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Executive Summary 
The primary goals of this project are exploring hidden geothermal resources in the U.S.A. and 
designing profitable enhanced geothermal systems (EGS). Many processes and parameters control 
geothermal exploration and energy production from geothermal fields. Diverse datasets (e.g., 
geology, geochemistry, geophysics, satellite, airborne geophysics) are available to help 
characterize subsurface geothermal conditions. Sparse and multi-scale characteristics of these 
datasets prohibit properly leveraging these datasets for geothermal exploration and profitable EGS 
design. Recent advancements in machine learning (ML) promise to resolve these issues. The 
tremendous challenges and risks of geothermal exploration and production bring the demand for 
novel ML methods and tools that can (1) analyze large field datasets, (2) assimilate model 
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning 
(between sites with different exploratory levels), (5) extract hidden geothermal signatures in the 
field and simulation data, (6) label geothermal resources and processes, (7) identify high-value 
data acquisition targets, and (8) guide geothermal exploration and production by selecting optimal 
exploration, production, and drilling strategies. 
To address these necessities, ML-based geothermal resources exploration and enhanced 
geothermal systems (EGS) design tools have been developed. The exploration tool is called 
GeoThermalCloud and EGS design tool is called GeoDT-ML. GeoThermalCloud 
(https://github.com/SmartTensors/GeoThermalCloud.jl) utilizes a LANL unsupervised ML 
platform called SmartTensors (https://tensors.lanl.gov/) to automate data analyses and 
interpretations by extracting hidden signatures to identify geothermal prospects. Also, it enables 
the identification of critical measurements needed to identify geothermal resource signatures. 
Alternatively, GeoDT-ML 
(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS) is an ML-based 
alternative to GeoDT (https://github.com/GeoDesignTool/GeoDT.git), a fast, simplified multi-
physics solver to evaluate EGS project designs in uncertain geologic systems. GeoDT-ML 
leverages recent advances in deep learning and high-performance computing. It is a faster and 
simpler version of GeoDT. To make this project a success, we used capabilities of LANL, PNNL, 
Google, Stanford, and Julia Computing.  
We analyzed eight datasets of the U.S.A. using GeothermalCloud and demonstrated potential 
highly prospective geothermal resources and identified key factors defining highly prospective 
sites. The first data set includes 44 locations in southwest New Mexico and 18 geological, 
hydrogeological, geophysical, geothermal, geochemical attributes. We defined low- and medium-
temperature hydrothermal systems and discovered a new highly prospective site.  The second data 
set analyzed 18 shallow water chemistry attributes at 14,342 locations in the Great Basin. It 
demarcated modestly, moderately, and highly prospective sites including key attributes for each 
type of prospectivity. The third data set analyzed Utah FORGE data including satellite (InSAR), 
geophysical (gravity, seismic), geochemical, and geothermal attributes. Here, we performed 
prospectivity analysis to identify future drilling locations using geological, geochemical, and 
geophysical attributes. Maps of temperature at depth and heat flow are constructed based on the 
available data. Prospectivity maps were generated, and drilling locations were proposed for future 
geothermal field exploration. The fourth data set analyzed 21 attributes at 120 locations in 
Tularosa Basin, New Mexico; data comes from past play fairway analyses in this region. ML 
analyses identified geothermal signatures associated with modestly, moderately, and highly 

https://github.com/SmartTensors/GeoThermalCloud.jl
https://tensors.lanl.gov/
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS
https://github.com/GeoDesignTool/GeoDT.git
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hydrothermal systems. We also defined dominant attributes and spatial distribution of the 
geothermal signatures. The fifth, sixth, seventh, and eighth datasets include Tohatchi Springs, 
New Mexico, Hawaii, Brady site, Nevada, and EGS Collab, respectively.  
Moreover, we coupled GeothermalCloud and magnetotellurics data to pinpoint drilling locations 
for developing geothermal projects in the Tularosa Basin, New Mexico. GeothermalCloud found 
potential prospective locations for geothermal resources near White Sands Missile Range and 
McGregor Range at Fort Bliss. Magnetotellurics data determined the potential depth (~1800m) of 
geothermal prospects at McGregor Range based on apparent resistivity structures/layers in the 
subsurface. The McGregor Range consists of three resistivity layers and two resistivity structures. 
Magnetotellurics data also helps identify that the western portion of the McGregor Range has thick 
and low-resistivity earth materials. The low resistivity to the west is most likely for a fault system. 
Assuming temperature is consistent with a geothermal reservoir, the west-central part of the 
McGregor Range has the highest geothermal potential because of the increase in porosity and 
associated permeability attributed to the interpreted fault system. 
Also, we devised a coupling strategy between a process model and GeothermalCloud to 
characterize hydrogeological conditions and geothermal conditions, respectively. The process 
model characterizes hydrogeological and geothermal conditions on highly prospective geothermal 
sites provided by GeothermalCloud.  We developed a physics-informed neural network (PINN) 
version of the Burns equation that can be easily coupled with GeothermalCloud.  
Furthermore, we performed an optimal design decision maximizing the economic value of an EGS 
power plant. This study optimized the range of well spacing between injection and production 
wells maximizing net present value in dollars (NPV). For this task, we used the GeoDT to simulate 
the Utah FORGE EGS development cycle from the initial well design to the end of production. 
Next, we accomplished another crucial task, which is predicting permeability of geothermal 
reservoirs. Predicting permeability of geothermal reservoirs is a non-trivial task because of huge 
computational runtime of simulation and lack of measurements. To avoid these limitations, we 
used easy-to-measure chemical concentrations in the subsurface as measurement data and 
convolutional neural network based ML model of a high-fidelity model. Next, we predicted 
permeability using Markov chain Monte Carlo simulation. We found that Markov chain Monte 
Carlo simulation predicts permeability with a high certainty if the prediction zone in the simulation 
area has chemical concentration data.    
Finally, we analyzed the DOE funded INGENIOUS and GeoDAWN projects data. For discovering 
hidden geothermal systems in the Great Basin, the INGENIOUS project accumulated old data, 
collected new data, and released them in 2022. The dataset includes a total of 24 geological, 
geophysical, and geochemical attributes. Data resolution and scale significantly vary prohibiting 
an appropriate usage. To avoid such limitations, we brought all data in the same resolution and 
scale by applying the inverse distance weighting interpolation technique for predicting data in 
unsampled locations. Subsequently, we analyzed LiDAR data of the GeoDAWN project. We 
received data in tiles format. The DOE’s overarching goal is to use ML on LiDAR data for finding 
favorable geological structures (e.g., step up faults in Brady, Nevada). To serve the purpose, we 
need to label favorable geologic structures that correspond to LiDAR data. We wrote an algorithm 
to label the LiDAR data with the favorable geologic structures.      
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https://github.com/SmartTensors/GeoThermalCloud.jl  

Chapter 1: GeoThermalCloud and Its Usage 

GeoThermalCloud 

Introduction 
The project is motivated by the challenges, risks, and costs associated with geothermal 
exploration and production1. Many processes and parameters impacting geothermal 
conditions are poorly understood. Diverse datasets are available to help characterize 
subsurface geothermal conditions (public and proprietary; satellite, airborne surveys, 
vegetation/water sampling, geological, geophysical, etc.). Yet, it is unclear how to properly 
leverage these datasets for geothermal exploration due to an incomplete understanding of 
how physical processes impacting subsurface geothermal conditions are represented in these 
observations. Recent advancements in machine learning (ML) promise to resolve these 
issues1. 
The tremendous challenges and risks of geothermal exploration and production bring the 
demand for novel ML methods and tools that can (1) analyze large field datasets, (2) 
assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4) 
perform transfer learning (between sites with different exploratory levels), (5) extract hidden 
geothermal signatures in the field and simulation data, (6) label geothermal resources and 
processes, (7) identify high-value data acquisition targets, and (8) guide geothermal 
exploration and production by selecting optimal exploration, production, and drilling 
strategies2. Our goals and work under Phases 1 and 2 (as proposed) of this project address 
all these needs. 
Under Phase I&II, we have developed GeoThermalCloud and GeoDT-ML. 
GeoThermalCloud is an unsupervised ML-based tool to discover and extract new 
(unknown/hidden) geothermal signatures in existing site, synthetic, and regional datasets. 
Our ML analyses also identified high-value data acquisition strategies that can reduce 
geothermal exploration/production costs and risks. Moreover, GeoThermalCloud 
categorized geothermal data, which is applied to generate geothermal data labels (e.g., 
geothermal resource types). GeoThermalCloud allows for the treatment of both public and 
proprietary datasets. This is an essential feature considering the high sensitivities associated 
with using proprietary data. Moreover, the GeoThermalCloud framework includes a series 

https://github.com/SmartTensors/GeoThermalCloud.jl
https://www.zotero.org/google-docs/?EEkpfW
https://www.zotero.org/google-docs/?MQ24ZL
https://www.zotero.org/google-docs/?bbQkV4
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of advanced pre-processing, post-processing, and visualization tools, which tremendously 
simplify its application for real-world problems. These tools make the ML results 
understandable and visible even for non-experts. Thus subject-matter expertise is not a 
critical requirement  during the training phase of the GeoThermalCloud framework; 
however, their opinions are useful for verifying the outputs.  
GeoDT-ML is an enhanced geothermal system (EGS) prospecting tool. It is an ML version 
of GeoDT3–6. GeoDT is a very fast modeling tool to run thousands of realization tweaking 
reservoir, drilling, and geothermal plant parameters. The main mechanism is to use 
GeoThermalCloud for geothermal resources exploration to find favorable geothermal 
locations and then use GeoDT-ML for exploring EGS prospectivity. Figs 1.1.1 and 1.1.2 
demonstrate the schematics of GeoThermalCloud and GeoDT-ML, respectively.  
We have used GeoThermalCloud on ten geothermal datasets. Eight datasets include site/real 
data, including a large and sparse dataset of the Great Basin, and two datasets are synthetic 
data. The analyses found critical information that could not be found using supervised ML 
or exploratory statistical analyses. Most of the data and analyses are available on GitHub as 
well. Obtained results can be reproduced and further expanded by adding additional data. 
Practitioners and researchers are welcome to utilize GeoThermalCloud to solve other 
geothermal problems. GeoDT-ML can be used for studying FORGE EGS prospectivity. 

Fig. 
1.1.1: Specific components of developers, users, and subject matter experts in the  
GeoThermalCloud platform.  

https://www.zotero.org/google-docs/?lvhdPt
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Fig. 1.1.2: Specific components of developers, users, and subject matter experts in the 
GeothermalCloud and GeoDT-ML platforms.  

Capabilities 
GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating 
model simulations (large inputs and outputs), (3) processing sparse datasets, (4) performing 
transfer learning (between sites with different exploratory levels), (5) extracting hidden 
geothermal signatures in the field and simulation data, (6) labeling geothermal resources and 
processes, (7) identifying high-value data acquisition targets, and (8) guiding geothermal 
exploration and production by selecting optimal exploration, production, and drilling 
strategies. The GeoThermalCloud is an open-source tool available at 
https://github.com/SmartTensors/GeoThermalCloud.jl (a part of our SmartTensors 
framework; http://tensors.lanl.gov, https://github.com/SmartTensors)2 and its counterpart 
docker image is https://hub.docker.com/r/bulbulahmmed/geothermalcloud-v1. 

Methods 
ML methods, in general, can be subdivided into three categories: supervised, physics-
informed, and unsupervised. The supervised methods require attributes and corresponding 
labels of the analyzed data7. The labeling should be done by subject-matter experts who can 
identify, for example, locations with high-, intermediate-, and low-temperature geothermal 
prospectivity or specific geologic features such as fault offsets. The supervised methods are 
then applied to learn geothermal prospectivity based on the available data. However, the 
successful training of supervised methods requires large, continuous (without data gaps), 
non-noisy (with small measurement errors) training datasets that are typically not available 
for geothermal exploration. In essence, the supervised methods cannot discover something 
that is not already known and provided as labels in the training dataset. The supervised 
methods are highly efficient to process large datasets and find out how the processed data 
can be categorized. For example, they can be trained to recognize images of cats and dogs; 

https://github.com/SmartTensors/GeoThermalCloud.jl
https://github.com/SmartTensors/GeoThermalCloud.jl
https://github.com/SmartTensors/GeoThermalCloud.jl
http://tensors.lanl.gov/
http://tensors.lanl.gov/
https://github.com/SmartTensors
https://github.com/SmartTensors
https://www.zotero.org/google-docs/?DHnFwu
https://hub.docker.com/r/bulbulahmmed/geothermalcloud-v1
https://www.zotero.org/google-docs/?TYrtMR
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however, they will not recognize horses if they have not been trained already to identify 
them. Furthermore, the supervised ML methods are sensitive to noise in the analyzed data or 
the so-called “adversarial examples”8 where small random noise, undetectable for the human 
eye,  can fool the detection capabilities of these methods. All of these features make the 
application of supervised ML methods challenging for real-world science applications.  
Commonly used supervised methods include deep neural networks6,9, convolutional neural 
networks10, recurrent neural networks11, and random forest12. 
Physics-informed ML (PIML) methods also learn from data as the supervised methods do, 
but they also include preconceived science knowledge through equations and models 
representing physics laws, constitutive relationships, and processes. Physics information can 
be (1) directly embedded in the ML framework13 or (2) added as penalties in the ML loss 
minimization process14. However, the physics-informed neural networks (PINN) are 
problem specific and not general like the traditional supervised deep neural networks. 
Therefore, the construction PINN needs subject-matter expertise related to the analyzed 
problem. Still, PIML analyses have better efficiency, accuracy, and robustness compared to 
the traditional ML analyses. In contrast, the unsupervised ML techniques extract information 
from existing datasets without any prior labeling or subject-matter preprocessing. The 
unsupervised ML is applicable to discover unknown features and unmix mixed signals 
present in the processed data.  
GeoThermalCloud utilizes our novel, open-source, LANL-developed, patented ML methods 
and computational tools. All these methods are distributed as SmartTensors 
(http://tensors.lanl.gov,  https://github.com/SmartTensors). SmartTensors is a toolbox for 
unsupervised and physics-informed ML based on matrix/tensor factorization constrained by 
penalties enforcing robustness and interpretability (e.g., nonnegativity; physics and 
mathematical constraints; etc.). SmartTensors has already been successfully applied to 
analyze diverse datasets related to a wide range of problems, from COVID-1915 to wildfires 
and text mining. Also, the SmartTensors framework can handle big data and has already 
been demonstrated to perform tens of TBs of data using DOE supercomputers. 
The two most commonly used ML algorithms in SmartTensors are nonnegative 
matrix/tensor factorization methods coupled with customized k-means clustering (NMFk and 
NTFk). They perform nonnegative matrix/tensor factorization coupled with customized k-
means clustering1,16. NMFk and NTFk are capable of identifying (i) the optimal number of 
hidden signatures in data, (ii) the dominant set of attributes in data that correspond to 
identified hidden signatures, and (iii) locations associated with each hidden signature. 
All datasets are formed by directly observable quantities, while the underlying processes or 
data signatures usually remain unseen, hidden, or latent16. These hidden signatures (or 
features/signals) can be either impossible to measure directly or are simply unknown. For 
example, let us assume that a series of microphones are placed in a noisy ballroom where 
many people are talking. The collected data records the mixtures of voices, sounds, and 
noises. The latent signatures are the individual voices that cannot be recorded separately but 
can be extracted from the collected data. Extracting latent signatures reduces the 
dimensionality of the data and defines low-dimensional subspaces17 that represent the entire 
dataset. After the extraction, the obtained information is post-processed by subject-matter 
experts to identify the physical meaning or the origin of the extracted signatures. 

https://www.zotero.org/google-docs/?Z5gRHa
https://www.zotero.org/google-docs/?CbbtHZ
https://www.zotero.org/google-docs/?DfgEth
https://www.zotero.org/google-docs/?4VmH7z
https://www.zotero.org/google-docs/?C4047W
https://www.zotero.org/google-docs/?ybdrIY
https://www.zotero.org/google-docs/?U5HIGb
http://tensors.lanl.gov/
https://github.com/SmartTensors
https://www.zotero.org/google-docs/?EodCS3
https://www.zotero.org/google-docs/?uE4ovN
https://www.zotero.org/google-docs/?sdTda6
https://www.zotero.org/google-docs/?FRqgZG
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Similarly, our unsupervised ML techniques have been applied here to extract latent 
signatures and hidden (mixed) physical processes embedded in large, diverse geothermal 
datasets. Hidden (latent) signatures provide a low-dimensional and compressed 
representation of the processed dataset. They can also be viewed as basis vectors providing 
optimal data projection. In the case of geothermal applications, these signatures typically 
represent information about a series of physical processes that occur in observable and/or 
simulated datasets. These signatures can be multi-dimensional capturing processes occurring 
in spatiotemporal space and captured by a set of diverse attributes. Geothermal attributes we 
have processed in this report include temperature, gradients, geothermometers, conductivity, 
permeability, fluxes, fracture densities, in-situ stresses, etc.  
To discover hidden signatures and their optimal number in large geothermal datasets, NMFk 
and NTFk are at the forefront among various unsupervised ML methods such as nonnegative 
matrix factorization (NMF)17, principal component analysis (PCA)18, independent 
component analysis (ICA)19, singular value decomposition (SVD)20, nonnegative tensor 
factorization (NTF)21, and Gaussian process/mixture modeling22. In contrast, with traditional 
NMF17, NMFk allows for automatic identification of the optimal number of signatures 
(features) present in the data1,2,23. The nonnegativity constraint makes the decomposed 
matrices easier to interpret than PCA, SVD, and ICA because the extracted signatures are 
additive. Moreover, NMFk and NTFk can handle huge (TBs), real, categorical, and missing 
data. Dealing with missing data is challenging or impossible for other supervised and 
unsupervised ML methods. Even more importantly, the missing data (some or all of it) can 
be reconstructed from available data using the obtained NMFk and NTFk results. Our ML 
methods also provide estimates of uncertainties associated with the estimated missing data. 
All of these features of our ML methods make them very suitable for geothermal ML 
analyses.   

