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Executive Summary

The primary goals of this project are exploring hidden geothermal resources in the U.S.A. and
designing profitable enhanced geothermal systems (EGS). Many processes and parameters control
geothermal exploration and energy production from geothermal fields. Diverse datasets (e.g.,
geology, geochemistry, geophysics, satellite, airborne geophysics) are available to help
characterize subsurface geothermal conditions. Sparse and multi-scale characteristics of these
datasets prohibit properly leveraging these datasets for geothermal exploration and profitable EGS
design. Recent advancements in machine learning (ML) promise to resolve these issues. The
tremendous challenges and risks of geothermal exploration and production bring the demand for
novel ML methods and tools that can (1) analyze large field datasets, (2) assimilate model
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer learning
(between sites with different exploratory levels), (5) extract hidden geothermal signatures in the
field and simulation data, (6) label geothermal resources and processes, (7) identify high-value
data acquisition targets, and (8) guide geothermal exploration and production by selecting optimal
exploration, production, and drilling strategies.

To address these necessities, ML-based geothermal resources exploration and enhanced
geothermal systems (EGS) design tools have been developed. The exploration tool is called
GeoThermalCloud and EGS design tool is called GeoDT-ML. GeoThermalCloud
(https://github.com/SmartTensors/GeoThermalCloud.jl) utilizes a LANL unsupervised ML
platform called SmartTensors (https://tensors.lanl.gov/) to automate data analyses and
interpretations by extracting hidden signatures to identify geothermal prospects. Also, it enables
the identification of critical measurements needed to identify geothermal resource signatures.
Alternatively, GeoDT-ML
(https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS) is an ML-based
alternative to GeoDT (https://github.com/GeoDesignTool/GeoDT.git), a fast, simplified multi-
physics solver to evaluate EGS project designs in uncertain geologic systems. GeoDT-ML
leverages recent advances in deep learning and high-performance computing. It is a faster and
simpler version of GeoDT. To make this project a success, we used capabilities of LANL, PNNL,
Google, Stanford, and Julia Computing.

We analyzed eight datasets of the U.S.A. using GeothermalCloud and demonstrated potential
highly prospective geothermal resources and identified key factors defining highly prospective
sites. The first data set includes 44 locations in southwest New Mexico and 18 geological,
hydrogeological, geophysical, geothermal, geochemical attributes. We defined low- and medium-
temperature hydrothermal systems and discovered a new highly prospective site. The second data
set analyzed 18 shallow water chemistry attributes at 14,342 locations in the Great Basin. It
demarcated modestly, moderately, and highly prospective sites including key attributes for each
type of prospectivity. The third data set analyzed Utah FORGE data including satellite (InSAR),
geophysical (gravity, seismic), geochemical, and geothermal attributes. Here, we performed
prospectivity analysis to identify future drilling locations using geological, geochemical, and
geophysical attributes. Maps of temperature at depth and heat flow are constructed based on the
available data. Prospectivity maps were generated, and drilling locations were proposed for future
geothermal field exploration. The fourth data set analyzed 21 attributes at 120 locations in
Tularosa Basin, New Mexico; data comes from past play fairway analyses in this region. ML
analyses identified geothermal signatures associated with modestly, moderately, and highly
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hydrothermal systems. We also defined dominant attributes and spatial distribution of the
geothermal signatures. The fifth, sixth, seventh, and eighth datasets include Tohatchi Springs,
New Mexico, Hawaii, Brady site, Nevada, and EGS Collab, respectively.

Moreover, we coupled GeothermalCloud and magnetotellurics data to pinpoint drilling locations
for developing geothermal projects in the Tularosa Basin, New Mexico. GeothermalCloud found
potential prospective locations for geothermal resources near White Sands Missile Range and
McGregor Range at Fort Bliss. Magnetotellurics data determined the potential depth (~1800m) of
geothermal prospects at McGregor Range based on apparent resistivity structures/layers in the
subsurface. The McGregor Range consists of three resistivity layers and two resistivity structures.
Magnetotellurics data also helps identify that the western portion of the McGregor Range has thick
and low-resistivity earth materials. The low resistivity to the west is most likely for a fault system.
Assuming temperature is consistent with a geothermal reservoir, the west-central part of the
McGregor Range has the highest geothermal potential because of the increase in porosity and
associated permeability attributed to the interpreted fault system.

Also, we devised a coupling strategy between a process model and GeothermalCloud to
characterize hydrogeological conditions and geothermal conditions, respectively. The process
model characterizes hydrogeological and geothermal conditions on highly prospective geothermal
sites provided by GeothermalCloud. We developed a physics-informed neural network (PINN)
version of the Burns equation that can be easily coupled with GeothermalCloud.

Furthermore, we performed an optimal design decision maximizing the economic value of an EGS
power plant. This study optimized the range of well spacing between injection and production
wells maximizing net present value in dollars (NPV). For this task, we used the GeoDT to simulate
the Utah FORGE EGS development cycle from the initial well design to the end of production.
Next, we accomplished another crucial task, which is predicting permeability of geothermal
reservoirs. Predicting permeability of geothermal reservoirs is a non-trivial task because of huge
computational runtime of simulation and lack of measurements. To avoid these limitations, we
used easy-to-measure chemical concentrations in the subsurface as measurement data and
convolutional neural network based ML model of a high-fidelity model. Next, we predicted
permeability using Markov chain Monte Carlo simulation. We found that Markov chain Monte
Carlo simulation predicts permeability with a high certainty if the prediction zone in the simulation
area has chemical concentration data.

