDT to a live system.
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Figure 4: Replay and reschedule of the data from the PM100
Dataset (offset 50 days +17h). Showing FCFS with no back-
fill (fcfs-nobf), FCFS with EASY backfill (fcfs-easy), priority
scheduling with first-fit backfill (priority-ffbf) and replay as
jobs were executed, for system power and utilization.

300

400

500

600

700

Po
w

er
[k

W
]

Power

fcfs-nobf
fcfs-easy
priority-�bf
replay

0:00 day 3 day 6 day 9 day 12 day 15
Time [hours/days]

0.00

0.25

0.50

0.75

1.00

Ut
ili

za
tio

n
[%

]

Utilization

fcfs-nobf
fcfs-easy
priority-�bf
replay

Figure 5: Replay and Reschedule of 15 days of Adastra (full
dataset [14]). Replay is shown in blue, while all rescheduled
runs (FCFS & priority) overlap almost exactly (brown line).
Given known job-power profiles and schedule information,
the simulator can predict and match the observed power
profile, seen as matching timed up/down-swings.

mix of varied size and lower total power is observed. The different
power, PUE6 and return temperature behavior for the different
scheduling policies is clearly visible with regard to how each policy
clears the system for the large scale runs. Regarding differences of
replay to reschedule, S-RAPS is able to place the large 9216 node
jobs earlier (fcfs-nobf, fcfs-easy and priority-ffbf, all overlap and
start them at the same time). While freeing nodes for the large
6Power is modeled using [25]. PUE for the actual system is at an average of 1.06%.
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Figure 6: Replay and reschedule of the data used in [9]. Show-
ing FCFSwith no backfill (fcfs-nobf), FCFSwith EASY backfill
(fcfs-easy), priority scheduling with first-fit backfill (priority-
ffbf) and replay. The plots show system utilization, system
power, as well as PUE8 and cooling tower return temperature
as simulated given the cooling model provided by [25].

runs, the backfilled policies are able to achieve higher utilization
compared to replay. This, however, is due to the fact that we do not
have access to node status, such as information on down or drained
nodes. The backfilled policies smooth out the power (and cooling
temperature) jump observed in the fcfs-nobf case, after the large
runs, in similar fashion as described for Fig. 4.

4.2 Evaluation with external schedulers
The integration of external scheduling simulators — ScheduleFlow
and FastSim — serve to highlight opportunities for community
extensions and future exploration.

4.2.1 ScheduleFlow Scheduler: To prototype the integration of ex-
ternal schedulers, we implemented an interface to ScheduleFlow by
Gainaru et al. [18]. The scheduler is event-based and maintains its
own internal system state. We implement the interface as described

Figure 7: The results of simulating a synthetic job trace run-
ning on Frontier with the FastSim scheduler. The simulated
job schedule is passed to ExaDigiT, which can then compute
the resource usage over time.

in Sec. 3.2.4 and trigger the necessary internal ScheduleFlow func-
tionality. Hereby, we couple the event-based scheduler of Schedule-
Flow with the forward-time simulation of S-RAPS. As ScheduleFlow
is not designed for this use-case, nor optimized for performance,
this initiates frequent recalculation of the schedule incurring large
overheads. The proof of concept was evaluated using synthetic
runs, but shows poor performance for any of the real datasets. The
main purpose is however achieved: we are able to trigger external
schedulers, which allows them to interact with the DCDT simula-
tions made available via S-RAPS. This serves as template for other
schedulers, as successfully demonstrated by FastSim.

4.2.2 FastSim Scheduler: FastSim [41] is a lightweight emulation
of the Slurm scheduler software. This external tool can simulate
cluster behavior up to thousands of times faster than real-time.
This integration moves the ExaDigiT DCDT towards the capacity
to forecast future events. In Fig. 7, we show a dip followed by a spike
in Frontier’s power usage on Tuesday morning, as simulated by
FastSim using a synthetic job trace developed for Frontier based on
the workload statistics in [9]. Accurate forecasting of such events
can inform energy-aware scheduling to mitigate the effects of such
significant fluctuation in the power draw.