Nonnegative matrix/tensor factorization 
Detailed descriptions of our novel NMFk and NTFk algorithms are provided in our papers1,16. 
Here, we give just a high-level description of the NMFk  and NTFk methodologies to support 
the discussion of geothermal analyses in this report. NMFk performs matrix factorization of 
a data matrix, 𝑋𝑋𝑚𝑚×𝑛𝑛, where the m rows represent measurement locations, and the n columns 
are the values of the geothermal attributes. The goal of NMFk is to find the optimal number 
of signatures k that describe the analyzed dataset. This is accomplished by matrix 
factorization, which can be represented as using:  

 𝑋𝑋 ≅  𝑊𝑊 × 𝐻𝐻 (1.1) 
where 𝑊𝑊𝑚𝑚×𝑘𝑘 is an “attribute” matrix characterizing the significance of attributes and 𝐻𝐻𝑘𝑘×𝑛𝑛 a 
“location” matrix captures the importance of locations and their spatial association. It is 
important to note that all the elements of matrices W and H are unknown. The number of 
signatures k is also unknown. The matrix factorization in (1) provides an approximate 
representation of the data X. To solve for all the unknowns, NMFk performs a series of matrix 
factorization with random initial guesses for W and H elements and for a range of values of 
k; theoretically, k can range between 2 and min(m,n). For a given number of signatures 𝑘𝑘, 
Equation 1 is solved iteratively by minimizing the reconstruction error 𝑂𝑂(𝑘𝑘): 

 𝑂𝑂(𝑘𝑘)  = || 𝑋𝑋 −  𝑊𝑊 × 𝐻𝐻||𝐹𝐹 (1.2) 

https://www.zotero.org/google-docs/?1wNkdm
https://www.zotero.org/google-docs/?ybE1sK
https://www.zotero.org/google-docs/?5KW73A
https://www.zotero.org/google-docs/?ahBvLW
https://www.zotero.org/google-docs/?vDQiUB
https://www.zotero.org/google-docs/?3Z4qQA
https://www.zotero.org/google-docs/?1T5fnf
https://www.zotero.org/google-docs/?RBpF6r
https://www.zotero.org/google-docs/?8dnV7J
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by constraining the W and H elements to be greater or equal to zero (nonnegative), and F 
defines the Frobenius norm24. Under the NMFk algorithm, NMF is executed numerous times 
(typically 1,000), which generates a series of solutions for W and H matrices for a given k 
value. The resulting multiple 𝐻𝐻 solutions are clustered into 𝑘𝑘 clusters using a customized 𝑘𝑘-
means clustering1,16. The average silhouette width 𝑆𝑆(𝑘𝑘) based on cosine norm is computed 
for all k clusters. This metric measures how well the random NMF solutions are clustered for 
a given value of 𝑘𝑘. The values of 𝑆𝑆(𝑘𝑘) theoretically can vary from -1 to 1. 
These operations are repeated for a series of k values. The optimal number of signatures, k, 
is estimated on how the reconstruction error𝑂𝑂(𝑘𝑘) and the average silhouette width 𝑆𝑆(𝑘𝑘) vary 
with the increase of k. The reconstruction error decreases as k increases. The average 
silhouette width behavior is more complicated; 𝑆𝑆(𝑘𝑘)generally declines as k increases from 1 
to -1. However, 𝑆𝑆(𝑘𝑘) values frequently spike up for specific k values, indicating that these k 
values are potentially optimal. In an ideal case, a given k value is considered optimal when 
adding another signature does not significantly improve the reconstruction of X (i.e., lower 
𝑂𝑂(𝑘𝑘)) and does not lower 𝑆𝑆(𝑘𝑘). In practice, a solution with 𝑆𝑆(𝑘𝑘) greater than 0.5 and the 
lowest 𝑂𝑂(𝑘𝑘) value can be chosen as an optimal solution. The solutions with k values less 
than the optimal value and S(k) values > 0.5 are acceptable; they provide underfitting 
representations of the data matrix X. All the solutions with k values greater than the optimal 
value are not acceptable; they provide overfitting representations of the data matrix X.  
We listed the benefits of NMFk over similar unsupervised ML tools above. PCA is the closest 
similar tool to NMFk. PCA factorizes the data matrix X  into score (S) and principal 
component  (P) matrices. The factorization can be represented as: 

Fig. 1.1.3: ML of faces using NMF and PCA. 
Nonnegativity constraint provides additive, 
sparse and interpretable results where 
facies features such as eyes and noses are 
well defined. Interpretation of PCA results is 
challenging (after Lee & Seung, 1999). 

= 1 
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X 
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https://www.zotero.org/google-docs/?rrudjT
https://www.zotero.org/google-docs/?qXuu2j
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𝑋𝑋 ≅  𝑆𝑆𝑆𝑆  (1.3) 

S is a diagonal matrix. As in NMF, Equation 3 is solved iteratively by minimizing the 
following function: 

𝐿𝐿 = | |𝑋𝑋 −  𝑆𝑆𝑆𝑆| |𝐹𝐹   (1.4) 

PCA searches for linear combinations in the data by projecting each data point onto an 
optimal set of principal components (PCs) to obtain a low-dimensional representation of data 
while preserving maximum data variation. PCs are ordered by the magnitude of data variance 
as captured by the S diagonal elements. 
Even though NMF and PCA are mathematically similar, the ML results obtained by both 
methods are very different. For instance, both NMF and PCA can reconstruct human faces 
very well (Fig. 1.1.3). Both methods extracted 49 basic facial features (can also be called 
dictionaries, basis vectors, or eigenvectors; the matrices on the left) needed to reconstruct the 
entire training set of ~1,000 faces (i.e., both methods performed data dimensionality 
reduction from ~1,000 to 49). However, the nonnegativity constraints provide additive, 
sparse, and interpretable results where facial features such as eyes and noses are well defined 
(Fig. 1.1.3; W matrix; top left). NMF face reconstruction is obtained by adding a series of 
dominant features shown as black squares in the H matrix. In contrast, the interpretation of 
PCA results is challenging. The first face (upper left corner of matrix P) is the average face 
of the training set, and the reconstruction of face X is obtained by adding and subtracting a 
series of facies features (in P) based on the weights (in S; red defines negative values or 
feature subtraction; black represents positive values or feature addition). 
In addition to matrices, our ML methods can process multi-dimensional datasets, i.e., tensors. 
Most of the geothermal data are multi-dimensional. The data indices can be space coordinates 
and time for each spatiotemporal location, and there might be numerous observables coming 
from different data sources (streams). Similarly, geothermal model outputs are multi-
dimensional. There is a limited number of ML methods that can process multi-dimensional 
datasets, and our novel nonnegative tensor factorization method coupled with k-means 
clustering (NTFk) is at the forefront. The factorization process converts a data tensor (labeled 
as X in Fig. 1.1.4) into a smaller core tensor (labeled as G in Fig. 1.1.4) and three matrix 
factors for each dimension (labeled as H, W, and V in Fig. 1.1.4). Matrix factors represent 
signatures in different dimensions. In the example presented in Fig. 1.1.4, H, W and V contain 

g. 1.1.4: Example factorization of a data tensor X into 
    G    f  f  
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5, 4, and 3 signatures, respectively. G defines how these signatures occurring in different 
dimensions are mixed to reproduce the original data tensor. The tensor factorization is again 
achieved through solving a minimization problem and the estimation of the optimal number 
of signatures in each dimension is performed using customized k-means clustering21,25. 

Inverse Distance Weighting  
We performed IDW interpolation to determine attributes at unknown locations using highly 
variable data. IDW is efficient, intuitive, and provides relatively accurate data for a large 
number of points. The output value of an unknown location is attributed to the sample points 
located near it. Sample points, within a specified radius, have a greater “weight” associated 
with them making points that are closer to one another are more alike than those that are far 
apart26,27. Since the weights of the sample points are proportional to the inverse of the 
distance raised to a power value p, as the distance from an unknown point increases, the 
weight decreases quickly26,27. The formula of IDW is given by: 

 𝑧𝑧𝑝𝑝 =
∑𝑛𝑛
𝑖𝑖=1 � 𝑧𝑧𝑖𝑖

𝑑𝑑𝑖𝑖
𝑝𝑝�

∑𝑛𝑛
𝑖𝑖=1 � 1

𝑑𝑑𝑖𝑖
𝑝𝑝�

 (1.5) 

where zp is the value of the unknown point, zi is the value of the known point, dip is the 
distance to the known point, and n is a fixed number of closest points.  

Magnetotellurics (MT) 
MT is a passive geophysical technique used for measuring electrical resistivity structures in 
the subsurface28–31. Solar winds and lightning from thunderstorms cause natural variations in 
the earth’s magnetic field that penetrate the subsurface and induce an electrical current29. The 
electromagnetic fields (EM) from an MT survey are recorded at frequencies generally 
ranging from 0.001 kHz to 10 kHz32. The low-frequency response (<1 Hz) originates from 
solar winds, and the high-frequency response originates from worldwide lightning 
strikes29,32. 
In MT data, a time series of the two components of the electric field (Ex and Ey) and three 
components of the magnetic field (Hx, Hy, and Hz) are measured on the earth’s surface (Fig. 
1.1.5). The ratio between the electric and magnetic field components (E/H) is called the 
impedance tensor (Z). As a proportion of the electric and magnetic fields are used to compute 
the impedance tensor. The impedance tensor, Z, is used to determine the apparent resistivity 
and phase29,32. The following equations use the components of Z to calculate apparent 
resistivity and phase. Both apparent resistivity and phase are commonly plotted as a function 
of frequency for MT data analysis to decipher subsurface structures.  

https://www.zotero.org/google-docs/?54Kcfg
https://www.zotero.org/google-docs/?4QPM4r
https://www.zotero.org/google-docs/?yq6xNq
https://www.zotero.org/google-docs/?utyXJ2
https://www.zotero.org/google-docs/?YGlIzk
https://www.zotero.org/google-docs/?kTr9Sf
https://www.zotero.org/google-docs/?g3FEIa
https://www.zotero.org/google-docs/?qsDCWc
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Fig. 1.1.5: Schematic of the arrangement and setup of electrodes and coils in the field during 
MT data acquisition (modified from Grimm et al., 202133). 

Burns’ Analytical Equation 
While NMFk is effective for defining potential geothermal resources and identifying their 
spatial location, for small site data, regional geothermal and hydrogeologic estimates are 
required for developing geothermal fields. Regional conditions dictate the sustainability of 
geothermal fields. For instance, information on the advective heat flow will provide insight 
into the sustainability of the heat source to the aquifer. To capture regional hydrogeological 
and geothermal conditions, Burns, et al., 2015 formulated a 1D analytical solution, which 
evaluates geothermal and hydrogeologic controls on regional groundwater temperature 
distribution 𝑇𝑇(𝑠𝑠) (Burns, et al., 201534; Eq. 39). 

𝑇𝑇(𝑠𝑠)  =  [𝑇𝑇𝐿𝐿𝐿𝐿0 + 𝛥𝛥𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝛥𝛥𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣] + [𝑇𝑇0 − 𝑇𝑇𝐿𝐿𝐿𝐿0 − 𝛥𝛥𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝛥𝛥𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣]𝑒𝑒𝑓𝑓0𝑠𝑠 (6) 

where 𝑇𝑇(𝑠𝑠) is temperature at space 𝑠𝑠, 𝑇𝑇𝐿𝐿𝐿𝐿0  is temperature at land surface at 𝑠𝑠 = 0, 𝑇𝑇0 is the 
temperature  at 𝑠𝑠 = 0 where groundwater flows into domain, 𝛥𝛥𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the change in 
temperature across the vadose zone required to conduct the heat flow entering the aquifer at 
the basement, 𝛥𝛥𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the change in temperature across the vadose zone to conduct the 
viscous heat generated, and 𝑓𝑓0is a function of aquifer width and volumetric flux. 

Input parameters in Burns equation include land surface temperature, groundwater flux, 
hydraulic head, vadose thermal conductivity, depth to water, and basal heat flux. The outputs 
include aquifer temperature, viscous heat flux, vadose heat flux, and advective heat flux that 
assist quantify components of heat flux that contribute to aquifer temperature. 
GeoThermalCloud includes both analytical solution and equivalent neural network based 
ML models.  

https://www.zotero.org/google-docs/?VH7xji
https://www.zotero.org/google-docs/?D7zZPC
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Performance Metrics 
Besides reconstruction error and silhouette width, we also used R2 to determine the accuracy 
of prediction. 

 𝑅𝑅2 = 1 −
∑𝑛𝑛
𝑖𝑖=1 (𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

∑𝑛𝑛
𝑖𝑖=1 �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖�

2 (1.7) 

 
where 𝑛𝑛, 𝑦𝑦𝑖𝑖, 𝑦𝑦�𝑖𝑖, and 𝑦𝑦𝑖𝑖 represent the number of data points, actual data, predicted data, and 
mean of data, respectively.  

Case Studies 
ML methods embedded in the GeoThermalCloud have been extensively tested and 
validated against various datasets (Fig. 1.1.6)2,35. Outputs of these applications have been 
published in presentations, conference papers, and peer-reviewed papers. The analyzed ML 
applications are 

 

Fig. 1.1.6: Locations of seven out of 8 analyzed site datasets by the 
GeoThermalCloud framework. The other site dataset is in Hawaii, not shown 
here. 

1. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342 
locations. This work extracted hidden geothermal signatures associated with low-, 
medium-, and high-temperature hydrothermal systems, their dominant characterization 
attributes, and spatial distribution within the study area36. The analyses are based on the 
public data available on the Nevada Bureau of Mines and Geology website. 

https://www.zotero.org/google-docs/?NU6Pf2
https://www.zotero.org/google-docs/?3aW1YC
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2. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and 
identified low- and medium-temperature hydrothermal systems; found dominant 
attributes and spatial distribution of extracted hidden hydrothermal signatures; 
demonstrated blind predictions of the regional physiographic provinces1. 

3. Brady site, Nevada: We identified key geologic factors controlling geothermal 
production in the Brady geothermal field37.  

4. Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at 
120 locations38; data comes from past PFA work in this region39. ML analyses identified 
geothermal signatures associated with low-, medium-, and high-temperature 
hydrothermal systems. Dominant attributes and spatial distribution of the geothermal 
signatures were also defined. 

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in 
Tohatchi Springs, New Mexico40. Successfully defined geothermal signatures associated 
with low- and medium-temperature hydrothermal systems. Also, we found their 
dominant attributes and spatial distribution. 

6. Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-
, and high-temperature hydrothermal systems and their dominant characterization 
attributes41. 

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations 
using geological, geochemical, and geophysical attributes42. Maps of temperature at 
depth and heat flow are constructed based on the available data. Processed data includes 
satellite (InSAR), geophysical (gravity, seismic), geochemical, and geothermal 
attributes.  Prospectivity maps were generated, and drilling locations were proposed for 
future geothermal field exploration. 

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns 
observed in 49 data streams; erroneous measurement attributes and periods automatically 
identified; interrelated data streams automatically identified. This work has not been 
published yet.  

How to Use It? 
GeoThermalCloud can be used in three ways (i) on Julia, (ii) on Python, and (iii) on a Cloud 
platform (e.g. JuliaHub, Google Cloud Platform, Amazon Web Services, Azure Cloud Services 
through Docker). Julia's installation is explained at 
https://github.com/SmartTensors/GeoThermalCloud.jl and also given below. 
import Pkg 
Pkg.add("GeoThermalCloud") 
import GeoThermalCloud 
 
GeoThermalCloud.SWNM() # performs analyses of southwest New Mexico 
GeoThermalCloud.GreatBasin() # performs analyses of the Great Basin region 
GeoThermalCloud.Brady() # performs analyses of the Brady site, Nevada. 

