

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

Source Attribution of Methane Enhancements at the Southern Great Plains Atmospheric Radiation Measurement Site Field Campaign Report

X-M Hu

Q Wang

November 2025

DISCLAIMER

This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Source Attribution of Methane Enhancements at the Southern Great Plains Atmospheric Radiation Measurement Site Field Campaign Report

X-M Hu
Q Wang
Both at University of Oklahoma

November 2025

How to cite this document:

Hu, X-M, and Q Wang. Source Attribution of Methane Enhancements at the Southern Great Plains Atmospheric Radiation Measurement Site Field Campaign Report. U.S. Department of Energy, Atmospheric Radiation Measurement User Facility, Richland, Washington.
DOE/SC-ARM-25-027.

Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research

Acronyms and Abbreviations

AFO	animal feeding operation
ARM	Atmospheric Radiation Measurement
PBL	planetary boundary layer
ppb	parts per billion
SGP	Southern Great Plains

Contents

Acronyms and Abbreviations	iii
1.0 Summary.....	1
2.0 Results	1
3.0 Publications and References	2

1.0 Summary

Tower data from 2017 to 2020 revealed that the U.S. Department of Energy's Southern Great Plains (SGP) Atmospheric Radiation Measurements (ARM) observatory in Oklahoma exhibited significant CH₄ enhancements compared to other U.S. tower sites. On average, near-surface CH₄ at the ARM site was higher, had larger diurnal and seasonal variations, and had sharper near-surface increases at night compared to other tower sites in the U.S. A field campaign was conducted in June 2024 to identify and quantify the surrounding CH₄ emission sources by two researchers from the University of Oklahoma.

During the campaign, a mobile measurement was conducted using a LI-COR 7810 tracer gas analyzer mounted on a vehicle during June 23-26, 2024 near the SGP site (within 7 km distance). We sampled CH₄ along predefined routes surrounding a suspected source, i.e., a large animal feeding operation (AFO) farm 5.8 km northwest of the SGP ARM site. Measurements were collected between 04:30 and 09:00 local time when the planetary boundary layer (PBL) was shallow, increasing sensitivity to surface emissions. Driving speed was kept below 5 mph to minimize pressure-related artifacts. CH₄ concentrations downwind of the AFO exceeded 6000 ppb on the early morning of June 26, corresponding to an emission rate of $\sim 95 \text{ kg}\cdot\text{hr}^{-1}$ estimated using the mass balance method. Additional sources identified during the campaign include nearby open-range cattle and leaks from a nearby natural gas pipeline.

2.0 Results

We used long-term (2012-2022) tower data to pinpoint wind directions associated with high surface CH₄ anomalies at the SGP site. The data pointed to two primary sectors: 140°-240° and a narrow sector around 300°. Guided by this analysis, we conducted a targeted mobile field campaign during June 23-26, 2024, to investigate these areas.

Investigation of the 300° wind sector led us to a large AFO with around 15,000 cattle, located 5.8 km from the SGP C1 tower. Mobile transects downwind of this AFO on June 26 recorded extreme CH₄ enhancements far exceeding background levels. We measured concentrations exceeding 6000 ppb downwind of the wastewater pond, over 4000 ppb near the open lots, and greater than 3000 ppb adjacent to the composting area. Using a mass balance method, we calculated a minimum emission rate from the AFO of 92 kg·hr⁻¹. This is the critical finding of our investigation: the emission rate from this single, uninventoried facility is larger than the 84 kg·hr⁻¹ reported in the U.S. Environmental Protection Agency Greenhouse Gas Inventory for the entire 625 km² grid cell. A comparable study by [Hu et al. \(2025\)](#) estimated a emission rate of 65 kg·hr⁻¹ from the same facility on June 23, based on plume observations and simulations during the morning boundary-layer transition. Taken together, these independent estimates consistently demonstrate that this AFO is a dominant, previously missing source capable of explaining a significant portion of the SGP CH₄ anomaly.

The campaign further revealed that this hotspot sector contains multiple sources. We also detected a significant natural gas pipeline leak with concentrations spiking to 40,000 ppb. Our survey further accounted for the secondary anomaly from the 140°-240° sector, which we attribute to open-range cattle (~100 head). Although not exceptionally strong sources in absolute terms, their close proximity to the SGP C1 tower allows their emissions to cause high CH₄ enhancements during stable nights. Nevertheless, the AFO is clearly the dominant driver. In conclusion, the SGP CH₄ anomaly is driven by potent, local

agricultural and fossil fuel emissions that are unaccounted for in current inventories and amplified by the region's characteristic nocturnal stability.

3.0 Publications and References

Hu, X-M, W Honeycutt, C Wang, B Weng, B Zhou, and M Xue. 2025. "Observation and simulation of methane plumes during the morning boundary layer transition." *Journal of Geophysical Research – Atmospheres* 130(7): e2024JD042317, <https://doi.org/10.1029/2024JD042317>

Wang Q-Y, and X-M Hu. 2024. "Examination of Meteorological Factors and Emissions Sources Leading to the Large Methane (CH₄) Enhancements at the ARM Site in Oklahoma." Presented at the 2024 American Geophysical Union annual meeting.

www.arm.gov

Office of Science