To integrate this simulator with S-RAPS, FastSim was modified
by developing a plugin mode option. When operating in this plugin
mode, FastSim responds to a request for the system state at a time
step specified by the driving simulator. FastSim then processes any
events which have occurred up until the requested time step and
responds with a list of running jobs indexed by job ID. When trig-
gered by S-RAPS, the returned list is used to allocate resources and
subsequently continue in the simulation procedure of S-RAPS. This
process requires both S-RAPS and FastSim to maintain separate
copies of the system state, which reduces communication between
the two simulators at the cost of additional computational overhead.
While this process is effective for the real-time simulation necessary
for a DT, for the purpose of historical job trace rescheduling, we
found it was faster to run FastSim and RAPS sequentially, with Fast-
Sim handling the job scheduling and RAPS managing the resources.
To generate the results seen in Figure 7, a synthetic job trace of
5,324 jobs run over a period of 15 days was simulated using this
sequential approach. The entire simulation time was completed in

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SC25-W, November 16–21, 2025, St. Louis, MO Maiterth et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0:00 6:00 12:00 18:00 24:00
Time [hours]

10000

15000

20000

25000

Po
w

er
[k

W
]

Power
replay
acct avg power-�bf
acct low avg power-�bf
acct edp-�bf
acct fugaku pts-�bf

Figure 8: Studying the effects of incentive structures by using
account information for prioritization. AnAccount’s priority
is based on the accumulated job behavior in the replay case
(blue). Reprioritization based on this behavior is shown based
on descending average power (orange), ascending average
power (purple), EDP (red), and Fugaku points (green).

31 minutes and 24 seconds, amounting to a simulation speedup of
688x compared to real time.

4.3 Use-Case: Incentive Structures
By incorporating information on user accounts, S-RAPS is able to
mimic implementations of scheduling incentives and their impact
on jobs and system. In the presented use-case, we study the ability
to calculate a Fugaku point score according to Solórzano et al. [37].
For any completed job, its statistics are accumulated to the issuing
account. This information can be accumulated across multiple sim-
ulations or used for prioritization, as described in the redeeming
phase of [37]. The implementation is added in schedulers/experimen-
tal.py of [10], which has policies to derive priorities from account
based on: Fugaku Points, power usage, accumulated EDP, ED2P, and
others.

In Fig. 8, we show the resulting power plots when applying
different redeeming mechanisms to the same day as in Fig. 6. For the
collection phase the replay policy (blue) was used, to illustrate the
example. The prioritization for the policies is based on an account’s
previous behavior on: average power (orange, higher is better), low
average power (purple, lower is better), EDP (red), Fugaku points
(green). Fugaku points reward low average energy consumption in
the collection phase. The high power demand of the three large jobs
in the collection was not rewarded in the redeeming phase (green),
while the generally low power profile was rewarded as intended
in [37]. This example illustrates how S-RAPS can be used to run
what-if studies that are difficult to realize on production systems.

4.4 Use-Case: Using ML for scheduling decisions
To demonstrate S-RAPS utility, we evaluate a new machine learning
(ML) guided scheduling policy prototyped using S-RAPS.

4.4.1 Training Phase: (1) Clustering. We partition historical jobs
into behavioral clusters using both static (e.g., job size) and dynamic
(e.g., power traces) features using K-means clustering. (2) Classifi-
cation. Since dynamic features are unavailable at submission, we
train a Random Forest model to learn the relationships between job
characteristics (using pre-submission features) and the target met-
ric. This enables real-time mapping during inference time, without

Scoring
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Figure 9: Overview of the ML-guided scheduling pipeline.

requiring telemetry for new jobs. (3) Prediction. For each cluster,
we train a model to predict target metrics such as runtime, power,
memory – based on static inputs.

4.4.2 Inference Phase: Upon job submission, we normalizes static
features, predict the cluster label, invoke the corresponding model,
and estimate performance. This design avoids global approxima-
tions and ensures predictions are tied to the job’s class.

Jobs are ranked via a score computed from predicted metrics and
selected static features with the equation:

𝑆 (𝑋𝑖 ) =
∑𝐾
𝑗=1 𝛼 𝑗 · exp

(√︃
𝑋

𝑗

𝑖
+ 1

−1)
.