 
The Python installation process is described below: 
 

https://www.zotero.org/google-docs/?tDwBdw
https://www.zotero.org/google-docs/?XlP5Jl
https://www.zotero.org/google-docs/?RrtQxH
https://www.zotero.org/google-docs/?6z7STJ
https://www.zotero.org/google-docs/?qEevTP
https://www.zotero.org/google-docs/?AkF7yH
https://www.zotero.org/google-docs/?OD3uH2
https://github.com/SmartTensors/GeoThermalCloud.jl
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$ python3 
import julia 
julia.install() 
from julia import Base 
from julia import Main 
Main.eval("import Pkg; Pkg.build(\"GeoThermalCloud\")") 

Docker container development is still in progress. We will provide an update on how to use 
GeoThermalCloud when it is ready for use.  

Conclusions 
GeoThermalCloud is an open-source cloud-based ML framework for geothermal 
exploration that can simultaneously handle both public and proprietary datasets. Also, it 
consists of a series of advanced pre-processing, post-processing, and visualization tools that 
tremendously simplify its application for real-world problems. These tools make the ML 
results understandable and visible even for non-experts; therefore, ML and subject-matter 
expertise are not critical requirements to use our ML framework. GeoThermalCloud utilizes 
a series of novel LANL-developed patented ML tools called SmartTensors 
(https://github.com/SmartTensors). SmartTensors has already been applied to solve a wide 
range of real-world problems, from COVID-19 to wildfires (http://tenosrs.lanl.gov), and it 
has won two 2021 R&D 100 awards, including a bronze award for market disruptor tools. 
Now, it has two components (i) GeoThermalCloud and (ii) GeoDT-ML.   
GeoThermalCloud is developed to process and analyze diverse small and large datasets. 
Also, it can handle sparse datasets with missing values. It analyzes and finds actionable 
information to enable decision-makers to make sound decisions for geothermal exploration, 
development, and production. It finds such actionable information by finding mapping 
functions between all input parameters. We analyzed eight diverse site datasets and found 
critical information that would not be possible by visual inspection or any other statistical 
tools. Overall, GeoThermalCloud can (1) analyze large field datasets, (2) assimilate model 
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer 
learning (between sites with different exploratory levels), (5) extract hidden geothermal 
signatures in the field and simulation data, (6) label geothermal resources and processes, (7) 
identify high-value data acquisition targets, and (8) guide geothermal exploration and 
production by selecting optimal exploration, production, and drilling strategies. 

GeoDT-ML 

Introduction 
GeoDT-ML is an ML-based version of GeoDT, which is a fast, simplified multi-physics 
solver to evaluate EGS designs in uncertain geologic systems3,4,6. It is numerically efficient 
enough to model thousands of realizations in a few hours using a desktop computer. The 
underlying assumptions of this model are empirically based on laboratory and field data to 
partially account for complex coupled processes obviating running expensive numerical 
simulations. The intent of this model is to run it with full uncertainty, as informed by a broad 
spectrum of relevant prior laboratory and field measurements, and to reduce the uncertainty 

https://github.com/SmartTensors
http://tenosrs.lanl.gov/
https://www.zotero.org/google-docs/?QFTLwt
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only when suitable information is available. When a promising EGS design is identified, it 
can be investigated in greater detail and at higher fidelity using other more powerful, but 
more expensive, numerical modeling codes.  
The primary features of GeoDT-ML include (Fig. 1.2.1): 

1. Pressure and flow rate prediction for 3D networks of intersecting wells and fractures 
modeled as pipes and nodes. 

2. Hydraulic stimulation prediction with shear and tensile mechanisms where fracture 
apertures depend on effective stress. 

3. Transient heat production predictions that depend on fluid enthalpy, rock 
conductivity, and stored energy change over time. 

4. Electrical power generation using the combined single-flash Rankine and isobutane 
binary cycle.  

5. Net present value prediction based on geothermal cost estimation tools, electricity 
sales, and a simple earthquake cost model. 

 

Fig. 1.2.1: GeoDT or GeoDT-ML stochastically predicts reservoir parameters, 
flow networks, hydraulic stimulation, heat production, power production, 
injection-induced seismicity potential, and ultimately net present value by fast and 
simplified methods. Most models complete in ~15 seconds using a common 
desktop computer with a single processor thread.  

Multiple datasets have been generated using GeoDT for EGS Collab and Utah FORGE site. 
One was used for the PIVOT 2022 Datathon to simulate the whole geothermal development 
cycle from the initial well design to the end of production. This dataset includes the Utah 
FORGE site characteristics and its measured uncertainties. The database includes 44,492 
unique realizations, each with at least 30 years of production. Based on site characteristics, 
fractures are stochastically created (Fig. 1.2.2). Next, simulations are performed to compute 
power outputs for each situation (Fig. 1.2.3).    
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Fig. 1.2.2: Stochastically generated fracture and well scenario with injection into 
one well across seven isolated intervals and production from two bounding wells. 
The parallel hydraulic fractures propagated from each injection interval are 
shown in red, the color indicating that these fractures require relatively low 
pressure for activation (Pc).  

 

Fig. 1.2.3: Geothermal power production simulations based on the Utah FORGE 
parameters. In the time series plot, a high-performing case is highlighted in red, and 
a poor performer is highlighted in green. There is also a clear link between the well 
spacing and power output in addition to the number of injection intervals (i.e., 
isolated zones) and power output (plots on the right). 

GeoDT-ML Workflow 
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In this section, we describe the workflow scripts for GTC for EGS techno-economic analysis. 
The python scripts for the workflow development are available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Py
thon_Scripts. Equivalent Jupyter Notebooks and Google Colab notebooks will be made 
available in future at this GTC GitHub location. 

Data Processing and Curation 
The GeoDT code (https://github.com/GeoDesignTool/GeoDT.git) is used to generate the 
training database3,4. The data for DL modeling is available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/D
ata. In our study, a total of 4078 realizations are generated. The python scripts – 
get_inp_out.py and get_preprocessed_data.py are used to process the raw data and curate it 
using various pre-processing methods such as StandardScaler, MinMaxScaler, 
MaxAbsScaler, RobustScaler, PowerTransformer (Yeo-Johnson), QuantileTransformer 
(uniform output), and QuantileTransformer43. The python script – 
get_train_val_test_splits.py allow us to split the curated data into 80% training, 10% 
validation, and 10% testing. When the DL model identifies a promising EGS design, it can 
then be further investigated in greater detail. For example, we can use high-fidelity process 
models and simulation codes such as PFLOTRAN44 to explore promising EGS scenarios. 
This currently study does not include the use of high-fidelity codes, but these python scripts 
can be leverage and modified to perform such DL analysis with minimal effort. 

Local and Global Sensitivity Analysis 
The data worth analysis is performed using the get_ftest_mi_npv.py and 
get_ftest_mi_npv_others.py scripts. These python scripts allow us to perform local and global 
data worth analysis. Sensitivity analysis is performed using two different approaches, F-test 
and mutual information45–47. F-test is a univariate linear regression tests returning F-statistic 
and p-values. It provides insights on the linear dependency of a given EGS design parameter 
with respect to economics (e.g., undiscounted cashflow), thereby allowing us to identify 
potentially predictive design parameters for DL model training for undiscounted cashflow. 
On the other hand, mutual information provides insights on non-linear dependency between 
EGS design parameters and undiscounted cashflow. The MI between an EGS design 
parameter and undiscounted cashflow is a non-negative value and is equal to zero if and only 
if two variables are independent, and higher values mean higher non-linear dependency. 

DL Model Training and Hyperparameter Tuning 
This curated data is given as input to deep neural networks, which are trained on multiple 
cores available on high-performance computing machines (HPC). This AI training at scale 
is performed in parallel, allowing us to train and tune various deep neural networks in 

https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Python_Scripts
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Python_Scripts
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Python_Scripts
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Python_Scripts
https://github.com/GeoDesignTool/GeoDT.git
https://www.zotero.org/google-docs/?qmqXzs
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Data
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Data
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Data
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Data
https://www.zotero.org/google-docs/?dFZXtQ
https://www.zotero.org/google-docs/?Sr0MtN
https://www.zotero.org/google-docs/?exN3W8
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minimal time. We combine python and AI modules such as mpi4py, multiprocessing, parallel 
hdf5, and TensorFlow to achieve this training at scale. The performance of the trained DL 
models is compared using the validation loss, and a tuned model is then selected. This 
hyperparameter tuning is computationally intensive and requires a lot of HPC resources. 
Python scripts such as get_dir_hp_dnn_*.py and get_dnn_results_*.py are available to 
achieve this. They provide specifics on how to run on MacOSX, Linuc, and HPC resources. 
In our case, we trained these models on a HPC resource at PNNL using 20,000 CPU cores. 
Fig. 1.2.4 shows a plot of one such DL model training and inference. 

 
Fig. 1.2.4. Training loss and one-to-one plots for training, validation, and test datasets of a 
preliminary DL model. More than 20,000 DL models are trained on HPC resources to 
estimate the EGS economics. This trained deep neural network model has three hidden 
layers, with neurons = [1000, 500, 250] in each of these layers. Leaky ReLU is used as an 
activation function with alpha value = 0.1. The dropout value, which allows for minimizing 
over-fitting during the training process, is assigned a value of 0.1. The total number of epochs 
for training is equal to 100. Batch size, which is the number of training samples that a DL 
model sees for each iteration in an epoch is equal to 64. The resulting DNN has 
approximately 750K trainable weights. 

Conclusions 
GeoDT-ML is an ML-based version of GeoDT, a fast, simplified multi-physics solver to 
evaluate EGS designs in uncertain geologic systems. It is numerically efficient enough to 
model thousands of realizations in a few hours using a desktop computer. It is designed to 
find prospective enhanced geothermal systems in hot, dry rocks.  In this study, we developed 
and provided preliminary DL workflow scripts to estimate EGS economics from design 
parameters. The database for DL model training is developed using GeoDT, a multi-physics 
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solver. Sensitivity analysis using F-test and mutual information is performed on this database 
to gain insights into the GeoDT parameters. The DL model training requires HPC resources 
as training and hyperparameter tuning is computational expensive. To overcome this 
challenge, we will also provide notebooks and pre-trained ML models in the GitHub for the 
geothermal community. Advanced hyperparameter tuning scripts using open-source 
softwares such as DeepHyper and Keras-Tuner will also be made available at 
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS.  

How to Use it? 
The following are the steps to use the GeoDT-ML through GTC: 

1. Create a virtual python environment (e.g., myenv) 
○ conda create --name myenv 
○ Install the following additional packages in the virtual environment: 

tensorflow, keras-tuner, mpi4py, h5py 
2. Git clone https://github.com/SmartTensors/GeoThermalCloud.jl.git  
3. cd to EGS/GeoDT_ML_v1/Python_Scripts 
4. On terminal run – python <file_name.py> 

 
These above instructions will be available through the readme markdown file on GTC. As 
the scripts utilize HPC resources for training ML models, a user can use their own HPC 
systems to run these scripts in parallel. These parallel scripts are not available through 
Jupyter Notebooks or Google Colab notebooks. Such instructions will be made available at 
GTC GitHub repository. 

Outreach Activities 

Publications in journals and magazines 
AI pinpoints renewable energy in Albuquerque Journal, 2020. 
Unearthing clean energy in LANL magazine 1663.  
https://discover.lanl.gov/publications/1663/september-2022/unearthing-clean-energy/ 

YouTube Videos 
New GeoThermalCloud: 
GeothermalCloud: 
https://www.youtube.com/watch?v=ryFxdyQgCJg&list=PLpVcrIWNlP22LfyIu5MSZ7W
Hp7q0MNjsj&index=11  
SmartTensors Platform: 
https://www.youtube.com/watch?v=ni3EgQVypbQ&list=PLpVcrIWNlP22LfyIu5MSZ7W
Hp7q0MNjsj&index=17. 

https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS
https://github.com/SmartTensors/GeoThermalCloud.jl.git
https://discover.lanl.gov/publications/1663/september-2022/unearthing-clean-energy/
https://www.youtube.com/watch?v=ryFxdyQgCJg&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=11
https://www.youtube.com/watch?v=ryFxdyQgCJg&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=11
https://www.youtube.com/watch?v=ni3EgQVypbQ&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=17
https://www.youtube.com/watch?v=ni3EgQVypbQ&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=17
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NMFk optimization process: 
https://www.youtube.com/watch?v=6NAvJmY3Ae8&list=PLpVcrIWNlP22LfyIu5MSZ7
WHp7q0MNjsj&index=36  
Unsupervised ML workshop GSA: 
https://www.youtube.com/watch?v=8a6Gw29RHcM&list=PLpVcrIWNlP22LfyIu5MSZ7
WHp7q0MNjsj&index=12  
 

Demo Problems 
SWNM 
Brady 
Great Basin 
Utah FORGE 
Tularosa 
Maruti: GeoDT-ML 

Chapter 2: What after NMFk: Pin pointing drilling 
site coupling NMFk and magnetotellurics data in 
the Tularosa Basin 

Introduction 
The United States Energy Information Administration projects a 50% increase in global 
energy consumption between 2018 and 205048. Geothermal energy is a non-intermittent 
renewable resource, which has the potential to contribute to the growing global energy 
demand while mitigating carbon emissions attributed to the burning of hydrocarbons. 
Specifically, in the United States, geothermal electric power capacity has the potential to 
increase from 2.3 GWe in 2019 to 60 GWe by 205049,50. Geothermal energy is generated from 
the decay of naturally occurring radioactive elements and stored deep in the subsurface. Even 
though there is essentially an inexhaustible geothermal energy supply in the subsurface, 
much of the heat is unevenly distributed, seldomly concentrated, and too deep to be 
economically exploited51. However, there are locations where thermal energy is accessible 
by drilling that are the targets for geothermal exploration. 
Productive geothermal systems have three major characteristics: high heat flow, temperature, 
and permeability. Geothermal resources are confined to regions of high heat flow and 
temperature due to magmatism and/or crustal thinning52. Specifically, extensional settings 
exhibit intermediate to high heat flow that can be the target of geothermal exploration, and 
temperatures of 125–225°C can produce geothermal energy52,53. However, finding the 
optimal location for the development of such resources and the potential depth of drilling is 
challenging because of high drilling and development costs. Typically, play fairway analysis 
(PFA), a heavily used tool in the hydrocarbon industry, is used for finding spatial locations 

https://www.youtube.com/watch?v=6NAvJmY3Ae8&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=36
https://www.youtube.com/watch?v=6NAvJmY3Ae8&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=36
https://www.youtube.com/watch?v=8a6Gw29RHcM&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=12
https://www.youtube.com/watch?v=8a6Gw29RHcM&list=PLpVcrIWNlP22LfyIu5MSZ7WHp7q0MNjsj&index=12
https://www.zotero.org/google-docs/?pTjR3y
https://www.zotero.org/google-docs/?q9SdFh
https://www.zotero.org/google-docs/?Yk6lzO
https://www.zotero.org/google-docs/?eZazCO
https://www.zotero.org/google-docs/?xalpry
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of geothermal resources. Next, an MT survey or exploration drilling is performed to identify 
the optimal drilling depth. PFA separately computes the importance of each attribute in a 
geothermal dataset and estimates a composite score by combining scores for all attributes. 
The composite score is used for defining spatial locations of geothermal resources. Such a 
study has a significant human bias. Here, we propose an ML based alternative PFA approach 
that simultaneously analyzes all attributes in a dataset without human intervention to find 
spatial locations of geothermal resources. Finally, we integrate MT data in the workflow to 
identify the most prospective drilling depth. Note that no such study in the literature 
combines ML-based PFA and MT data.      
Integrating ML and geophysical techniques assesses heat flow, temperature, and 
permeability for geothermal exploration and development. Here, we use unsupervised ML 
called non-negative matrix factorization with k-means clustering (NMFk). This approach 
clusters/groups data related to heat flow, temperature, and permeability to establish groups 
with geothermal resource significance in both attribute and spatial domains16,54.  
NMFk has been successful in various geothermal applications in identifying the location of 
potential geothermal resources35 and geologic factors associated with geothermal 
production37. MT is a passive geophysical technique used for measuring electrical resistivity 
structures in the subsurface and is commonly used to characterize geothermal resources28–

31,55. Generally, high-potential geothermal systems are characterized by low resistivity 
because of high salinity of geothermal fluids. Geothermal systems commonly include faults 
and fractures filled with highly conductive high-salinity fluids. In addition, clay products 
from mineral alteration in a geothermal system also have low electrical resistivity. The 
correlation between low resistivity measurements and geothermal resources makes MT 
surveys ideal for geothermal resource development. 
This study aims to demonstrate how NMFk analysis identifies the most prospective locations 
for geothermal resource development, and MT inversion aids in the subsurface 
characterization of those resources. Play fairway analysis (PFA) performed by Ruby 
Mountain Inc. and the Energy and Geoscience Institute at the University of Utah identifies 
two highly prospective geothermal locations within the Tularosa Basin, New Mexico: White 
Sands Missile Range and the McGregor Range at Fort Bliss. Due to data limitations, heat 
flow, temperature, and permeability data from White Sands Missile Range is used to 
demonstrate the ability of NMFk to further characterize a predetermined high-potential 
geothermal location, whereas McGregor Range is used to demonstrating the ability of MT 
data to identify geothermal prospects in the subsurface. Finally, we demonstrate how NMFk 
and MT may be integrated to provide a 3D assessment of high-potential geothermal 
resources, facilitating fast and economic geothermal play development. 
Geologic background 
The Tularosa Basin is located on the eastern flank of the Late Paleogene Rio Grande rift56,57. 
The Rio Grande Rift occurs as a north-trending, intermontane graben within south-central 
New Mexico and is bounded to the east by the Sacramento Mountains and to the west by the 
Organ and San Andreas Mountains (Fig. 2.1). Faults associated with the Rio Grande Rift 
have several thousand feet of displacement and separate the basin from the surrounding 
uplifted mountains56. Paleogene rifting induces high heat flow within southwestern New 
Mexico and therefore, makes the southern portion of the Tularosa Basin favorable for 
geothermal exploration39. In the southern part of the basin, temperatures recorded from 

https://www.zotero.org/google-docs/?JWDyYo
https://www.zotero.org/google-docs/?vRjQ6o
https://www.zotero.org/google-docs/?MTl8D9
https://www.zotero.org/google-docs/?Wgjm2F
https://www.zotero.org/google-docs/?Wgjm2F
https://www.zotero.org/google-docs/?ldImkq
https://www.zotero.org/google-docs/?KVLVYk
https://www.zotero.org/google-docs/?5ypC5v
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wellbores range from 170°C to 200°C58 and clay mineral analysis indicates temperatures as 
high as 225°C59,60. 
The Tularosa Basin is filled with strata of Paleozoic to Tertiary age58,60–62 (Fig. 2.2). Bedrock 
consists primarily of Paleozoic carbonates, including Ordovician and Silurian dolomite, 
Devonian and Mississippian interbedded chert-rich shales and limestones, and 
Pennsylvanian limestone with thinly bedded shales. Tertiary felsic intrusions commonly 
crosscut the Paleozoic bedrock, and Quaternary graben fill overlies the bedrock and is 
composed of gravel, sand, silt, and clay derived from prograding alluvial fans originating 
from the edge of the rift valley. 