Finally, we analyzed the DOE funded INGENIOUS and GeoDAWN projects data. For discovering

hidden geothermal systems in the Great Basin, the INGENIOUS project accumulated old data,
collected new data, and released them in 2022. The dataset includes a total of 24 geological,
geophysical, and geochemical attributes. Data resolution and scale significantly vary prohibiting
an appropriate usage. To avoid such limitations, we brought all data in the same resolution and
scale by applying the inverse distance weighting interpolation technique for predicting data in
unsampled locations. Subsequently, we analyzed LiDAR data of the GeoDAWN project. We
received data in tiles format. The DOE’s overarching goal is to use ML on LiDAR data for finding
favorable geological structures (e.g., step up faults in Brady, Nevada). To serve the purpose, we
need to label favorable geologic structures that correspond to LiDAR data. We wrote an algorithm
to label the LiDAR data with the favorable geologic structures.



GeoThermalCloud: A Machine Learning Framework for Geothermal
Resources Exploration

GeoThermal

https://github.com/SmartTensors/GeoThermalCloud.jl

Chapter 1: GeoThermalCloud and Its Usage

GeoThermalCloud

Introduction

The project is motivated by the challenges, risks, and costs associated with geothermal
exploration and production!. Many processes and parameters impacting geothermal
conditions are poorly understood. Diverse datasets are available to help characterize
subsurface geothermal conditions (public and proprietary; satellite, airborne surveys,
vegetation/water sampling, geological, geophysical, etc.). Yet, it is unclear how to properly
leverage these datasets for geothermal exploration due to an incomplete understanding of
how physical processes impacting subsurface geothermal conditions are represented in these
observations. Recent advancements in machine learning (ML) promise to resolve these
issues'.

The tremendous challenges and risks of geothermal exploration and production bring the
demand for novel ML methods and tools that can (1) analyze large field datasets, (2)
assimilate model simulations (large inputs and outputs), (3) process sparse datasets, (4)
perform transfer learning (between sites with different exploratory levels), (5) extract hidden
geothermal signatures in the field and simulation data, (6) label geothermal resources and
processes, (7) identify high-value data acquisition targets, and (8) guide geothermal
exploration and production by selecting optimal exploration, production, and drilling
strategies. Our goals and work under Phases 1 and 2 (as proposed) of this project address
all these needs.

Under Phase I&II, we have developed GeoThermalCloud and GeoDT-ML.
GeoThermalCloud is an unsupervised ML-based tool to discover and extract new
(unknown/hidden) geothermal signatures in existing site, synthetic, and regional datasets.
Our ML analyses also identified high-value data acquisition strategies that can reduce
geothermal exploration/production costs and risks. Moreover, GeoThermalCloud
categorized geothermal data, which is applied to generate geothermal data labels (e.g.,
geothermal resource types). GeoThermalCloud allows for the treatment of both public and
proprietary datasets. This is an essential feature considering the high sensitivities associated
with using proprietary data. Moreover, the GeoThermalCloud framework includes a series
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of advanced pre-processing, post-processing, and visualization tools, which tremendously
simplify its application for real-world problems. These tools make the ML results
understandable and visible even for non-experts. Thus subject-matter expertise is not a
critical requirement during the training phase of the GeoThermalCloud framework;
however, their opinions are useful for verifying the outputs.

GeoDT-ML is an enhanced geothermal system (EGS) prospecting tool. It is an ML version
of GeoDT>®. GeoDT is a very fast modeling tool to run thousands of realization tweaking
reservoir, drilling, and geothermal plant parameters. The main mechanism is to use
GeoThermalCloud for geothermal resources exploration to find favorable geothermal
locations and then use GeoDT-ML for exploring EGS prospectivity. Figs 1.1.1 and 1.1.2
demonstrate the schematics of GeoThermalCloud and GeoDT-ML, respectively.

We have used GeoThermalCloud on ten geothermal datasets. Eight datasets include site/real
data, including a large and sparse dataset of the Great Basin, and two datasets are synthetic
data. The analyses found critical information that could not be found using supervised ML
or exploratory statistical analyses. Most of the data and analyses are available on GitHub as
well. Obtained results can be reproduced and further expanded by adding additional data.
Practitioners and researchers are welcome to utilize GeoThermalCloud to solve other
geothermal problems. GeoDT-ML can be used for studying FORGE EGS prospectivity.
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1.1.1: Specific components of developers, users, and subject matter experts in the
GeoThermalCloud platform.
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Fig. 1.1.2: Specific components of developers, users, and subject matter experts in the
GeothermalCloud and GeoDT-ML platforms.

Capabilities

GeoThermalCloud capabilities include (1) analyzing large field datasets, (2) assimilating
model simulations (large inputs and outputs), (3) processing sparse datasets, (4) performing
transfer learning (between sites with different exploratory levels), (5) extracting hidden
geothermal signatures in the field and simulation data, (6) labeling geothermal resources and
processes, (7) identifying high-value data acquisition targets, and (8) guiding geothermal
exploration and production by selecting optimal exploration, production, and drilling
strategies. ~The  GeoThermalCloud is an open-source tool available at
https://github.com/SmartTensors/GeoThermalCloud.jl (a part of our SmartTensors
framework; http:/tensors.lanl.gov, https://github.com/SmartTensors)? and its counterpart
docker image is https://hub.docker.com/r/bulbulahmmed/geothermalcloud-v1.