Where 𝑆 (𝑋𝑖 ) denotes the score of job𝑋𝑖 .𝑋 𝑗
𝑖

denotes the 𝑗-th feature
of the 𝑖-th job. 𝛼 𝑗 is the coefficient of feature 𝑗 . The exponential
function captures fine-grained differences, allowing prioritization
based on predicted system-level impact. Unlike single-objective
schedulers, this supports trade-offs across throughput, wait time,
turnaround, and energy.

4.4.3 Evaluation: Some datasets (e.g., PM100) report time-series
metrics, while others provide scalar summaries. Since timeseries
data is inherently noisy and high-dimensional, this causes inac-
curacies in the clustering. Hence, we extract summary statistics
from timeseries metrics such as maximum, minimum, and standard
deviation to retain key behavioral patterns.

In the Fugaku dataset, under low system load (16% requested
node utilization), as observed in the left yellow-marked region in
Fig. 10(a), all scheduling policies exhibit similar behavior. This hap-
pens because with abundance in resources, most jobs are scheduled
immediately, resulting in minimal queuing delay and limited in-
fluence of scheduling policy. In contrast, under high load, right
yellow-marked region in Fig. 10(a), when aggregate job demand ex-
ceeds available nodes, the ML-guided policy reduces power spikes
per timestep by prioritizing smaller jobs over larger ones.

To evaluate the broader impact of scheduling policies on the
overall efficiency of the system, we analyze the policies for a time
window with higher resource constraints and variable job sizes.
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Figure 10: Comparison of various scheduling policies. (a) Un-
der high system load, ML-guided policy yields lower power
per timestep. and (b) It also improves overall system effi-
ciency across multiple metrics (lower is better).

Figure 10(b) shows consistent trends across datasets: (1) the ML-
guided policy achieves the best trade-off across multiple objectives–
including lower average wait time, turnaround, and energy con-
sumption, compared to the baseline. (2) Under high load, ML-
guided policy consistently yields the lowest job turnaround time
and energy-delay product, increasing science per energy spent.

5 Discussion and Future Work
The presented capabilities show a novel way of utilizing operational
data — now generally collect during operation — to better under-
stand and predict the behavior of our systems. This work allows
studying scenarios and extensions for system- and simulation-needs
expanding potential use-cases. We enable integration of arbitrary
scheduler and job-trace datasets and allow replay and rescheduling
to study their characteristics and exercise what-if scenarios. We
are able to seamlessly interact with system specific cooling models
which can be easily generated [22], while the power simulation
is not a mere aggregation of synchronized trace information, but
an accurate computation of component behavior [42]. The work
presented allows any user to model their system with the existing

tools, and study use-cases based user behavior, job-mix, and the
scheduler, extending beyond system, cooling, and location.

The examples show this clearly: the use-cases presented in Sec. 4.1
and Sec 4.2 demonstrate what impact scheduling makes on the
power response of a system. Sec. 4.4 shows how S-RAPS allowed
to prototype new algorithms, potentially avoiding averse effects.

For future work, identified gaps are the current need of job traces,
and power profiles. Figure 5 showed that with perfect information
of the job profile, we can accurately predict the systems power
swings. However, if this information is not available, we have to
rely on user estimates, or fingerprinting and prediction, which are
prime candidates for future work.

6 Conclusion
This work provides the first data center digital twin extended
for scheduling. We show how we build on a community-driven
approach, with the ExaDigiT effort, and integrate scheduling ca-
pability into this interacting systems of simulators. We present
Scheduled-RAPS (S-RAPS) the scheduler extension of ExaDigiT’s
RAPS and show how we can study scheduler-induced what-if sce-
narios and observe the connected digital twin simulations.

This is a first-of-its-kind study, which demonstrates significant
improvements over the state of the art, by enabling other schedulers
to tie into DCDTs via S-RAPS, as shown for the two external sched-
uling simulators, ScheduleFlow and FastSim. Finally, we provided
case-studies on how the work is used to simulate a scheduling power
dip using FastSim, we showed how S-RAPS can be used to study
incentive structures for schedulers and showed how ML-guided
schedulers can be studied using S-RAPS as interface to digital twins.
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