 
Fig. 2.1: Location of the White Sands Missile Range and McGregor Range study areas within 
the Tularosa Basin of southern New Mexico. The Tularosa Basin is an intermontane graben 
located on the eastern flank of the Rio Grande Rift. 
 

https://www.zotero.org/google-docs/?zz8cBs
https://www.zotero.org/google-docs/?r4tef0
https://www.zotero.org/google-docs/?xFYy64
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Fig. 2.2: Generalized stratigraphic succession of the Tularosa Basin sedimentary and igneous 
fill. 
 
 

Data 
The dataset has 10 attributes at 120 locations (Fig. 2.3). With an observational dataset, 
obtaining values for 10 attributes at each location is difficult. In this study, the only attribute 
available at all 120 locations is temperature@2m, and the remaining attributes had missing 
values for some locations. To address the missing values, we apply the nearest neighbor 
interpolation techniques63 based on distance (not points) to heat flow, gravity, NaK-
Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, silica 
geothermometer, and Li+ concentration. The distance is calculated using a variogram 
analysis. Note, we also use block mean64, kriging65, and inverse distance weighting26 
interpolation techniques. However, the nearest neighbor method provides the best results for 
the dataset used in this study. R2 score (Eq. 1.7) based on interpolated and actual values is 
used to evaluate four interpolation techniques. ArcMap is used to interpolate fault distance 
and fault density values. Specifically, the near coverage tool was used to find the distance 
from the location to the nearest fault, and the kernel density function was used to calculate 
fault density.  

https://www.zotero.org/google-docs/?mGCHVe
https://www.zotero.org/google-docs/?CYOHlS
https://www.zotero.org/google-docs/?D155AZ
https://www.zotero.org/google-docs/?Kq8z9i
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Fig. 2.3: Locations (120 total) near White Sands is selected as input data for NMFk. At each 
site, 11 geothermal attributes are collected and used as input into the NMFk model.  
 
A 56-station MT survey was conducted at the McGregor Range by Quantec Geoscience and 
the inversion modeling was completed by the Energy and Geoscience Institute at the 
University of Utah (Fig. 2.4)39.  
 

 
Fig. 2.4: Geologic map of the McGregor Range with MT station locations (blue) and 
slimhole core locations (red). McGregor is largely covered by Recent eolian sands, although 

https://www.zotero.org/google-docs/?OxkVyC
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Paleozoic and Tertiary outcrops occur in the northeast portion of the study area at Davis 
Dome. 

Results 

Geothermal characterization of NMFk signatures 
We applied NMFk on the dataset and it  determines the optimal solution for  by evaluating 
reconstruction quality  and average silhouette width  (Fig. 2.5).  Optimal solutions have low  
and high values. Generally, low  and >0.25 are acceptable solutions1,66. NMFk is run for 2 to 
10 signatures, and the k=4 solution is found to be the optimal solution because of its low  and 
high  values. The solution with k<4 is an underfitting representation of data, whereas k>4 is 
an overfitting representation of data. 

 
Fig. 2.5: NMFk reconstruction error (red curve) and silhouette width (blue curve) for 
different numbers of clusters k. The optimal k value has low reconstruction error and higher 
silhouette values. In this study, the optimal number of signatures is 4. 
  
Each column of the attribute matrix, Hnxk, is known as a signature and captures certain 
characteristics in the dataset (Fig. 2.6A). The characteristics are defined by the 
contribution/weight of each attribute in a signature. The warm colors represent a high weight 
between the signatures and attributes and the cool colors represent a relatively low weight 
(Fig. 2.6A). Furthermore, for the geothermal attributes the warm colors correlate to high 
values and the cool colors correlate to lower values. The spatial distribution of each signature 
is plotted with a different color on Fig. 2.6B. 
The dominant attributes of signature A are heat flow, K-Mg geothermometer, silica 
geothermometer and quaternary fault density indicating high heat flow, subsurface 
temperature, and permeability. Like signature A, signature B is characterized by high heat 
flow, temperature@2m, and Li+ concentration. Furthermore, the high Li+ concentration 
indicates that signature B is characterized by high vertical permeability. No geothermometer 
had a significant contribution to signature B. Fault distance is the major attribute in signature 
C. This indicates locations assigned as C have lower potential vertical permeability because 
they are relatively far from faults that act as conduits for fluid flow. Signature C is 

https://www.zotero.org/google-docs/?w3gTc6
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characterized by lower heat flow and temperature relative to the other signatures. The 
dominant attributes for signature D are the Na-K Giggenbach geothermometer and NaK-
Fourneir geothermometer indicating high subsurface temperatures. Moderate weights for 
quaternary fault density and Li concentrations in signature D indicate relatively high 
permeability. Heat flow and temperature@2m have a relatively low contribution to signature 
D.  

Fig. 2.6: Results from the NMFk model. A) Heatmap identifying the dominant geothermal 
attributes in each signature. The warmer the color the more dominant the attribute for a 
particular signature. B) Spatial distribution of signatures for the 120 locations at White 
Sands. 

Subsurface characterization of potential geothermal locations 
Apparent resistivity and phase curves display resistivity trends using the period as a proxy 
for depth (longer periods correspond to increased depth). Congruent MT apparent resistivity 
curves of Zxy and Zyx indicate a 1D resistivity structure, whereas separation indicates more 
complicated 2D or 3D resistivity structure29. For example, MT apparent resistivity curves for 
station 017 located in the northeast section of the survey show separation between the two 
curves at shorter periods, i.e., shallower depths (Fig. 2.7). This corresponds to geological 
structures related to Davis Dome, a small intra-bolson horst near station 01760. 

https://www.zotero.org/google-docs/?OuEnnx
https://www.zotero.org/google-docs/?Y4Kk22
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Fig. 2.7: Apparent resistivity curves for station MT017. The period is a proxy for depth, i.e., 
longer periods are deeper depths. Separation of , and  curves at 0.05 s indicate 2D or 3D 
resistivity structures. 
 
MT apparent resistivity and phase curves of Zxy and Zyx from all 56 MT sites are shown in 
Fig. 2.8. The apparent resistivity values show a cyclic trend from shorter to longer periods 
(shallower to deeper depths). At shallower depths, the apparent resistivity gradually 
decreases. Between 1 s and 100 s the apparent resistivity increases. At deeper depths, longer 
than 100s, the apparent resistivity decreases. Furthermore, at longer periods, the Zxy and Zyx 
curves diverge indicating complex, 3D resistivity structure at deeper depths. The depth of 
the low apparent resistivity varies from east to west. For MT stations 019, 022, and 025 the 
troughs for apparent resistivity occur at 1 s, 0.3 s, and 0.1 s, respectively (Fig. 2.9). The 
longer period to the west indicates that the low resistivity unit occurs deeper in the west than 
in the east. 

 
Fig. 2.8: Apparent resistivity curves from all 56 MT stations. From shorter to longer periods 
the general apparent resistivity trend is lower at shorter periods, increases at medium periods, 



31 

and then decreases at longer periods for a low-high-low trend. Furthermore, at longer periods, 
the Zxy and Zyx curves separate indicating 2D or 3D structure at deeper depths. 

 
Fig. 2.9: Apparent resistivity curves for MT stations 019, 022, and 025. The curves show a 
change in the low resistivity unit depth from west to east. The low apparent resistivity trough 
of the Zxy and Zyx curves for MT019 occurs at 1s.  The trough of the Zxy and Zyx curves for 
MT022 occurs at 0.3 s. The trough of the Zxy and Zyx curves for MT025 occurs at 0.1 s.  
 
The dimensionality of the resistivity structure is determined by phase tensors. One-
dimensional resistivity structures indicate a natural change in resistivity with depth due to 
compaction32,67. Phase tensors are useful in identifying lateral variations (2D and 3D 
resistivity structures) in the underlying regional resistivity32. Lateral variations in resistivity 

https://www.zotero.org/google-docs/?AKFTqM
https://www.zotero.org/google-docs/?UcgqKz
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result from changes in porosity due to fault- and/or fracture-related diagenesis, and/or 
changes in lithology.   
The phase tensor is commonly plotted as an ellipse with a minimum and maximum principal 
axis and skew angle, b (a measure of asymmetry) (Fig. 2.10A). In Fig. 2.10B, ellipses are 
colored based on the skew angle. Yellow colors indicate a skew angle of 0 and the red and 
blue colors indicate larger skew angles (± 5°). The larger the skew angle, the more 
asymmetric the phase tensor indicating higher dimension resistivity structures. For 1D 
resistivity structures, the minimum and maximum principal axes are the same (fmax = fmin) 
resulting in the phase tensor characterized by a yellow, circular shape. The phase tensor of a 
2D resistivity structure is characterized by an elliptical shape and skew angle close to zero 
(± 3°). For 3D resistivity structures, the phase tensor is asymmetric; hence, the phase tensor 
is characterized by blue or red. Furthermore, a rapid direction change in the phase tensor’s 
principal axes between sites indicates a 3D resistivity structure68. 
In general, across the study area, the shorter periods are characterized by 1D resistivity 
structures and then higher dimension 2D and 3D resistivity structures with depth (Fig. 
2.10B). This observation is consistent with the separation in apparent resistivity curves at 
longer periods (Fig. 2.7). Specifically, at 0.01s and 0.1s the phase tensors are characterized 
by 1D structures as indicated by the yellow circles. An exception to this observation is the 
northeastern corner of the study area where the shape of the tensors is more elliptical, and 
the skew angle is higher indicating lateral variation in the resistivity structure. This increase 
in dimensionality is consistent with shallow structural features and northwest-trending faults 
associated with Davis Dome61. The shape of the ellipses and the red, blue, and orange colors 
at periods greater than 1s indicate 2D or 3D resistivity structures. Specifically, the abrupt 
changes in the ellipse’s shape at 10s suggest possible faulting. Caution must be taken when 
interpreting phase tensors at longer periods as they are more affected by attenuation. 

 
Fig. 2.10: A) Graphical representation of the phase tensor. B) Phase tensor maps at 0.1, 0.01, 
1, 10, 50 and 100s indicate the spatial distribution of resistivity structures with depth.  
 

Discussion 

The geothermal resource potential of signature 

https://www.zotero.org/google-docs/?q0IQ9W
https://www.zotero.org/google-docs/?3C89Of
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Temperature, heat flow, and permeability are the main geothermal attributes driving 
geothermal success52. The locations associated with signature A have high geothermal 
resource potential because of the characteristically high heat flow, high K-Mg and silica 
geothermometers, and medium to high quaternary fault density. Therefore, signature A has 
a high likelihood of possessing higher temperature, heat flow, and permeability compared to 
the other signatures. The locations associated with signature D have moderate geothermal 
potential because of the combination of high NaK-Giggenbach and NaK-Fourneir 
geothermometers values and low temperature@2m and heat flow. The locations associated 
with signature B have moderate geothermal potential because of high temperature@2m, heat 
flow, quaternary fault density, and Li+ concentrations; however, low values for the 
geothermometers suggest subsurface temperatures may not be suitable for a geothermal 
resource. The locations associated with signature C have the lowest geothermal resource 
potential because no geothermal attributes have a major contribution to the signature. 

MT inversion interpretation 
Once a spatial location is determined through NMFk, MT can be a valuable tool to aid in the 
subsurface characterization of a potential geothermal resource by analyzing resistivity trends. 
Resistivity values are found through numerical inversion of MT data. Generally, geothermal 
fluid demonstrates low resistivity because of the presence of high concentration elemental 
composition or total dissolved solids. The resistivity values of the McGregor geothermal 
system potentially indicate three resistivity layers and two resistivity structures (Fig. 2.11). 
Layer 1 (L1) is characterized by the lowest resistivity (<8 Ωm) and is confined generally to 
the upper 500 m of the study interval. L1 is thickest to the west and thins to about 300 m in 
the east (Fig. 2.11). L1 is thinnest in the northeast corner near Davis Dome. This regional 
low resistivity cap is most likely attributed to basin-fill deposits. O’Donnell, Jr., et al. 
(2001)61 performed a seismic reflection survey over the same study area and observed a 
wedge-shaped feature above the bedrock attributed to alluvial fan deposits shed from the 
surrounding mountains. The observed thickening of L1 to the west in the MT data is 
consistent with the wedge-shaped feature observed in the seismic survey (Fig. 2.11). 
Layer 2 (L2) is a low resistivity (10 – 100 Ωm) layer with the top 200 – 600 m beneath the 
surface. In general, L2 is shallower to the east (~300 m) and deeper to the west (~ 600 m). 
Wells drilled in the northeast portion of the study area suggest that the top of L2 corresponds 
to Paleozoic (Pennsylvanian limestone) bedrock58,60. Finger & Jacobson (1997)58 observed 
and measured fracture permeability in cores in nearly all Paleozoic units. Phase tensor 
analysis in the western part of the study area indicates a 2D resistivity structure that suggests 
the presence of a possible fault system (Fig. 2.10B). The thicker and lower resistivity L2 in 
the west may be attributed to an increase in fractures and/or faults that act as storage or 
conduits for geothermal fluids decreasing resistivity, i.e., L2 in the west is influenced by 
higher fractured and/or faulted units. 
A low resistivity structure (RS1) is present below MT stations 039, 047, 051, 052, and 053 
in the southeast section of the study area (Fig. 2.11). The structure has similar resistivity as 
L2 but extends to 2000 m. The lower resistivity of RS1 is interpreted to be related to a 
deformation observed in surrounding wells. A thrust fault and overturned beds are observed 
in cores from well 51-8 located to the northeast of cross-section EW3 suggesting deformation 
in the area (Fig. 2.11). Units related to this structure are pervasively fractured and may 

https://www.zotero.org/google-docs/?GTyV3E
https://www.zotero.org/google-docs/?RQFwzQ
https://www.zotero.org/google-docs/?jRF0dt
https://www.zotero.org/google-docs/?prWJzI
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provide a conduit for fluid flow and associated lower resistivity in RS1 as observed in Fig. 
2.11. 
Layer 3 (L3) is characterized by the highest resistivity values (>100 Ωm) and the top is 
located about 250 – 2000 m beneath the surface (Fig. 2.11). L3 follows a similar east-west 
thickening trend as observed within L2. In the east, the top of L3 is shallower (~500 m) and 
in the west, the top of L3 is deeper (~1800 m).  
 