Methods

ML methods, in general, can be subdivided into three categories: supervised, physics-
informed, and unsupervised. The supervised methods require attributes and corresponding
labels of the analyzed data’. The labeling should be done by subject-matter experts who can
identify, for example, locations with high-, intermediate-, and low-temperature geothermal
prospectivity or specific geologic features such as fault offsets. The supervised methods are
then applied to learn geothermal prospectivity based on the available data. However, the
successful training of supervised methods requires large, continuous (without data gaps),
non-noisy (with small measurement errors) training datasets that are typically not available
for geothermal exploration. In essence, the supervised methods cannot discover something
that is not already known and provided as labels in the training dataset. The supervised
methods are highly efficient to process large datasets and find out how the processed data
can be categorized. For example, they can be trained to recognize images of cats and dogs;
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however, they will not recognize horses if they have not been trained already to identify
them. Furthermore, the supervised ML methods are sensitive to noise in the analyzed data or
the so-called “adversarial examples”® where small random noise, undetectable for the human
eye, can fool the detection capabilities of these methods. All of these features make the
application of supervised ML methods challenging for real-world science applications.
Commonly used supervised methods include deep neural networks®’, convolutional neural
networks!?, recurrent neural networks!!, and random forest'.

Physics-informed ML (PIML) methods also learn from data as the supervised methods do,
but they also include preconceived science knowledge through equations and models
representing physics laws, constitutive relationships, and processes. Physics information can
be (1) directly embedded in the ML framework!® or (2) added as penalties in the ML loss
minimization process!'*. However, the physics-informed neural networks (PINN) are
problem specific and not general like the traditional supervised deep neural networks.
Therefore, the construction PINN needs subject-matter expertise related to the analyzed
problem. Still, PIML analyses have better efficiency, accuracy, and robustness compared to
the traditional ML analyses. In contrast, the unsupervised ML techniques extract information
from existing datasets without any prior labeling or subject-matter preprocessing. The
unsupervised ML is applicable to discover unknown features and unmix mixed signals
present in the processed data.

GeoThermalCloud utilizes our novel, open-source, LANL-developed, patented ML methods
and computational tools. All these methods are distributed as SmartTensors
(http://tensors.lanl.gov, https://github.com/SmartTensors). SmartTensors is a toolbox for
unsupervised and physics-informed ML based on matrix/tensor factorization constrained by
penalties enforcing robustness and interpretability (e.g., nonnegativity; physics and
mathematical constraints; etc.). SmartTensors has already been successfully applied to
analyze diverse datasets related to a wide range of problems, from COVID-19'° to wildfires
and text mining. Also, the SmartTensors framework can handle big data and has already
been demonstrated to perform tens of TBs of data using DOE supercomputers.

The two most commonly used ML algorithms in SmartTensors are nonnegative
matrix/tensor factorization methods coupled with customized k-means clustering (NMFk and
NTFk). They perform nonnegative matrix/tensor factorization coupled with customized -
means clustering!"!®. NMFk and NTFk are capable of identifying (i) the optimal number of
hidden signatures in data, (ii) the dominant set of attributes in data that correspond to
identified hidden signatures, and (iii) locations associated with each hidden signature.

All datasets are formed by directly observable quantities, while the underlying processes or
data signatures usually remain unseen, hidden, or latent'®. These hidden signatures (or
features/signals) can be either impossible to measure directly or are simply unknown. For
example, let us assume that a series of microphones are placed in a noisy ballroom where
many people are talking. The collected data records the mixtures of voices, sounds, and
noises. The latent signatures are the individual voices that cannot be recorded separately but
can be extracted from the collected data. Extracting latent signatures reduces the
dimensionality of the data and defines low-dimensional subspaces'’ that represent the entire
dataset. After the extraction, the obtained information is post-processed by subject-matter
experts to identify the physical meaning or the origin of the extracted signatures.
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Similarly, our unsupervised ML techniques have been applied here to extract latent
signatures and hidden (mixed) physical processes embedded in large, diverse geothermal
datasets. Hidden (latent) signatures provide a low-dimensional and compressed
representation of the processed dataset. They can also be viewed as basis vectors providing
optimal data projection. In the case of geothermal applications, these signatures typically
represent information about a series of physical processes that occur in observable and/or
simulated datasets. These signatures can be multi-dimensional capturing processes occurring
in spatiotemporal space and captured by a set of diverse attributes. Geothermal attributes we
have processed in this report include temperature, gradients, geothermometers, conductivity,
permeability, fluxes, fracture densities, in-situ stresses, etc.