 
Fig. 2.11: Three north-south and east-west MT cross sections with interpreted resistivity 
layers and structures. The low resistivity to the west is interpreted as a fault system. The 
faults, fractures, and possible dissolution because of geothermal fluids increase porosity thus 
decreasing resistivity. Assuming temperature is consistent with a geothermal reservoir, the 
west-central part of the McGregor Range has the highest geothermal potential because of the 
increase in porosity and associated permeability attributed to the interpreted fault system.  
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A high resistivity structure (RS2) is present in the northeast portion of the study area and has 
similar resistivity values to L3 (Fig. 2.11). The spatial distribution of resistivity and cored 
wells in the area (45-5, 46-6, and 61-6) suggest RS2 coincides with structures related to Davis 
Dome, an intrusive igneous laccolith (Fig. 2.11). Cored wells encounter felsic sills, a felsic 
laccolith, and Mississippian limestone and shale at relatively shallow depths between 360 m 
and 530 m58,61. The thin L2 layer above RS2 is most likely fractured Paleozoic strata and high 
resistivity RS2 is most likely a low permeability felsic body associated with the Davis Dome 
intrusion. These interpretations are consistent with a structural high from a laccolith intrusion 
observed in reflection seismic data velocity, and gravity models from O’Donnell Jr. et al., 
200161.  
The west-central section of L2 is interpreted as a possible fault system with the highest 
geothermal potential. Geothermal reservoirs tend to have resistivity values between 10 – 60 
Ωm similar to those observed in L230,68. The location where L2 is the thickest coincides with 
north-northwest trending, anomalously high thermal gradients (up to 140°C/km). The 
anomaly may be due to geothermal waters rising along a common fault zone or fractured 
bedrock adjacent to the fault zone69, which is consistent with the highly faulted and/or 
fractured units observed in L2 to the west (Fig. 2.11). Furthermore, the westward thickening 
of L2 suggests the possibility for a corresponding increase in reservoir transmissivity and an 
increase in well productivity70.  
  

Limitations of MT 
MT data is limited by its hectometer-scale vertical resolution. Resistivity is measured in well 
56-6 using wireline logs with a vertical resolution of 0.671. Compared to inverted MT 
resistivity, the well logs provide more detailed variations in resistivity (Fig. 2.12). For 
example, from 90 – 220 m, well-log resistivity is characterized by high variability due to 
thinly interbedded limestones and shales that are not detected in the MT resistivity. Only 
general interpretations of fluid saturation and porosity can be made with MT data because of 
the low vertical resolution. 

https://www.zotero.org/google-docs/?12s8Tz
https://www.zotero.org/google-docs/?20lYT7
https://www.zotero.org/google-docs/?MhFX9y
https://www.zotero.org/google-docs/?qwwzJx
https://www.zotero.org/google-docs/?FvKhJd
https://www.zotero.org/google-docs/?EOOZtW
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Fig. 2.12: Comparison of wireline logs, resistivity logs, and MT resistivity of well 56-5. The 
resistivity from well logs provides more detailed variations in resistivity that are not detected 
from lower resolution, inverted MT resistivity data. Lithologies are based on petrophysical 
interpretations from accompanying gamma ray (GR), neutron and density porosity, 
photoelectric effect (PE), deep resistivity logs, and core cutting descriptions.  
 
Lithologic interpretations from MT inversions are difficult since resistivity is primarily 
influenced by the salinity of pore-filling fluid and secondarily by porosity59. Because all rock 
matrices are potentially saturated with similar saline water, porosity controls resistivity 
variations. In general, lithification increases with depth and is associated with a decrease in 
porosity and permeability consistent with the observed increase in MT resistivity from L1 to 
L3 (Fig. 2.11)67.  Correlations between the four cored wells in the northeast portion of the 
study area indicate that L1 coincides with Quaternary basin fill that is under-compacted and 
highly porous and permeable, and therefore, characterized by low resistivity. Older strata 
associated with L2 and L3 are highly compacted and cemented and characterized by lower 
porosity and permeability and higher resistivity.  The transition from L2 to L3 is controlled 
by porosity rather than lithology. For example, as seen in EW2, L2 thickness increases to the 
west suggesting an increase in porosity. The phase tensors in the west show 2D resistivity 
structures with increasing depth suggestive of a possible fault system (Fig. 2.11). Secondary 
pore networks derived from fluid-rock interactions induced by the high permeability fault 
system are interpreted to be filled with high salinity, and low resistivity fluids. Also, cored 
wells 61-6, 45-5, 46-6, 56-6, and 51-5 indicate that L2 and L3 coincide with Paleozoic 

https://www.zotero.org/google-docs/?9zSD0V
https://www.zotero.org/google-docs/?v2BdcY
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bedrock composed primarily of resistive carbonates. The resolution limitations of MT 
resistivity measurements mean that small-scale changes in carbonate lithologies are not 
detected and suggests that differences between L2 and L3 are not related to lithology (Fig. 
2.12). 

Conclusions 
1) NMFk is a useful ML tool to assess prospective geothermal regions by evaluating 
variability in geothermal, geological, geophysical, and geochemical attributes. In the 
southwestern portion of the Tularosa Basin at White Sands Missile Range, four 
signatures (A-D) were established through NMFk for their geothermal resource potential. 
Signature A is interpreted to have the highest geothermal potential due to a combination 
of high heat flow, reservoir temperatures, and comparatively high porosity and 
permeability. Signatures B and D have moderate potential because of their relatively low 
heat flow and temperature. Signature C has the lowest geothermal resource potential 
because no geothermal attributes have a major contribution to the signature. 
2) MT inversions detect subsurface geothermal prospects based on resistivity. MT 
provides insight into relative porosity and associated permeability that is related to the 
subsurface resistivity trends detected in the MT inversion. From an MT survey from 
McGregor Range, three resistivity layers (L1, L2 and L3) and 2 resistivity structures 
(RS1 and RS2) are identified. The layers are inferred to be related to a combination of 
depth-related compaction and lithification effects and the resistivity structures are related 
to Davis Dome, laccolith, and faulting. A fault system is interpreted in the western 
portion of the study area as indicated by the thickening of L2. Because low resistivity is 
a defining characteristic of geothermal prospects, the western portion of the McGregor 
MT survey has the highest geothermal potential. 

The low vertical resolution of MT data, in contrast with high-resolution borehole resistivity 
measurements, makes it difficult to relate lithological variability and associated rock 
attributes with MT inversions. MT is limited in that the interpreted resistivity layers only 
provide insight into relative porosity and do not correlate with lithological or stratigraphic 
units. Only large-scale characterization of porosity and associated permeability can be made 
when interpreting MT inversions. Therefore, the MT survey may be used as a preliminary 
study before drilling a well, which will provide more detailed information for developing a 
geothermal field.  
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Chapter 3: Characterization of Potential 
Geothermal Energy Utilization in West Texas 
 
Introduction 
The total U.S. energy consumption is ~13.68x109 GJ48, and a majority of which comes from 
fossil fuels that emit carbon into the atmosphere. To reduce CO2 emissions, carbon-free 
energy sources such as wind, solar, and geothermal are becoming more prevalent. 
Geothermal energy is poised to become an important continuous source of heat and energy. 
Currently, geothermal energy makes up <1% of U.S. electricity generation but can increase 
dramatically as the U.S. has ~2x1014 GJ of extractable geothermal energy48. 
Large areas of land in the U.S. with a high geothermal gradient may possess hot water 
resources. Most importantly, a large portion of oil and gas fields have high thermal gradient 
that can be converted into geothermal energy. As geothermal energy use becomes more 
prevalent, it is important to easily determine the proper setting and attributes for utilizing this 
energy to displace the greatest amount of fossil fuels. Therefore, the main purpose of this 
work is to estimate geothermal prospectivities and commercial feasibility in western Texas 
(Fig. 3.1) using publicly available oil and gas field data. 

 
Fig. 3.1: The map of Texas including their basin configuration. Study area is in west Texas 
bounded by the red rectangle. 
 
Western Texas because it not only has a high number of existing and orphaned oil fields/wells 
but also has a medium geothermal gradient and easy-to-drill sedimentary formations. These 
existing or abandoned oil wells are a great opportunity for geothermal energy as their 
interconnected piping infrastructure and drilled wells can be repurposed for geothermal 
energy production, reducing a large portion of the costs associated with geothermal 
development. Medium geothermal gradient and soft sedimentary formations favor drilling 
new wells if necessary. Additionally, geothermal resources in the form of water and other 
heated fluids can be found along with oil and gas. 
We mainly used three geothermal attributes including thermal conductivity, heat flow, 
geothermal gradient, and bottom hole temperatures (BHT). Next, preprocessing was 

https://www.zotero.org/google-docs/?bFSLqg
https://www.zotero.org/google-docs/?KRDRQg
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performed to remove spurious data. Next, we interpolated using the inverse distance 
weighting (IDW) technique to estimate values at unknown locations based on known 
locations. Next, we delineated the proper utilization of this geothermal energy for electricity 
production, spas & balneology, and greenhouse farming based on their temperatures at 1, 2, 
3, and 4 km depths.  
Three variables used in this study contained about 48% outliers. For instance, the maximum 
and minimum values for the temperature gradient far exceeded the appropriate range of the 
geothermal gradient throughout the U.S. Whereas the average geothermal gradient range in 
western Texas is contoured between 15 – 40°C/km, the provided data ranged between 0 - 
1386°C/km [2]. We removed these outliers from the data by creating a new dataset that only 
included values that were greater than or equal to 15°C/km or less than or equal to 40°C/km. 
Additional outliers existed within the heat flow data set, so we instead opted to use the 
following formula to calculate new data for the heat flow throughout the West Texas region: 
 𝑞𝑞 =  𝐾𝐾𝑇𝑇𝛻𝛻𝛻𝛻 (3.1) 

where q is the heat flow (W/m2), KT is the geothermal conductivity (W/mC), and  is the 
temperature gradient (C/m). To obtain accurate heat flow data, we located the thermal 
conductivity points either in the same location or closest to those in the new geothermal 
gradient dataset. To do so, we conducted a nearest neighbor calculation using a binary search 
tree or K-D tree to determine the shortest Euclidean distance between points based on the 
longitude and latitude data. The data provided by this calculation allowed us to extract only 
the points in thermal conductivity data that geospatially coincided with the new geothermal 
gradient dataset.  Next, we performed the IDW described in the method section of Chapter 
1.  

Utilization Scheme 
Each industry has a unique temperature requirement to continue their business. For spas, a 
comfortable inlet water temperature is around 40 °C with 50 °C[insert source here]. While 
current spas can use water temperatures above 50 °C, this water requires additional cooling 
to achieve a safe temperature. Following Germany’s example, the maximum allowed inlet 
water temperature was 60 °C [insert source here]. 
The temperature required for heating systems in greenhouses ranges from 40 – 100 °C, as 
greenhouses can use various heating systems [insert source here]. These greenhouses can 
utilize this geothermal energy through finned pipes, fan coil units, soil heating, plastic tubing, 
cascading, bare pipes, unit heaters, or a combination [insert source here]. The heating method 
used in these greenhouses will determine the inlet temperature for the water.  
There are three major types of geothermal power plants in the market (cite) namely dry 
steam, flash steam, and binary (Table 3.1). A dry steam power plant primarily uses steam 
extracted directly from the geothermal reservoir. Flash steam is the most common type of 
power generation plants in operation today that use fluids at temperatures greater than 150 
°C. This fluid is rapidly vaporized to produce vapor in order to spin a turbine. The power 
plant with the greatest potential for geothermal utilization however is the binary cycle power 
plant. This plant differs from the previous plants in that it uses the water acquired from the 
geothermal resource to heat a secondary fluid through a heat exchanger. The benefit here is 
that binary cycle power plants can use low-enthalpy fluids with temperatures ranging from 
95 - 150°C.  
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Table 3.1: A list of geothermal power plant types, corresponding fluid types and 
temperature ranges. 
Geothermal power plant type Fluid type Temperature range (℃) 

Dry steam Steam >150 

Flash steam Liquid >150 

Binary Liquid 95-150 

Results and Discussion 
We received numerous attributes from the Bureau of Economic Geology, UT Austin. Among 
those attributes, only bottomhole temperature, geothermal gradient, thermal conductivity, 
and heat flow possess good quality data (Fig. 3.2). Continuous interpolated contour at 1 km 
depth of each attribute is shown in Fig. 3.2a-c. 

 
Fig. 3.2: Continuous contours of geothermal gradient (a), thermal conductivity (b), and 
heat flow (c) in the study area at 1km. 

Thermal gradient is the change in temperature per unit depth and is vital in determining 
temperatures at specified depths. The geothermal gradient in the study area had much greater 
variation in values than the other attributes and averaged 27.5°C/km with a maximum of 
39.5°C/km and a minimum of 15.3°C/km (Fig. 3.2a). The average of 27.5°C/km is only 5.3% 
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below the average gradient for the continental U.S. However, when compared to western 
states, the West Texas geothermal gradient was 21.14% below the 34°C/km value [5]. 

The thermal conductivity throughout the majority of the West Texas region lies at 
approximately 2.5 W/mK with spikes in conductivity up to 5.44 W/mK towards the western 
edge and throughout the center of the region (Fig. 3.2b). Thermal conductivity describes a 
material's ability to transfer heat through conduction. For a geothermal resource, thermal 
conductivity is critical to understand as it directly controls the steady state temperature field 
[3]. Additionally, it can have a large impact on required bore hole depth to meet the heating 
demands of a utility when utilizing a ground-source heat pump or ground coupled heat 
exchanger. 

Heat flow in a geothermal context is, “the movement of heat/energy from the interior 
of the Earth to the surface” [4]. A larger heat flow is typically indicative of good geothermal 
heat production. Additionally, heat flow determines vertical conductive heat flow losses as 
geothermal fluids rise to the surface either naturally or through piping. Throughout the West 
Texas Region heat flow averages around 0.0637 W/m2, with a few spikes up to 0.1635 W/m2 
(Fig. 3.2c). 
  To determine the bore hole temperatures at depths between 1 km and 4 km with 1 km 
incremental depth, the geothermal gradient dataset was multiplied by the chosen depth and 
added to the standard surface temperature of 25°C. Utilities were then added to their 
corresponding temperature ranges on the plots to highlight the potential forms of utilization 
and their pervasiveness throughout the region (Figs. 3.3–3.6). Bottom hole temperature rises 
following geothermal gradients, ranging from a minimum of 40°C at 1 km to a maximum of 
178°C at 4 km, hence the utilization (Table 2). 

  
Fig. 3.3: Spas could be a favorable utility at 1 km depth.  
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Fig. 3.4: Green house farming could be a favorable utility at 2 km depth. 

 
Fig. 3.5: Electricity production through binary geothermal power plant could be a 
favorable utility at 3 km depth. 

 
Fig. 3.6: Electricity production through binary & steam flash geothermal power plant 
could be a favorable utility at 4 km depth. 
  
Table 3.2. Summary of potential utilities for 1 - 4 km depth. 
  

Utility 1km 2km 3km 4km 
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Spas & GH Farming 98.94% 0.10% N/A N/A 

GH Farming  1.06% 98.84% 6.8% 0.10% 

GH Farming & Elec Prod (Binary) N/A 0.93% 10.97% 0.21% 

Elec Prod (Binary) N/A 0.12% 82.24% 85.37% 

Elec Production  N/A N/A N/A 14.32% 

  
It is important to note that Table 3.2 is reflective of only the data points created from the 
interpolated datasets and not the actual geospatial locations. As displayed above, at 1km spas 
and greenhouse farming could potentially be the dominant utility encompassing 98.94% of 
the West Texas geothermal resources. However, beyond a 1 km, the temperature becomes 
too high to support safe and efficient geothermal spas, so spas are essentially infeasible. At 
2 km the greenhouse farming utility dominates 98.84% of the potential available utilities. 
Since the average depth of crude oil and natural gas wells is approximately 2 km [6], 
geothermal greenhouse farming operations become the most potentially viable utilities if 
they are able to take advantage of the existing infrastructure. Additionally, 2 km is where it 
can be seen that some binary electricity production can begin to occur. At 3 and 4 km, binary 
electricity production becomes the dominant utility with some potential for greenhouse 
farming. Flash steam power plant is only feasible at or beyond 4 km. While BHT at 4 km is 
still considered “reasonable”, it is quite costly to drill that deep. If electric utility companies 
are willing to spend higher upfront costs, there is a large potential for the expansion of flash 
steam cycle energy production. 

We also plotted orphan wells on top of the BHT map at 2km (Fig. 3.7). Many of the 
wells are located on top of geothermal resources that could be used for greenhouse farming 
with some located on resources that could be used to produce electricity from a binary cycle 
power plant (Fig. 3.7). These orphan wells might be a good avenue to reduce upfront cost to 
set up utility facilities. 
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Fig 3.7: Orphan wells could be used to extract hot fluid; however, a detail study is 
required on whether they can sustain thousands of barrel fluid withdrawal in a day. 

Conclusions 
West Texas has a huge potential for certain geothermal utilization facilities ranging between 
spas to electricity production that varies with depth. For instance, at 1 km depth, geothermal 
spas could be a favorable utility while greenhouse farming can be expected to make great 
use of not only the geothermal resources, but the existing oil and gas infrastructure at 2 km 
depth. At 3 & 4 km, binary cycle power plants would predominantly use the geothermal 
resource to produce clean and continuous electricity. At 4 km depth, steam-flash power plant 
could be used to generate electricity although spatially sporadically. Orphan wells can be 
used to reduce cost; however, thorough study is required if they can sustain 1000s barrel fluid 
extraction in a day.  

Chapter 4: Machine learning and a process model 
to better characterize  hidden geothermal 
resources 

Introduction 
Geothermal is a growing renewable energy resource that can be utilized 24 hours a day 
without shutting off a geothermal power plant. However, in the U.S. ~3.7 GJ/year (<1%) of 
electricity generation is from geothermal resources48 although it has ~2 x 1014 GJ/year 
tappable energy50,72.  This potential energy resource is largely unexplored because many 
geothermal reservoirs are hidden or blind (no apparent surface exposures), which often leads 
to expensive and risky exploration73,74. Typically, play fairway analysis (PFA), adapted from 
the oil & gas industry, is performed for geothermal discovery, exploration, and development. 
PFA integrates available geologic, geophysical, and geochemical attributes indicative of 

https://www.zotero.org/google-docs/?7VMZQo
https://www.zotero.org/google-docs/?BnbxA6
https://www.zotero.org/google-docs/?sJjQ5a
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geothermal activity and estimates the importance of these attributes for the characterization 
of the geothermal resource75–80. PFA separately quantifies the relative importance of each 
attribute instead of simultaneous usage of all attributes. Here, we used a tool called 
GeoThermalCloud, which simultaneously analyzes available attributes, finds geothermal 
prospectivities, and discovers key parameters defining geothermal prospectivities1,37. 

GeoThermalCloud (GTC) utilizes different machine learning (ML) methods. GTC can (1) 
analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3) 
process sparse datasets, (4) perform transfer learning (between sites with different 
exploratory levels), (5) extract hidden geothermal signatures in the field and simulation 
data, (6) label geothermal resources and processes, (7) identify high-value data acquisition 
targets, and (8) guide geothermal exploration and production by selecting optimal 
exploration, production, and drilling strategies. Although GTC can implement different ML 
methods, its core component is an unsupervised machine learning (ML) called non-negative 
matrix factorization with customized k-means clustering (NMFk)1,16,25,54. Here, we applied 
NMFk to the Tularosa Basin PFA dataset collected by the Department of Energy (DOE).   

The Tularosa Basin is located in the Basin and Range province, which exhibits high 
favorability of occurrence for geothermal resources due to high heat flow related to the Rio 
Grande rift. A few geothermal facilities have been developed within the Basin and Range 
province81,82. Recently, it has been the subject of geothermal studies due to its high 
geothermal potential coupled with the U.S. Army’s interest in using the geothermal resource 
as an energy source for White Sands Missile Test Range and McGregor Range58,60,61.  

Geologically, the Tularosa Basin is located on the eastern flank of the Rio Grande rift zone 
as a north trending, intermontane graben located in south central New Mexico. It is bounded 
to the east by the uplifted Sacramento Mountains and to the west by the uplifted Organ and 
San Andreas Mountains. Faults related to the Rio Grande rift with several thousand feet of 
displacement separate the basin from the surrounding, uplifted mountains. Stratigraphically, 
the Tularosa Basin consists of Paleozoic limestones and shales to Tertiary age rocks58,60–62. 
Rifting during the Paleogene resulted in characteristically high heat flow in south-central 
New Mexico83,84. High heat flow makes the southern part of the Tularosa Basin favorable for 
geothermal exploration. 

Recently, the DOE has collected data to develop geothermal fields in the Tularosa Basin. 
The data include geological, geophysical, geothermal, and geochemical attributes. Also, a 
comprehensive PFA study was conducted by Ruby Mountain Inc.39,84, and they demonstrated 
prospective geothermal locations. In this study, we curated data from the DOE Geothermal 
Data Repository and then used them as input parameters for GTC. Results from GTC provide 
insights into the relationship between attributes and prospective geothermal locations which 
we then compared to the PFA study by Ruby Mountain Inc.. Lastly, we discussed how NMFk 
and Burns’ equation34 can be coupled to obtain a better understanding about prospective 
geothermal sites.      

https://www.zotero.org/google-docs/?tSFfq5
https://www.zotero.org/google-docs/?R2gvgN
https://www.zotero.org/google-docs/?NaYVPa
https://www.zotero.org/google-docs/?ybhlK1
https://www.zotero.org/google-docs/?XHRNzl
https://www.zotero.org/google-docs/?CxMGhQ
https://www.zotero.org/google-docs/?RonHGc
https://www.zotero.org/google-docs/?G1tXvR
https://www.zotero.org/google-docs/?FRBTDN
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Fig. 4.1: Data locations and Quaternary faults in the study area. 

Data 
In this study, we used a total of 10 attributes: temperature at 2m depth (temperature @2m), 
heatflow, NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir 
geothermometer, silica geothermometer, gravity, fault distance, quaternary fault density, 
and Li concentration. All these attributes are critical for geothermal resources discovery and 
exploration. Temperature @2m has been used to explore geothermal fields at Dead Horse 
Wells, the Hawthorne Army Depot, and Emerson Passin in Nevada85. Heatflow defines how 
heat flows to the geothermal reservoir from the deep subsurface. Geothermometers (NaK-
Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, and 
silica geothermometer) are used to estimate potential reservoir temperature and geochemical 
processes in the reservoir. These geothermometers help estimate potential reservoir 
temperature leading to less number of exploratory well drilling. Gravity may represent 
secondary mineralization and help characterize geologic structure86. Faults can act as 
conduits of (1) groundwater flow water from depth to the ground surface as well as (2) 
groundwater recharge. We have two fault attributes: fault distance and quaternary fault 
density. Fault distance represents distance from fault to the data point. Fault density 
(quaternary) is the number of faults per square meter of an area. Finally, Li concentration is 
a geochemical element that represents deep fluid circulation. All these attributes were used 
at 120 locations (Fig. 4.1)  
However, all attributes are dispersely located and are not available at 120 locations except 
temperature @2m. We applied different interpolation techniques to sample all attributes at 
the specified 120 locations. For heatflow, NaK-Giggenbach geothermometer, K-Mg 
geothermometer, NaK-Fourneir geothermometer, silica geothermometer, gravity, and Li 
concentration interpolation was used by making the study area as a grid. Interpolation was 
performed based on block mean, kriging, and inverse distance weighting. Next, R2 score was 

https://www.zotero.org/google-docs/?yXYWMf
https://www.zotero.org/google-docs/?q8bRZQ
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computed based on interpolated values and real values. We found all methods provide 
equivalent R2 scores. Block mean was selected as the optimal interpolation method because 
it takes least time to execute. The interpolated values were used in the nearest neighbor 
algorithm to sample 120 values at 120 locations. The nearest neighbor algorithm finds mean 
value based on either radius or number of points around a point. Here, we use radius to find 
the mean value. The radius was calculated based on variogram study in the data.  
Fault distance and fault density were estimated using different approaches. For estimating 
fault distance, we generated a normal raster on ArcMap. The raster was converted to points. 
Next, a near coverage tool on ArcMap was used to compute the distance of each point from 
nearest faults. For estimating fault density, we also generated normal raster followed by 
converting points. Next, the near coverage tool was used to find the distance from point to 
nearest faults. Finally, the kernel density function was used to calculate fault density. Unit of 
fault density is m/m2.  

For developing a neural network based ML model, we generated data based on Eastern Snake 
River Plain by varying input parameter ranges based on variance and mean of data using 
Eqn. 6. Next, we form a 1D deep neural network with three layers. Each layer has 256, 128, 
and 64 layers, respectively. We used relu as the activation function. We trained the model 
for 500 epochs with a learning rate of 0.001. Using a data matrix instead of generating files 
is the main benefit of utilizing the neural network model. Also, point based prediction is 
feasible with the neural network based model that is not possible with Burns’ equation.       

Results 
Fig. 4.2 shows the reconstruction quality 𝑂𝑂(𝑘𝑘) and average silhouette width 𝑆𝑆(𝑘𝑘) for 
different number of geothermal signatures, 𝑘𝑘. 𝑂𝑂(𝑘𝑘) values exponentially decrease with the 
increase of the number of signatures. However, that is not generally true for 𝑆𝑆(𝑘𝑘). Although 
optimal solutions have low 𝑂𝑂(𝑘𝑘) and high 𝑆𝑆(𝑘𝑘)values, their optimal values are not 
theoretically established. Generally, low 𝑂𝑂(𝑘𝑘) and 𝑆𝑆(𝑘𝑘)>0.25 can be considered to be 
acceptable. Here, the solutions for k=2, 3, 4, 5, and 6 were accepted, while the  k=8 to 10 
solutions were rejected by the algorithm. This conclusion is based on the high 𝑆𝑆(𝑘𝑘)values 
(>0.25) and the 𝑂𝑂(𝑘𝑘) decline curve (Fig. 4.2). The k=4 solution is found to be optimal 
because of its low 𝑂𝑂(𝑘𝑘) and high 𝑆𝑆(𝑘𝑘) values. The solution with k<4 is an underfitting 
representation of data while k>3 is an overfitting representation of data. In the following 
paragraphs, we will describe each signature of the k=4 solution (Fig. 4.3(a&b)). 
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Fig. 4.2: NMFk results for normalized reconstruction quality/fit 𝑂𝑂(𝑘𝑘)in red color 
and solution robustness (based on the average silhouette 𝑆𝑆(𝑘𝑘) width of the 
clusters) in blue color for different numbers of signals 𝑘𝑘. 

Fig. 3(a) shows a heatmap of signatures found by GeoThermalCloud. Each signature captures 
certain characteristics in the dataset. Colors in each signature represent the contribution of 
each attribute. Green, yellow, and brown-red colors represent minor, moderate, and major 
contributions, respectively. Note, minor and major contributions also means low and high 
attribute values in the actual dataset. 

The dominant attributes of Signature A are heat flow, K-Mg geothermometer, silica 
geothermometer, and quaternary fault density (Fig. 3a). Heat flow is one of main geothermal 
attributes while K-Mg and silica geothermometers potentially represent high reservoir 
temperature. Low contribution from NaK-Giggenbach and NaK-Fourneir geothermometers 
suggests that geochemical processes in the reservoir are not controlled by Na enriched 
minerals. High contribution of quaternary fault density may indicate elevated secondary 
permeability. The contribution of Temperature @2m is medium that is consistent with high 
heat flow. Another critical component of this signature is low contribution from fault 
distance. Low fault distance means fault is close to the locations associated with this 
signature that may lead to elevated secondary permeability. All these factors are good 
indicators for high geothermal prospects; therefore, the locations associated with Signature 
A have a high chance of having geothermal resources (Fig. 3b).  

Silhouette 
width, S(k) Reconstructio
n error, O(k) 
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Fig. 4.3: Geothermal signature heatmap (a) and their spatial distribution (b). Each 
signature captures certain characteristics in the data. Here, Signatures A and B 
represent highly prospective geothermal signatures. Green, golden, and red colors 
in (a) represent low, medium, and high contributions, respectively.  

The dominant attributes of Signature B are Temperature @2m and heat flow, quaternary 
fault density, and Li concentration (Fig. 3a). Temperature @2m and heat flow are two main 
geothermal attributes. The high contribution of quaternary fault density may indicate 
elevated secondary permeability. The high contribution from Li suggests a potential fluid 
circulation from the deep subsurface that is a good indicator of potential geothermal 
resources. The contribution from fault distance is also low. Low fault distance means faults 
are close to the locations associated with this signature. All these factors are good indicators 
for high geothermal prospects; therefore, the locations associated with Signature B have a 
high chance of potential geothermal resources (Fig. 3b). However, no geothermometers had 
major contributions on this signature except close to medium contribution from silica 
geothermometer suggesting the geothermal potential is not as high as Signature A. a careful 
approach should be taken prior to making any decision about geothermal resource 
development.       

No geothermal attributes had a major contribution on Signature C; therefore, we conclude 
that the locations associated with it have a low chance of possessing geothermal resources. 
In Signature D the dominant attributes are NaK-Giggenbach and NaK-Fourneir 
geothermometers. These attributes suggest that the reservoir has a high temperature. The 
medium and high contribution of Quaternary fault density and Li concentration suggest 
elevated secondary permeability and deep fluid circulation. However, temperature @2m and 
heat flow had low contribution. All these factors suggest that the locations associated with 
Signature D (Fig. 3b) may or may not have high prospectivity. However, Signature D has 
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some positive characteristics for exploring geothermal resources and because of its proximity 
to Signature A (high prospective signature), there is some potential for sustainable 
geothermal resources in the locations associated with Signature A. Note, the prospective 
geothermal locations are consistent with the Ruby Mountain’s PFA prospective locations.   

NMFk results help us discover potential geothermal resources and their spatial locations. 
Regional hydrogeological and geothermal conditions would facilitate a better understanding 
on whether we can develop a long-term geothermal facility here. To obtain such results, we 
can apply Eq. (3) to compute aquifer temperature, viscous heat flux, vadose heat flux, and 
advective heat flux. Among these four attributes, viscous heat flux and advective heat flux 
could be used to estimate the potential time to heat up the geothermal reservoir temperature 
during energy production and injection; hence, the viability and sustainability of geothermal 
reservoirs. We coupled the Burns’ equation with NMFk and GeoThermalCloud has the 
capability to perform such tasks. However, we could not demonstrate a study because of lack 
of data. We will conduct and demonstrate such a study if we receive a good dataset in the 
future. 

Conclusions 
Tularosa basin has potential geothermal resources, which can be used to support several 
federal facilities in the area. To find geothermal prospects, we studied 10 attributes at 120 
locations. Attributes include temperature @2m, heatflow, NaK-Giggenbach 
geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, silica 
geothermometer, gravity, fault distance, quaternary fault density, and Li concentration. The 
dataset was used as input parameters to GTC. GTC finds four signatures (A, B, C, and D), 
two of which are geothermal signatures. The locations associated with Signatures A and B 
have high geothermal resource prospectivities that are spatially consistent with the Ruby 
Mountain’s PFA study. We also found that the locations associated with Signature D are not 
as prospective as Signatures A and B, but they might assist a sustainable geothermal reservoir 
in the area around the locations of Signature A. The key attributes defining the geothermal 
resources are heat flow, K-Mg geothermometer, silica geothermometer, quaternary fault 
density, temperature @2m, fault density, and Li concentration. Finally, we discussed how 
we can couple an existing analytical equation to GTC computing the viability and 
sustainability of geothermal reservoirs.     

Chapter 5: A FORGE Datathon Case Study to 
Optimize Well Spacing and Flow Rate for Power 
Generation  

Introduction 
Enhanced geothermal systems (EGS) present a significant and long-term opportunity for 
widespread power production and direct heat74,87. But high exploration costs combined with 
uncertainties associated with subsurface characteristics (such as permeability, reservoir 

https://www.zotero.org/google-docs/?hvLABR
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temperature, fault connectivity, geochemistry, and in situ stress distribution) have impeded  
the geothermal market growth74,87. Moreover, building a profitable EGS is a major challenge. 
Profitable EGS fields will depend on many design parameters3,4. We will focus on the 
parameters of reservoir depth, project lifespan, injection temperature, well spacing, well 
length, well azimuth, well depth, well skew (i.e., non-parallel wells), well count, well toe 
(i.e., decreasing well spacing from heel to toe), well proportion (i.e., the ratio of injection 
well length to production well length), well phase (i.e., the placement of the production well 
above, beside, or below the injection well), well intervals (i.e., the number of isolated 
perforation clusters), production well pressure drawdown, stimulation flow rate, stimulation 
volume, and circulation flow rate. Finding optimal values for these design parameters is a 
computationally expensive task to say the least. 

To tackle this challenge, PIVOT (a conference supported by the U.S. Department of Energy) 
organized a first-ever Geo Datathon event in 202288. The primary goal of this Datathon was 
to identify production well placement. Participants in this event used different machine-
learning methods to solve a geothermal engineering problem on a simulated dataset of the 
Utah FORGE site (Fig. 5.1). Data for the Datathon was generated by geothermal design tool 
(GeoDT) to investigate the power production potential of an EGS system. In this event, six 
teams (Team Naturals, Benjamin Cassidy, Pebbles, GeoT360, S-Team, and GeotherML) 
completed the competition. Team Naturals of Stanford University, Benjamin Cassidy of 
Hammer and Tongs Polymer Development, and Pebbles of the Colorado School of Mine 
were awarded champion, 1st runner up, and 2nd runner up, respectively.  

Despite a short time for the competition and a challenging task, each team made a great 
contribution to identifying  suitable locations for the production well. Team Naturals 
included metrics for risk by considering averages and standard deviations in power 
production. Also, they clearly demonstrated that net power production was not the best value 
to optimize. Benjamin Cassidy applied a unique set of approaches to the ML challenge to 
optimize well placement from more than one perspective. Crucially, these competitors also 
revealed several problems that needed to be solved to get the best answer to optimizing the 
well spacing: (1) identifying a suitable objective function (e.g., net present value), (2) finding 
a robust optimization method for the complex dataset, and (3) accounting for uncertainty and 
risk tolerance.  