To discover hidden signatures and their optimal number in large geothermal datasets, NMFk
and NTFk are at the forefront among various unsupervised ML methods such as nonnegative
matrix factorization (NMF)!7, principal component analysis (PCA)', independent
component analysis (ICA)'°, singular value decomposition (SVD)*°, nonnegative tensor
factorization (NTF)?!, and Gaussian process/mixture modeling??. In contrast, with traditional
NMF!, NMFk allows for automatic identification of the optimal number of signatures
(features) present in the data'»*}. The nonnegativity constraint makes the decomposed
matrices easier to interpret than PCA, SVD, and ICA because the extracted signatures are
additive. Moreover, NMFk and NTFk can handle huge (TBs), real, categorical, and missing
data. Dealing with missing data is challenging or impossible for other supervised and
unsupervised ML methods. Even more importantly, the missing data (some or all of it) can
be reconstructed from available data using the obtained NMFk and NTFk results. Our ML
methods also provide estimates of uncertainties associated with the estimated missing data.
All of these features of our ML methods make them very suitable for geothermal ML
analyses.

Nonnegative matrix/tensor factorization

Detailed descriptions of our novel NMFk and NTFk algorithms are provided in our papers'!®.
Here, we give just a high-level description of the NMFk and NTFk methodologies to support
the discussion of geothermal analyses in this report. NMFk performs matrix factorization of
a data matrix, X,,«,, where the m rows represent measurement locations, and the »n columns
are the values of the geothermal attributes. The goal of NMFk is to find the optimal number
of signatures k that describe the analyzed dataset. This is accomplished by matrix
factorization, which can be represented as using:

X =WxH (1.1)

where W, 1s an “attribute” matrix characterizing the significance of attributes and Hy,, a
“location” matrix captures the importance of locations and their spatial association. It is
important to note that all the elements of matrices W and H are unknown. The number of
signatures k i1s also unknown. The matrix factorization in (1) provides an approximate
representation of the data X. To solve for all the unknowns, NMF£k performs a series of matrix
factorization with random initial guesses for W and H elements and for a range of values of
k; theoretically, £ can range between 2 and min(m,n). For a given number of signatures k,
Equation 1 is solved iteratively by minimizing the reconstruction error O (k):

O(k) =11X — WX H|l|p (1.2)
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by constraining the /' and H elements to be greater or equal to zero (nonnegative), and F
defines the Frobenius norm?*. Under the NMFk algorithm, NMF is executed numerous times
(typically 1,000), which generates a series of solutions for W and H matrices for a given k
value. The resulting multiple H solutions are clustered into k clusters using a customized k-
means clustering!'®. The average silhouette width S(k) based on cosine norm is computed
for all £ clusters. This metric measures how well the random NMF solutions are clustered for
a given value of k. The values of S(k) theoretically can vary from -1 to 1.

These operations are repeated for a series of k values. The optimal number of signatures, &,
is estimated on how the reconstruction errorO (k) and the average silhouette width S(k) vary
with the increase of k. The reconstruction error decreases as k increases. The average
silhouette width behavior is more complicated; S(k)generally declines as & increases from 1
to -1. However, S(k) values frequently spike up for specific k values, indicating that these k
values are potentially optimal. In an ideal case, a given k value is considered optimal when
adding another signature does not significantly improve the reconstruction of X (i.e., lower
O(k)) and does not lower S(k). In practice, a solution with S(k) greater than 0.5 and the
lowest O (k) value can be chosen as an optimal solution. The solutions with k£ values less
than the optimal value and S(k) values > 0.5 are acceptable; they provide underfitting
representations of the data matrix X. All the solutions with & values greater than the optimal
value are not acceptable; they provide overfitting representations of the data matrix X.

We listed the benefits of NMFk over similar unsupervised ML tools above. PCA is the closest
similar tool to NMFk. PCA factorizes the data matrix X into score (S) and principal
component (P) matrices. The factorization can be represented as:

Original
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Fig. 1.1.3: ML of faces using NMF and PCA.
Nonnegativity constraint provides additive,
sparse and interpretable results where
facies features such as eyes and noses are
well defined. Interpretation of PCA results is
challenging (after Lee & Seung, 1999).
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9. 1.1.4: Example factorization of a data tensor X into

~ SP (1.3)

S is a diagonal matrix. As in NMF, Equation 3 is solved iteratively by minimizing the
following function:

L=| |X-SP| |r (1.4)

PCA searches for linear combinations in the data by projecting each data point onto an
optimal set of principal components (PCs) to obtain a low-dimensional representation of data
while preserving maximum data variation. PCs are ordered by the magnitude of data variance
as captured by the S diagonal elements.

Even though NMF and PCA are mathematically similar, the ML results obtained by both
methods are very different. For instance, both NMF and PCA can reconstruct human faces
very well (Fig. 1.1.3). Both methods extracted 49 basic facial features (can also be called
dictionaries, basis vectors, or eigenvectors; the matrices on the left) needed to reconstruct the
entire training set of ~1,000 faces (i.e., both methods performed data dimensionality
reduction from ~1,000 to 49). However, the nonnegativity constraints provide additive,
sparse, and interpretable results where facial features such as eyes and noses are well defined
(Fig. 1.1.3; W matrix; top left). NMF face reconstruction is obtained by adding a series of
dominant features shown as black squares in the H matrix. In contrast, the interpretation of
PCA results is challenging. The first face (upper left corner of matrix P) is the average face
of the training set, and the reconstruction of face X is obtained by adding and subtracting a
series of facies features (in P) based on the weights (in S; red defines negative values or
feature subtraction; black represents positive values or feature addition).

In addition to matrices, our ML methods can process multi-dimensional datasets, i.e., tensors.
Most of the geothermal data are multi-dimensional. The data indices can be space coordinates
and time for each spatiotemporal location, and there might be numerous observables coming
from different data sources (streams). Similarly, geothermal model outputs are multi-
dimensional. There is a limited number of ML methods that can process multi-dimensional
datasets, and our novel nonnegative tensor factorization method coupled with k-means
clustering (NTFk) is at the forefront. The factorization process converts a data tensor (labeled
as X in Fig. 1.1.4) into a smaller core tensor (labeled as G in Fig. 1.1.4) and three matrix
factors for each dimension (labeled as H, W, and V in Fig. 1.1.4). Matrix factors represent
signatures in different dimensions. In the example presented in Fig. 1.1.4, H, W and V contain
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5, 4, and 3 signatures, respectively. G defines how these signatures occurring in different
dimensions are mixed to reproduce the original data tensor. The tensor factorization is again
achieved through solving a minimization problem and the estimation of the optimal number
of signatures in each dimension is performed using customized k-means clustering?!->>.

Inverse Distance Weighting

We performed IDW interpolation to determine attributes at unknown locations using highly
variable data. IDW is efficient, intuitive, and provides relatively accurate data for a large
number of points. The output value of an unknown location is attributed to the sample points
located near it. Sample points, within a specified radius, have a greater “weight” associated
with them making points that are closer to one another are more alike than those that are far
apart’®?’. Since the weights of the sample points are proportional to the inverse of the
distance raised to a power value p, as the distance from an unknown point increases, the
weight decreases quickly?®?’. The formula of IDW is given by:

n Zi
i=1 d?

> = ; (1.5)
= (@)

where zp is the value of the unknown point, z: is the value of the known point, d® is the
distance to the known point, and # is a fixed number of closest points.

Magnetotellurics (MT)

MT is a passive geophysical technique used for measuring electrical resistivity structures in
the subsurface?® 3!, Solar winds and lightning from thunderstorms cause natural variations in
the earth’s magnetic field that penetrate the subsurface and induce an electrical current®. The
electromagnetic fields (EM) from an MT survey are recorded at frequencies generally
ranging from 0.001 kHz to 10 kHz*?. The low-frequency response (<1 Hz) originates from
solar winds, and the high-frequency response originates from worldwide lightning
strikes?*32.

In MT data, a time series of the two components of the electric field (Ex and E)) and three
components of the magnetic field (Hx, Hy, and H:) are measured on the earth’s surface (Fig.
1.1.5). The ratio between the electric and magnetic field components (£/H) is called the
impedance tensor (Z). As a proportion of the electric and magnetic fields are used to compute
the impedance tensor. The impedance tensor, Z, is used to determine the apparent resistivity
and phase?**2. The following equations use the components of Z to calculate apparent
resistivity and phase. Both apparent resistivity and phase are commonly plotted as a function
of frequency for MT data analysis to decipher subsurface structures.
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Fig. 1.1.5: Schematic of the arrangement and setup of electrodes and coils in the field during
MT data acquisition (modified from Grimm et al., 202133).

Burns’ Analytical Equation

While NMFk is effective for defining potential geothermal resources and identifying their
spatial location, for small site data, regional geothermal and hydrogeologic estimates are
required for developing geothermal fields. Regional conditions dictate the sustainability of
geothermal fields. For instance, information on the advective heat flow will provide insight
into the sustainability of the heat source to the aquifer. To capture regional hydrogeological
and geothermal conditions, Burns, et al., 2015 formulated a 1D analytical solution, which
evaluates geothermal and hydrogeologic controls on regional groundwater temperature
distribution T'(s) (Burns, et al., 2015%*; Eq. 39).

T(S) = [TI?S + ATgeothermal + ATviscous] + [TO - TLOS - ATgeothermal - ATviscous]efos (6)

where T (s) is temperature at space s, T/ is temperature at land surface at s = 0, T, is the
temperature at s = () where groundwater flows into domain, AT geothermar 1S the change in
temperature across the vadose zone required to conduct the heat flow entering the aquifer at
the basement, AT ;sc0us 1S the change in temperature across the vadose zone to conduct the
viscous heat generated, and fis a function of aquifer width and volumetric flux.

Input parameters in Burns equation include land surface temperature, groundwater flux,
hydraulic head, vadose thermal conductivity, depth to water, and basal heat flux. The outputs
include aquifer temperature, viscous heat flux, vadose heat flux, and advective heat flux that
assist quantify components of heat flux that contribute to aquifer temperature.
GeoThermalCloud includes both analytical solution and equivalent neural network based
ML models.
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Performance Metrics

Besides reconstruction error and silhouette width, we also used R’ to determine the accuracy
of prediction.
R2 ] Z?:I (yi_yi)z

=== (y y)z (1.7)
i=1 i Vi

where n, y;, ¥;, and y; represent the number of data points, actual data, predicted data, and

mean of data, respectively.

Case Studies
ML methods embedded in the GeoThermalCloud have been extensively tested and
validated against various datasets (Fig. 1.1.6)>*°. Outputs of these applications have been
published in presentations, conference papers, and peer-reviewed papers. The analyzed ML
applications are

s West Texas
Tularosa Basin
Montana | e Tohatchi Hot Springs
e SWNM
* Brady, NV

Great Basin
e Utah

A i
/\//

Colorado \ Kansas

Washington

C —  JKilometers

Sources: Esri, USGS, NOAA

Fig. 1.1.6: Locations of seven out of 8 analyzed site datasets by the
GeoThermalCloud framework. The other site dataset is in Hawaii, not shown
here.