Here, the primary purpose of our study is to find optimal well spacing (w_spacing) and per-
interval circulation flow rate (Qinj) for the same dataset. First, we define a new objective 
function, which yields reduced parameters for comparing realizations, e.g., average power 
or net present value (NPV) in dollar amount. We chose NPV because it provides the best 
estimate of monetary value. Second, we developed a binning-based optimization approach. 
Third, we identified optimized w_spacing and Qinj with an assessment of uncertainty. 

https://www.zotero.org/google-docs/?m2h5MH
https://www.zotero.org/google-docs/?3qaB8k
https://www.zotero.org/google-docs/?uvg7C1
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Fig. 5.1: Utah FORGE site with the injection well 16A(78)-32 and five monitoring 
wells (taken from Moore et al. 202189). 

Net Present Value (NPV) Estimation 
Our new economic module in GeoDT yields estimated NPV in circa 2019 U.S. dollar 
amounts for a hot dry rock EGS geothermal project90. Such a reduced value is critical for 
optimizing geothermal design parameters. This module considers capital costs, maintenance 
costs, pumping costs, and power sales. Following the theme of fast-simplified physics, this 
module uses simplified methods to estimate costs where the underlying goal is to give a 
conservative view of the economic potential of a project. The cost terms that we employ in 
this study are summarized in Table 5.1. True costs for an EGS site depend on many factors 
beyond what our simple model includes. Ultimately, we use this cost model as an objective 
function to better contrast increasing power production with increasing capital costs and 
other financial risks.    

Table 5.1: Constants used to estimate NPV. 

Parameter Unit  Value Reference 

Electricity sales per kilowatt-hour USD/kWh 0.1372 EIA, 2022 

Drilling cost per length USD/m 2763 Lowry et al., 201  

Drill pad cost kUSD 590 Lowry et al., 201  

Power plant cost USD 2026 GETEM 

Exploration cost per depth USD/m 2683 GETEM 

Operating cost per kilowatt-hour USD/kWh 0.0365 GETEM 

Outputs from GeoDT that pair with these cost factors include the net power output (Pout) for 
each model timestep and timestep parameters (TimeSteps and LifeSpan). The net power 
production term (Pout) for the Datathon only included  the flash steam cycle for power 

https://www.zotero.org/google-docs/?24mMX4
https://www.zotero.org/google-docs/?HI9hWs
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generation. In this study, we add a simplified estimate for isobutane binary-cycle power 
generation and an improved estimate of injection well pumping losses that accounts for open-
loop fluid losses (https://github.com/GeoDesignTool/GeoDT). Each power term includes the 
effect of inefficiencies, with this study using a conservative 85% efficiency (GenEfficiency). 
Discrete fracture networks with open-flow boundaries formed the basis of all the GeoDT 
models.  

Data Description 
The 16 most critical controllable design parameters (Table 2) can be divided into four 
categories: reservoir/site, power cycle, well, and stimulation. Of these, only 10 design 
parameters were varied to a meaningful degree because the first well at the site, well 
16A(78)-32, has already been drilled at a diameter of 0.11 m to a depth of 2350 m with a 
highly-deviated lateral length of 1114 in the direction of 1.833 radians Azimuth at a dip of 
0.483 rad below the horizon. This azimuthal direction is near-parallel to the in-situ minimum 
horizontal stress direction. Reservoir depth is the only controllable reservoir parameter, but 
it is not a variable in this study because of the preceding reasons. Injection temperature was 
the only power cycle parameter that was varied because this study focuses on subsurface 
EGS design optimization, not power systems engineering.  While GeoDT is capable of 
modeling hydraulic stimulation separately from circulation, in this study the circulation stage 
is treated as a continuous stimulation stage for the lifespan of the EGS, so we did not 
parameterize these two stages independently. In other words, GeoDT predicts hydraulic 
fracturing and shearing at the same rate of injection as what is used for long-term circulation 
and heat mining. Our focus for design optimization will be set on well spacing (w_spacing) 
and per-interval circulation rate (Qinj) because these two terms were predicted to be first-
order controls for power production. 

Table 5.2: EGS project design parameters and corresponding units, minimum and 
maximum values, and their statistical distributions. Parameters in green color cells 
were optimized in this study. 

Category Variable Parameter Unit Min 
Value 

Nominal 
value 

Max 
Value 

Distribution 

Site ResDepth Nominal reservoir 
depth 

m 2340   2360   

Power cycle LifeSpan Project lifespan yr   30   - 

Power cycle Tinj Injection temperature C 85   99 - 

Well w_spacing Well spacing m 50   1000 Uniform 

Well w_length Well length m   1114   Lognormal 

Well w_azimuth Well azimuth deg   1.833   Uniform 

Well w_dip Well dip deg   0.438   Uniform 

https://github.com/GeoDesignTool/GeoDT
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Well w_skew Well skew deg -10   10 Uniform 

Well w_count Well count well
s 

1   4 Uniform 

Well w_toe Well toe deg -5   5 Uniform 

Well w_proportio
n 

Well proportion deg 0.8   1.1 Uniform 

Well w_phase Well phase deg   0, 90, 
180, 270 

  Uniform 

Well w_intervals Well intervals zone
s 

1   6 Uniform 

Well dPp Production well 
pressure rise 

MPa -10   2 Uniform 

Well perf Perforation count perfs   1   Uniform 

Stimulation Qinj Circulation flow rate m3/s 0.001   0.1 Exponential 

Using statistical distributions for all the known and unknown site, fracture network, and 
design parameters, 44,492 realizations were generated for the Datathon (PIVOT, 2022). All 
the well parameters were generated using uniform distributions. The minimum and 
maximum values of the distribution are listed in Table 5.2, and histograms of six example 
parameters are shown in Fig. 5.2. The lifespan of the field was considered only 30 years, and 
injection temperatures varied from 85-99℃ (Fig. 5.3). The injection rates per-interval (Qinj), 
which also serve as the stimulation rates, were generated using exponential distribution 
because this offers improved resolution for realizations with low flow rates, relative to the 
maximum simulated flow rate. When the optimal flow rate is not known, the exponential 
distribution helps explore a larger probability space in order to more clearly identify the 
optimal flow rates.  



55 

Fig. 5.2: Distribution of design parameters for well. 

 
Fig. 5.3: Distribution of injected flow rate (Qinj), reservoir depth (ResDepth), and 
temperature of injected fluid (Tinj).   
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Methods 
In any optimization technique, identifying a suitable objection function is a crucial first step. 
Here, our goal is to maximize the NPV value of a geothermal project because NPV provides 
a common framework to measure the relative benefit and cost of each design decision. This 
contrasts with optimizing power production where the most productive scenarios can be 
unreasonably expensive with respect to drilling and pumping costs. The traditional parameter 
estimation study fits a physical model to data, finding optimal parameters. Such a study finds 
a single optimal value for each parameter and then the Markov chain Monte Carlo (MCMC) 
method or its variant is performed to generate distributions of parameters to provide 
uncertainty of the value in its distribution. However, MCMC cannot provide uncertainty 
based on the most likely scenarios for peak NPVs, an important attribute to investors.  

Investors would like to see what is the most likely chance of a profitable geothermal project 
based on NPVs; for instance, what are the 10th, 50th, and 90th percentile of NPVs for a given 
set of design parameters? Therefore, we chose binning-based optimization in this study (Fig. 
5.4). In this technique, we define a bin volume based on discrete splitting of the design 
parameter values of injection rate and well spacing. Then, we compute NPVs of each 
realization in the corresponding volume. Finally, we compute the 10th, 50th, and 90th 
percentile of NPVs and their corresponding design parameters. Here, percentile values of 
NPV demonstrate the profitability of geothermal fields while the design parameter ranges 
provide the range within which the NPV would be profitable. For this study, w_spacing and 
Qinj were evenly split into 9 and 4 intervals, giving a total of 36 bins for our realizations. 
Nine intervals provided the finest discretization that yielded suitably large populations of 
data within each bin for achieving statistical significance. 

 
Fig. 5.4: Binning based optimization technique where blue dots represent each 
realization and red color rectangle shows example binned areas. 
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Results 
The model’s NPV values are widely distributed, ranging from negative to hundreds of  
millions  USD (Fig. 5.5). We plotted the frequency distribution plot of NPVs using 30 bins. 
The most common outcome was negative NPV due to the relatively cold 200℃ temperature 
at the current depth of FORGE, when treated as an EGS. Out of 44,492, 42,960 (96.55%) 
realizations fall into this non-profitable category. Only 3.45% or 1,532 realizations fall into 
the profitable category. The profitable NPVs range from 0 to ~1500 million USD. The most 
likely profitable range was 25 to 676 million USD.     

 

Fig. 5.5: Histogram of NPVs where negative and positive values represent non-
profitable and profitable geothermal fields, respectively. The number on top of each 
bar represents the total count of NPV for the corresponding bar. All drilling costs and 
pumping losses are included in this model. 

All NPVs are plotted against Qinj and w_spacing in Fig. 5.6. Here, only positive or profitable 
NPVs are present, while negative values are absent. It is clearly shown that geothermal fields 
are non-profitable or marginally profitable for Qinj < 0.01 m3/s. High and extreme Qinj at 
rates above 0.2 m3/s do not make a geothermal project profitable either. Therefore 
optimization of Qinj is critical for achieving economic EGS, which confirms our apriori 
expectation but now better quantifies this trend. A similar optimization trend is less visible 
for w_spacing because profitable to non-profitable geothermal fields are present across the 
full w_spacing range. Therefore, we applied a binning-based optimization technique to find 
optimal w_spacing and Qinj.  
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Fig. 5.6: Positive (profitable) NPVs against Qinj and w_spacing where color and size 
represent NPVs. Warm and larger size circles represent higher NPVs or vice versa. 
Most of the realizations are not in this plot because of their negative USD values.  

The 10th percentile values show that profitable geothermal fields most likely occur between 
110 to 348 m w_spacing and 0.0005 to 0.001 m3/s Qinj (Fig. 5.7a). Here, the closer space 
provides more profit because of the presence of fluid. The highest profit within the 10th 
percentile reached up to 0.5 million USD. The 50th percentile values demonstrate that 
profitable geothermal fields are feasible between 190 to 747 m w_spacing and 0.001 - 0.01 
m3/s Qinj (Fig. 5.7b). The highest profit within the 50th percentile reached up to 5.5 million 
USD.  
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Fig. 5.7: 10th (a), 50th (b), and 90th (c) percentile values of NPV in USD for different Qinj 
and w_spacing ranges.  

The 90th percentile values show more interesting characteristics across the ranges for both 
Qinj and w_spacing (Fig. 5.7c). Although all Qinj seem profitable, the prominent Qinj is 
0.01 to 0.1 m3/s. The next most profitable Qinj range is 0.1 to 0.3 m3/s. The w_spacing range 
between 190 to 747 m is profitable. Among these ranges, the most profitable range is between 
509 to 588 m. The next most profitable w_spacing range is between 668 to 747 m. The 
highest profit within the 90th percentile can reach up to ~36 million USD. For both 50th and 
90th percentile cases, low w_spacing provides less profit, and high w_spacing provides 
higher profits. This phenomenon contradicts the idea that close spacing will benefit from 
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having a better flow rate. Here, the total fluid volume generated more heat, thereby, more 
profits. So, it is clear that a total hot fluid volume is preferred to the flow rate in estimating 
NPV. In other words, more w_spacing provides more volume facilitating more fluid 
extraction.        

Conclusions 
We analyzed GeoDatathon data based on the Utah FORGE site parameters. The dataset has 
a total of 16 design parameters that control geothermal energy production, hence, its NPVs 
in USD. The primary goal of this study is to find the optimal design values for well spacing 
(w_spacing) and per-interval injection rate (Qinj) for developing profitable geothermal fields 
with specified uncertainties. We used a binning-based optimization technique to compute 
NPVs. We subdivided the whole realizations into 36 bins based on nine ranges for both 
w_spacing and Qinj. Following, NPV was calculated for all realizations in each bin. Next, 
we computed 10th, 50th, and 90th percentile scores of NPV in all bins. Based on the analysis, 
we came to the following conclusions: 

1. The 10th percentile values demonstrate that profitable geothermal fields are feasible 
between 110 to 348 m w_spacing and 0.0005 to 0.001 m3/s Qinj. The maximum profit 
can reach up to 0.5 million USD.  

2. The 50th percentile values demonstrate that profitable geothermal fields are possible 
between 190 to 747 m w_spacing and 0.001 - 0.01 m3/s Qinj. Low w_spacing 
provides less profit, and high w_spacing provides high profits. The maximum profit 
can reach up to 5.5 million USD.   

The 90th percentile values are better to consider than the 10th and 50th percentile values 
because of (1) higher certainty and wide ranges of w_spacing and Qinj. The most profitable 
Qinj is between 0.01 to 0.3 m3/s. The w_spacing range between 190 to 747 m is profitable. 
Among these ranges, the most profitable range is between 509 to 588 m. The next most 
profitable w_spacing range is between 668 to 747 m. The maximum profit can reach up to 
35 million USD.     

Chapter 6: Coupling Thermo-hydro-chemical 
Modeling and Markov Chain Monte Carlo Method 
for Permeability and Porosity Estimation in a 
Geothermal Reservoir 

Introduction 
Accurate geothermal reservoir characterization and maintenance help design a profitable 
geothermal power plant3,91. Specifically, accurate estimation of permeability and porosity is 
crucial for understanding the fluid flow mechanism and resources estimation of a geothermal 
field. For instance, higher permeability and porosity values could provide over-optimistic 

https://www.zotero.org/google-docs/?OMFIqw
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resources estimation and resources extraction mechanism or vice versa. However, the 
detailed permeability and porosity field of geothermal fields remain unknown because of 
sparse core measurements. Crucially, there is no workflow for determining permeability and 
porosity values with quantified certainties from sparse measurements. The primary goal of 
this study is to demonstrate a workflow, which estimates the permeability and porosity 
distribution in a geothermal site from sparse core measurements. 
There are several studies predicted permeability of geothermal reservoirs using either 
numerical simulation or lab experiments92–98. One notable study was performed by Jafari and 
Babadagli95 on estimating correlation coefficient of fractures by investigating the fractal and 
statistical parameters of fractures. The major limitation of this study is that they did not use 
critical geothermal measurements e.g., groundwater temperature and tracer concentration to 
constrain the model. Catinat et al.96 used nuclear magnetic resonance measurements to 
establish a relationship between porosity and permeability. This approach is reliable with 
two limitations (1) data are sparse and (2) fail to provide a good relation if one considers the 
total porosity. Weibel et al.93 developed a relationship between porosity and permeability in 
low enthalpy geothermal reservoirs by investigating the effect of diagenesis on sandstone 
permeability. However, they did not verify the relationship with groundwater temperature 
and tracer concentration. Jiang et al.97 estimated heterogeneous permeability distributions in 
an enhanced geothermal synthetic reservoir by combining an autoencoder neural network 
and a Bayesian inversion algorithm based on Markov chain Monte Carlo (MCMC) sampling. 
They used single-well injection withdrawal as measurement data that are not readily 
available. Suzuki et al.98 developed a supervised machine-learning-based model based on 
random forest for estimating permeability distributions for a geothermal field using 
temperature and pressure distribution as measurements.  
The preceding studies did not estimates permeability or porosity constraining the model 
based on critical attributes for geothermal exploration. The critical attributes are groundwater 
temperature and tracer (e.g., Li+, Ba2+) concentration in the subsurface. Groundwater 
temperature captures thermal gradient or heat flow while tracer concentration indicates deep 
fluid circulation1,99. Moreover, they are easy to measure and USGS installed numerous wells 
to measure these two attributes. To address the limitations, we estimated permeability and 
porosity of a 3D reservoir scale model constrained by groundwater temperature and tracer 
concentration.  
For such a parameter estimation study, a large number of the simulation of the flow, heat 
flux and chemical transport are often needed. Although the high fidelity coupled thermal-
hydrologic-chemical (THC) model is reliable and accurate on performing this task, the 
computational cost is huge. With the growth of the parallel computing hardwares like 
Graphical Processing Units(GPU), integrating machine learning (ML) tools could greatly 
speed up the simulations while maintaining accuracy. In this study, we train a deep CNN 
model as the surrogate using a relatively small and accurate simulation dataset obtained from 
the coupled THC model runs using PFLOTRAN44. Next, we generated 6,000 realizations of 
permeability and porosity distribution coupling the CNN model and MCMC sampling. 
Moreover, we discuss when MCMC performs better. 
 