1. Great Basin: In this dataset, we analyzed 18 shallow water chemistry attributes at 14,342
locations. This work extracted hidden geothermal signatures associated with low-,
medium-, and high-temperature hydrothermal systems, their dominant characterization
attributes, and spatial distribution within the study area®®. The analyses are based on the
public data available on the Nevada Bureau of Mines and Geology website.
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2. Southwest New Mexico (SWNM): Here, we analyzed 18 attributes at 44 locations and
identified low- and medium-temperature hydrothermal systems; found dominant
attributes and spatial distribution of extracted hidden hydrothermal signatures;
demonstrated blind predictions of the regional physiographic provinces!'.

3. Brady site, Nevada: We identified key geologic factors controlling geothermal
production in the Brady geothermal field?’.

4. Tularosa Basin, New Mexico: Analyzed 21 Play Fairway Analysis (PFA) attributes at
120 locations?®; data comes from past PFA work in this region®*. ML analyses identified
geothermal signatures associated with low-, medium-, and high-temperature
hydrothermal systems. Dominant attributes and spatial distribution of the geothermal
signatures were also defined.

5. Tohatchi Springs, New Mexico: Explored 19 geothermal attributes at 43 locations in
Tohatchi Springs, New Mexico*’. Successfully defined geothermal signatures associated
with low- and medium-temperature hydrothermal systems. Also, we found their
dominant attributes and spatial distribution.

6. Hawaii: Analyzed four islands’ data separately and jointly; ML identified low-, medium-
, and high-temperature hydrothermal systems and their dominant characterization
attributes*!.

7. Utah FORGE: Performed prospectivity analysis to identify future drilling locations
using geological, geochemical, and geophysical attributes*>. Maps of temperature at
depth and heat flow are constructed based on the available data. Processed data includes
satellite (InSAR), geophysical (gravity, seismic), geochemical, and geothermal
attributes. Prospectivity maps were generated, and drilling locations were proposed for
future geothermal field exploration.

8. EGS Collab: Field experiment data processed to extract dominant temporal patterns
observed in 49 data streams; erroneous measurement attributes and periods automatically
identified; interrelated data streams automatically identified. This work has not been
published yet.

How to Use It?

GeoThermalCloud can be used in three ways (i) on Julia, (ii) on Python, and (iii) on a Cloud
platform (e.g. JuliaHub, Google Cloud Platform, Amazon Web Services, Azure Cloud Services
through Docker). Julia's installation is explained at
https://github.com/SmartTensors/GeoThermalCloud.jl and also given below.

import Pkg
Pkg.add("GeoThermalCloud")
import GeoThermalCloud

GeoThermalCloud. SWNM()
GeoThermalCloud.GreatBasin()
GeoThermalCloud.Brady()

The Python installation process is described below:
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$
import
julia.install()

from julia import
from julia import
Main.eval("import Pkg; Pkg.build(\"GeoThermalCloud\")")

Docker container development is still in progress. We will provide an update on how to use
GeoThermalCloud when it is ready for use.

Conclusions

GeoThermalCloud is an open-source cloud-based ML framework for geothermal
exploration that can simultaneously handle both public and proprietary datasets. Also, it
consists of a series of advanced pre-processing, post-processing, and visualization tools that
tremendously simplify its application for real-world problems. These tools make the ML
results understandable and visible even for non-experts; therefore, ML and subject-matter
expertise are not critical requirements to use our ML framework. GeoThermalCloud utilizes
a series of novel LANL-developed patented ML tools called SmartTensors
(https://github.com/SmartTensors). SmartTensors has already been applied to solve a wide
range of real-world problems, from COVID-19 to wildfires (http://tenosrs.lanl.gov), and it
has won two 2021 R&D 100 awards, including a bronze award for market disruptor tools.
Now, it has two components (i) GeoThermalCloud and (ii) GeoDT-ML.
GeoThermalCloud is developed to process and analyze diverse small and large datasets.
Also, it can handle sparse datasets with missing values. It analyzes and finds actionable
information to enable decision-makers to make sound decisions for geothermal exploration,
development, and production. It finds such actionable information by finding mapping
functions between all input parameters. We analyzed eight diverse site datasets and found
critical information that would not be possible by visual inspection or any other statistical
tools. Overall, GeoThermalCloud can (1) analyze large field datasets, (2) assimilate model
simulations (large inputs and outputs), (3) process sparse datasets, (4) perform transfer
learning (between sites with different exploratory levels), (5) extract hidden geothermal
signatures in the field and simulation data, (6) label geothermal resources and processes, (7)
identify high-value data acquisition targets, and (8) guide geothermal exploration and
production by selecting optimal exploration, production, and drilling strategies.

GeoDT-ML

Introduction

GeoDT-ML is an ML-based version of GeoDT, which is a fast, simplified multi-physics
solver to evaluate EGS designs in uncertain geologic systems®*, It is numerically efficient
enough to model thousands of realizations in a few hours using a desktop computer. The
underlying assumptions of this model are empirically based on laboratory and field data to
partially account for complex coupled processes obviating running expensive numerical
simulations. The intent of this model is to run it with full uncertainty, as informed by a broad
spectrum of relevant prior laboratory and field measurements, and to reduce the uncertainty
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only when suitable information is available. When a promising EGS design is identified, it
can be investigated in greater detail and at higher fidelity using other more powerful, but
more expensive, numerical modeling codes.
The primary features of GeoDT-ML include (Fig. 1.2.1):
1. Pressure and flow rate prediction for 3D networks of intersecting wells and fractures
modeled as pipes and nodes.
2. Hydraulic stimulation prediction with shear and tensile mechanisms where fracture
apertures depend on effective stress.
3. Transient heat production predictions that depend on fluid enthalpy, rock
conductivity, and stored energy change over time.
4. FElectrical power generation using the combined single-flash Rankine and isobutane
binary cycle.
5. Net present value prediction based on geothermal cost estimation tools, electricity
sales, and a simple earthquake cost model.

‘ System parameters ‘

§ e
éﬂ- ‘ Fracture and well geometry 5 10000 W
<= F 3 =
e 5 ‘ Geomechanics solver ‘ 2 g 7500 Flash Rankine
£% 3 £ 2
2 _E q Flow solver & E’ 50001 Binary - Isobutane
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g3 a Heat transfer ‘ o 2500
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Fig. 1.2.1: GeoDT or GeoDT-ML stochastically predicts reservoir parameters,
flow networks, hydraulic stimulation, heat production, power production,
injection-induced seismicity potential, and ultimately net present value by fast and
simplified methods. Most models complete in ~15 seconds using a common
desktop computer with a single processor thread.

Multiple datasets have been generated using GeoDT for EGS Collab and Utah FORGE site.
One was used for the PIVOT 2022 Datathon to simulate the whole geothermal development
cycle from the initial well design to the end of production. This dataset includes the Utah
FORGE site characteristics and its measured uncertainties. The database includes 44,492
unique realizations, each with at least 30 years of production. Based on site characteristics,
fractures are stochastically created (Fig. 1.2.2). Next, simulations are performed to compute
power outputs for each situation (Fig. 1.2.3).
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Fig. 1.2.2: Stochastically generated fracture and well scenario with injection into
one well across seven isolated intervals and production from two bounding wells.
The parallel hydraulic fractures propagated from each injection interval are
shown in red, the color indicating that these fractures require relatively low
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Fig. 1.2.3: Geothermal power production simulations based on the Utah FORGE
parameters. In the time series plot, a high-performing case is highlighted in red, and
a poor performer is highlighted in green. There is also a clear link between the well
spacing and power output in addition to the number of injection intervals (i.e.,
isolated zones) and power output (plots on the right).

GeoDT-ML Workflow
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In this section, we describe the workflow scripts for GTC for EGS techno-economic analysis.
The python scripts for the workflow development are available at
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/Py
thon_Scripts. Equivalent Jupyter Notebooks and Google Colab notebooks will be made
available in future at this GTC GitHub location.

Data Processing and Curation

The GeoDT code (https://github.com/GeoDesignTool/GeoDT.git) is used to generate the
training  database®!. The data for DL modeling is available at
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS/GeoDT_ML_v1/D
ata. In our study, a total of 4078 realizations are generated. The python scripts —

get _inp out.py and get preprocessed_data.py are used to process the raw data and curate it
using various pre-processing methods such as StandardScaler, MinMaxScaler,
MaxAbsScaler, RobustScaler, PowerTransformer (Yeo-Johnson), QuantileTransformer
(uniform  output), and  QuantileTransformer*>.  The  python  script —
get train_val test splits.py allow us to split the curated data into 80% training, 10%
validation, and 10% testing. When the DL model identifies a promising EGS design, it can
then be further investigated in greater detail. For example, we can use high-fidelity process
models and simulation codes such as PFLOTRAN* to explore promising EGS scenarios.
This currently study does not include the use of high-fidelity codes, but these python scripts
can be leverage and modified to perform such DL analysis with minimal effort.

Local and Global Sensitivity Analysis

The data worth analysis 1is performed using the get ftest mi npv.py and
get_ftest mi_npv_others.py scripts. These python scripts allow us to perform local and global
data worth analysis. Sensitivity analysis is performed using two different approaches, F-test
and mutual information*7. F-test is a univariate linear regression tests returning F-statistic
and p-values. It provides insights on the linear dependency of a given EGS design parameter
with respect to economics (e.g., undiscounted cashflow), thereby allowing us to identify
potentially predictive design parameters for DL model training for undiscounted cashflow.
On the other hand, mutual information provides insights on non-linear dependency between
EGS design parameters and undiscounted cashflow. The MI between an EGS design
parameter and undiscounted cashflow is a non-negative value and is equal to zero if and only
if two variables are independent, and higher values mean higher non-linear dependency.