 

https://www.zotero.org/google-docs/?IiTkAO
https://www.zotero.org/google-docs/?oEYZor
https://www.zotero.org/google-docs/?cZToza
https://www.zotero.org/google-docs/?ZTrDvK
https://www.zotero.org/google-docs/?jzPJlF
https://www.zotero.org/google-docs/?natgCq
https://www.zotero.org/google-docs/?yBAOpP
https://www.zotero.org/google-docs/?gjCnOj
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Data Generation 
This study is on thermal-hydrologic-chemical physical processes involved in heat conduction 
and energy transfer due to fluid flow and chemical transport in a site-scale reservoir100. The 
governing equations for fluid flow, chemical transport, and heat transfer processes are 
explained in Mudunuru et al.100. This study develops a 3D model with heterogeneous and 
anisotropic porous geologic systems representing the Tularosa Basin in New Mexico using 
PFLOTRAN. The model dimension is 6000 x 6000 x 6000 m3, discretized into 10 x 10 x 30 
grid cells. We developed such a big model to capture the optimal temperature distribution in 
the model domain101. 
The PFLOTRAN simulator takes the following terms as the variable input: the permeability, 
the initial temperature profile, the heat flux on the bottom of the reservoir modeling the 
geothermal resource, and the tracer concentration of lithium and boron. Other modeling 
parameters such as fluid thermal conductivity, solid thermal conductivity, rock density, and 
diffusivity are known and are considered uniform over the simulation domain. Same 
Neumann boundary conditions are applied to the west, east, north, and south faces of the 3D 
rectangular domain, i.e. no flow, no heat or concentration flux. The pressure on the top and 
bottom faces are fixed, with the bottom pressure higher; resultantly, the flow is upward. Zero 
concentration and zero concentration flux are assumed on the top and bottom surfaces. The 
only varying boundary condition is the heat flux on the bottom face. 
Aiming for a neural network surrogate model to predict the pressure, tracer concentration, 
and temperature field, we adopt a dataset contains various combinations of a stratified 
permeability field, initial temperature gradient, and heat flux on the bottom as the input, the 
corresponding future temperature gradient, liquid pressure, tracer concentration as the 
output.  
The initial temperature field is determined with the initial temperature gradient, initial 
temperature at top surface is assumed to be 25℃. In the entire domain, the temperature is 
proportional of depth assuming a uniform geothermal gradient of 25℃. The bottom heat flux 
and initial temperature gradient are randomly drawn from the uniform choices shown in 
Table 6.1. The permeability field of the modeling domain is discretized into nine geologic 
layers. The rock types, depth, and range of permeability of each layer are listed in Table 
6.21,102. The temperature, tracer, and pressure distribution at first and last time steps are 
shown in Figs 6.1 and 6.2, respectively. 
 
Table 6.1: Input parameters ranges for the initial temperature gradient and the bottom 
heat flux. 

 
Table 6.2: Permeability of the 9 layers. The permeability of each layer is drawn from 
the three choices following Gaussian distribution. 

https://www.zotero.org/google-docs/?xLN5c1
https://www.zotero.org/google-docs/?w7ABg3
https://www.zotero.org/google-docs/?z146V0
https://www.zotero.org/google-docs/?Ks3M9z
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Fig. 6.1: Distribution of (a) temperature, (b) tracer, and (c) pressure at the first time step. 

 

Fig. 6.2: Distribution of (a) temperature, (b) tracer, and (c) pressure at the last time step. 

Neural Network Surrogate 
For the purpose of inverse analysis and MCMC approach, the model is evaluated multiple 
times. Consequently, the development of a surrogate model significantly accelerate the 
analysis. We train a deep neural network (DNN) in order to perform the same task as the 
PDE solver. For the surrogate model we choose an image-to-image 3D Convolutional Neural 
Network (CNN) with encoder decoder architecture because it performs well for simulating 
contaminants transports in the subsurface103,104. The input of the model is a 6 channel of 10 
x 10 x 30  voxels, consisting the initial pressure, initial temperature, initial tracer 
concentration, permeability, porosity, and heat flux. For using heat flux as a boundary 
condition, the heat flux input is a 3D matrix with zero values everywhere except the bottom 
where the value of the boundary heat flux is given. The permeability in the vertical direction 
is defined as the 1/10 of the horizontal permeability and therefore the vertical input was not 
as an input as it would be redundant.  

https://www.zotero.org/google-docs/?zLWO1y
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The kernel of the CNN model consists of 3 x 3 x 3. For capturing physics in teh dataset, the 
number of layers in the encoder part is increased while the number of voxels is decreased 
after every convolution. The proposed architecture is based on the DenseNet which transfer 
the features from all the proceeding layers to facilitate back propagation of gradient 
information105.  The softplus is used for activation function. The decoder part takes the same 
steps as the encoder but in a reverse order; resultingly, the output matrices have the same 
dimensions as the input. The initial number of filters after the first convolution and the rate 
of increase of the filters after each following convolution for the encoding are two hyper-
parameter that are investigated for their influence in the model accuracy. The L1 norm is used 
as the loss/cost/objective function for training the model. 
The output of the model is 72 channel 10 x 10 x 30 voxels, which consists of pressure, 
temperature, and tracer concentration for 24 time-steps corresponding to the PFLOTRAN 
output timesteps. A different approach would be a auto-regressive approach that would 
predict the features for the next time steps and use them as input for the next time-step. The 
approach of using all the time-steps as the output instead of advancing the CNN for one time-
step each time is selected because the outputs can have a varying time interval without 
cumulative errors. 
The output data consist of three quantities of interest that have significantly different order 
of magnitude, for this reason a normalization of the data is performed, all input and output 
values are divided by their corresponding standard deviation. Furthermore, the quantities of 
concentrations of the tracers are more difficult to predict and more localized; therefore, there 
are weighted differently for the regions where significant changes are observed in the 
domain. The weight of the localized L1 norm of the tracer Wc is an additional hyperparameter 
that was tuned during the study to achieve the best performing surrogate model. The ADAM 
algorithm is used to optimize the CNN model because it is good at searching a wide range 
of hyperparameters106. The additional hyperparameters are the learning rate and the weight 
decay of ADAM algorithm. A grid search was performed for the hyperparameters and is 
listed in Table 6.3. 
 
Table 6.3: Hyperparamater range for the optimization of the CNN model. 

 

MCMC analysis 
The main objective of this step is to estimate porosity and permeability of model layers using 
temperature, tracer concentration, and pressure as proxies of measurements. For an efficient 
sampling of model parameters, the No-U-Turn Sampler (NUTS) is selected for the MCMC 
framework107, which is a gradient-based modified Hamiltonian Monte Carlo (HMC) 
approach108. For MCMC, a PFLOTRAN forward solution is used as the ground truth. The 
data/measurement are the surface temperature, the heat flux, and the initial temperature 

https://www.zotero.org/google-docs/?2yFosO
https://www.zotero.org/google-docs/?83zwzT
https://www.zotero.org/google-docs/?NRwFd8
https://www.zotero.org/google-docs/?CTYx0c
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gradient. Additionally, we consider that the time-series for the temperature, tracer 
concentration, and pressure for voxels  are scarcely distributed in three vertical columns. This 
sampling immitates the use of three vertical wells measuring required information.  
Therefore, the unknown parameters that we try to obtain through inference are the porosity 
and permeability. 
The permeability and porosity realizations for each layer are generated using the uniform 
distribution with their corresponding range. Subsequently, the values are normalized and 
formed as the input of the trained CNN model. Next, a normally distributed random noise is 
added to the model outputs to capture the model and measurement errors. The final outputs 
are conditioned to the solution of the ground truth obtained. Finally, MCMC sampler is used 
to obtain the posterior distribution of the inputs. Note, experiments are performed on 
hardware with the following specification: Intel Xenon Gold 6126 CPU (2.6 GHz), 60GB 
RAM, and Nvidia V100 GPU with 16GB vRAM. 

Results 

CNN surrogate training 

The 2,000 simulation results are used for the training and evaluation of the surrogate model. 
After the generation of the input-output pairs, the 1,600 of them are used for training and the 
remaining 400 pairs serve as the testing set. The evaluation of the model is based on the R2 
value (Fig. 6.3). Training and testing scores are close 1 in the best performing CNN models 
(Table 6.4). The optimal hyperparameters for the best performing models are listed in Table 
6.4.  
 

 

Fig. 6.3 High and consisting training and testing scores suggests a well trained model.   

Table 6.4: The best performing models and their corresponding hyperparameters. 
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Fig. 6.4: Distribution of temperature by PFLOTRAN (a), ML model (d), and PFLOTRAN–
ML model (g); tracer distribution by PFLOTRAN (b), ML model (e), and PFLOTRAN–ML 
model (h); pressure distribution by PFLOTRAN (c), ML model (f), and PFLOTRAN–ML 
model (i) after the last time step.  

The CNN model is only trained for 400 epochs because after it, the R2 scores of training and 
testing reaches a plateau (Fig. 6.3). The optimal initial number of channels and the growth 
rate are relatively large compared to models with similar architecture used for other tasks. 
The potential reasons are relatively larger outputs and more time steps in the outputs. 
However, similar R2 values for training and testing sets indicate that the model is not 
overfitted instead of complexity in the dataset (Fig. 6.3). The minimum difference between 
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the prediction of temperature, tracer, and pressure by PFLOTRAN and ML model also 
suggests a well trained ML model (Fig. 6.4). 

MCMC Inference 

We draw a total of 6000 samples and discarded 2000 samples in the burn-in stage; therefore, 
the estimation of the parameters relies on 4000 samples.  MCMC inference of porosity and 
permeability values for the first three (bottom) layers is consistent (Figs 6.4–6.5).  However, 
there are discrepancies in the porosity and permeability prediction for top six layers. Note, 
the first layer has high tracer concentration while top layers have low tracer concentration. 

 

Fig. 6.5: Histograms of assimilated permeability on each layer. The green shaded area 
indicates the range of initial guess and the dotted line the ground truth. 

The discrepancy of the real value and the estimated value for the higher layers can be 
explained by the fact that the tracer plume is not reaching above the third layer and therefore 
there is no information that can be assessed by the model. It is worth noting that for the first 
layer for which there is the most flow of the tracer the standard deviation of the estimated 
parameters are in the order of 0.05 and 0.01 for permeability and porosity accordingly. The 
difficulty of the MCMC method to estimate the parameters of the higher layers shows the 
importance of the correct regularization as the tracer moves upwards is diluted and the 
concentration decreases by an order of magnitude. Therefore, if there was no normalization 
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the MCMC would not be able to provide any reliable information for the second and third 
layer. 

Fig. 6.6: Histograms of assimilated porosity on each layer. The green shaded area indicates 
the range of initial guess and the dotted line the ground truth. 

The NUTS sampling uses the information of gradient facilitating the faster convergence of 
the distribution. The main advantage of the use of the neural network surrogate model is the 
efficient calculation of every iteration as the average time for sampling is 1.5 secs. 
Additionally, the PFLOTRAN or other subsurface simulators are not developed to leverage 
the GPU architecture; thereby, its integration with probabilistic programming platform 
would be more challenging. The use of open-source and off-the-self solution for both the 
surrogate model and the MCMC inference do not only decrease the development time but 
also increase the efficiency as the implementation have been developed and maintained to 
fully utilize modern hardware. 

Conclusions 
For this study the use of MCMC with NUTS sampling was proposed to infer permeability 
and porosity of a geothermal reservoir. The model used was a surrogate CNN trained on data 
generated by PDE-based model. For the inference of the parameters an example of the 
generated dataset was used as ground truth and the model is conditioned to data on virtual 
vertical wells with sparse information. The analysis concludes in the following finding:  
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● The CNN-based surrogate model can reproduce the results of the PDE-based solution 
of both thermal and advection process. 

● The MCMC with the use of surrogate model can evaluate the unknown parameters if 
enough information is provided, as it happens for the first layers. 

● For the areas where there is no change of concentration and temperature the inference 
of the permeability and porosity is not reliable, as the inverse problem is ill-posed. 

● The use of surrogate model can significantly decrease the computation time as the 
complex PDE-based model is evaluated only 2000 times which is the number of 
realizations needed for the training of the model. 

In this study it is shown that CNN surrogate model can reproduce PDE-based solutions and 
can be used for inference, they have the same limitations with the PDE-based solutions. In 
our case, the area where there was not significant movement of the tracer it was possible to 
retrieve the rock parameters reliably. The gain of the proposed workflow is that the time 
consuming PDE-based simulation are used to explore the parameter space to train the model 
and then is substituted with the faster CNN-based to sample the unknown parameters which 
is used more time and the gradient information is needed. 

Chapter 7: INGENIOUS and GeoDAWN Data 
Processing 

INGENIOUS 
The U.S. Department of Energy’s Geothermal Technologies Office has collected plenty of 
data through INnovative Geothermal Exploration through Novel Investigations Of 
Undiscovered Systems (INGENIOUS) Project with an aim to accelerate discoveries of new, 
commercially viable hidden geothermal systems in the Great Basin, NV, US. The 
INGENIOUS Project has released its data in 2022 on the geothermal data repository 
available at (https://gdr.openei.org/submissions/1391)109. The dataset includes a total of 24 
geological, geophysical, and geochemical attributes. Data counts for each attribute 
significantly vary. Some attributes have too fine resolution data while others are too sparse, 
and others are in between two. The main purpose of this task is to bring them in the same 
scale so that ML practitioners can load the data and use it for their purpose without going 
through excruciating preprocessing steps. We curated and processed the dataset. Next, we 
some time used only inverse distance weighting (IDW) or use both NMFk and IDW 
algorithms for predicting data in unsampled locations.  
This regional scale dataset provides information for predicting geothermal favourability in 
the Great Basin region. The geochemical attributes include Al3+, B+, Ba2+, Be2+, Br一, Ca2+, 
chalcedony, Cl一, HCO3, K+, Li+, Mg2+, Na+, quartz, total dissolved solids (TDS), 
groundwater temperature. These data are heavily sparse. To remove the sparsity, we used 
NMFk followed by IDW for interpolation. The common locations were 14,341 geochemical 
data locations in the Great Basin36. The scaled data are shown in Figs 7.1-7.4.   
Other geological and geophysical attributes include depth to the basement, dilation rate, 
magnetic anomaly, seismicity (N50_alpha_10-12/yr), strain rate, shear rate, 
temperature@2m, and heat flow (Figs 7.5-7.6). Depth to the basement, dilation rate, 

https://gdr.openei.org/submissions/1391
https://www.zotero.org/google-docs/?UttuXl
https://www.zotero.org/google-docs/?PwSfbz
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magnetic anomaly, seismicity (N50_alpha_10-12/yr), strain rate, and shear rate contain fine 
resolution data while temperature@2m and heat flow contains both coarse resolution and 
sparse data (Figs 7.5-7.6). We applied IDW to upscale the fine resolution data and  downscale 
the coarse resolution data (Figs 7.5-7.6).   
 

 
Fig. 7.1: Top and bottom rows represent ingenious and interpolated data, respectively. Here, 
each attribute was fine scaled applying IDW on NMFk prediction. 

 
Fig. 7.2: Top and bottom rows represent ingenious and interpolated data, respectively. Here, 
each attribute was fine scaled applying IDW on NMFk prediction. 
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Fig. 7.3: Top and bottom rows represent ingenious and interpolated data, respectively. Here, 
each attribute was fine scaled applying IDW on NMFk prediction. 

 
Fig. 7.4: Top and bottom rows represent ingenious and interpolated data, respectively. Here, 
each attribute was fine scaled applying IDW on NMFk prediction. 
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Fig. 7.5: Top and bottom rows represent ingenious and interpolated data, respectively. Here, 
each attribute was upscaled applying IDW. 

 
Fig. 7.6: Top and bottom rows represent ingenious and interpolated data, respectively. 
Applying IDW, strain and shear rates were upscaled while temperature at 2m depth and heat 
flow were fine scaled. 

GeoDAWN 
A recent interagency agreement–Geoscience Data Acquisition for Western Nevada 
(GeoDAWN)—unites EERE’s Geothermal Technologies Office (GTO) with the USGS 
Earth Mapping Resource Initiative (Earth MRI) and 3D Elevation Program110. The purpose 
of this initiative is to collect LiDAR and electromagnetic data for finding hidden geothermal 
resources and critical minerals. Next, use advanced machine learning algorithm to analyze 
the data and to discover new geothermal and critical mineral resources. So far, this project 
disseminated LiDAR point cloud (LPC) within Nevada and parts of CA region (Fig. 7.7). 
Such a dataset has a huge potential to reduce the risks and costs associated with geothermal 
exploration and production.   

https://www.zotero.org/google-docs/?dujjAf
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For an appropriate utilization of this dataset, we need to create labels of favorable geothermal 
settings with corresponding LPC data. Labeling such a dataset is a non-trivial task because 
they are huge (in terabytes scale) and contains in 1000s of tiles. We have to sort the tiles in 
an orderlerly fashion and find their neighboring tiles. Then, label each tile whether they 
contains favorable geothermal settings. For this purpose, we wrote a python script that can 
sort the tiles and find their neighboring tiles. 

 

Fig. 7.7: Each color represents a unique flight line duration that was used to collect lidar data 
at different times (a) and intensity distribution of the collected lidar data (d).
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