DL Model Training and Hyperparameter Tuning

This curated data is given as input to deep neural networks, which are trained on multiple
cores available on high-performance computing machines (HPC). This Al training at scale
is performed in parallel, allowing us to train and tune various deep neural networks in
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minimal time. We combine python and Al modules such as mpi4py, multiprocessing, parallel
hdf5, and TensorFlow to achieve this training at scale. The performance of the trained DL
models is compared using the validation loss, and a tuned model is then selected. This
hyperparameter tuning is computationally intensive and requires a lot of HPC resources.
Python scripts such as get dir hp dnn_ *py and get dnn_results *py are available to
achieve this. They provide specifics on how to run on MacOSX, Linuc, and HPC resources.
In our case, we trained these models on a HPC resource at PNNL using 20,000 CPU cores.
Fig. 1.2.4 shows a plot of one such DL model training and inference.
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Fig. 1.2.4. Training loss and one-to-one plots for training, validation, and test datasets of a
preliminary DL model. More than 20,000 DL models are trained on HPC resources to
estimate the EGS economics. This trained deep neural network model has three hidden
layers, with neurons = [1000, 500, 250] in each of these layers. Leaky ReLU is used as an
activation function with alpha value = 0.1. The dropout value, which allows for minimizing
over-fitting during the training process, is assigned a value of 0.1. The total number of epochs
for training is equal to 100. Batch size, which is the number of training samples that a DL
model sees for each iteration in an epoch is equal to 64. The resulting DNN has
approximately 750K trainable weights.

Conclusions

GeoDT-ML is an ML-based version of GeoDT, a fast, simplified multi-physics solver to
evaluate EGS designs in uncertain geologic systems. It is numerically efficient enough to
model thousands of realizations in a few hours using a desktop computer. It is designed to
find prospective enhanced geothermal systems in hot, dry rocks. In this study, we developed
and provided preliminary DL workflow scripts to estimate EGS economics from design
parameters. The database for DL model training is developed using GeoDT, a multi-physics
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solver. Sensitivity analysis using F-test and mutual information is performed on this database
to gain insights into the GeoDT parameters. The DL model training requires HPC resources
as training and hyperparameter tuning is computational expensive. To overcome this
challenge, we will also provide notebooks and pre-trained ML models in the GitHub for the
geothermal community. Advanced hyperparameter tuning scripts using open-source
softwares such as DeepHyper and Keras-Tuner will also be made available at
https://github.com/SmartTensors/GeoThermalCloud.jl/tree/master/EGS.

How to Use it?

The following are the steps to use the GeoDT-ML through GTC:
1. Create a virtual python environment (e.g., myenv)
o conda create --name myenv
o Install the following additional packages in the virtual environment:
tensorflow, keras-tuner, mpidpy, hSpy
2. Git clone https://github.com/SmartTensors/GeoThermalCloud.jl.git
3. cdto EGS/GeoDT ML v1/Python Scripts
4. On terminal run — python <file name.py>

These above instructions will be available through the readme markdown file on GTC. As
the scripts utilize HPC resources for training ML models, a user can use their own HPC
systems to run these scripts in parallel. These parallel scripts are not available through
Jupyter Notebooks or Google Colab notebooks. Such instructions will be made available at
GTC GitHub repository.

Outreach Activities

Publications in journals and magazines

Al pinpoints renewable energy in Albuquerque Journal, 2020.
Unearthing clean energy in LANL magazine 1663.
https://discover.lanl.gov/publications/1663/september-2022/unearthing-clean-energy/

YouTube Videos

New GeoThermalCloud:

GeothermalCloud:

https:// www.youtube.com/watch?v=ryFxdyQgClJg&list=PLpVcrIWNIP22LfyluSMSZ7W
Hp7q0MN;jsj&index=11

SmartTensors Platform:
https://www.youtube.com/watch?v=ni3EgQVypbQ&list=PLpVcrIWNIP22L{yluSMSZ7W
Hp7q0MNjsj&index=17.
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NMFk optimization process:
https://www.youtube.com/watch?v=6NAvImY3Ae8&list=PLpVcrIWNIP22L{yluSMSZ7
WHp7q0MN;jsj&index=36

Unsupervised ML workshop GSA:

https://www.youtube.com/watch?v=8a6 Gw29RHcM&list=PLpVcrIWNIP22L fyluSMSZ7
WHp7q0MNjsj&index=12

Demo Problems

SWNM

Brady

Great Basin

Utah FORGE
Tularosa

Maruti: GeoDT-ML

Chapter 2: What after NMFk: Pin pointing drilling
site coupling NMFk and magnetotellurics data in
the Tularosa Basin

Introduction

The United States Energy Information Administration projects a 50% increase in global
energy consumption between 2018 and 2050%%. Geothermal energy is a non-intermittent
renewable resource, which has the potential to contribute to the growing global energy
demand while mitigating carbon emissions attributed to the burning of hydrocarbons.
Specifically, in the United States, geothermal electric power capacity has the potential to
increase from 2.3 GWe in 2019 to 60 GW. by 2050%°°, Geothermal energy is generated from
the decay of naturally occurring radioactive elements and stored deep in the subsurface. Even
though there is essentially an inexhaustible geothermal energy supply in the subsurface,
much of the heat is unevenly distributed, seldomly concentrated, and too deep to be
economically exploited®'. However, there are locations where thermal energy is accessible
by drilling that are the targets for geothermal exploration.

Productive geothermal systems have three major characteristics: high heat flow, temperature,
and permeability. Geothermal resources are confined to regions of high heat flow and
temperature due to magmatism and/or crustal thinning>?. Specifically, extensional settings
exhibit intermediate to high heat flow that can be the target of geothermal exploration, and
temperatures of 125-225°C can produce geothermal energy>>’. However, finding the
optimal location for the development of such resources and the potential depth of drilling is
challenging because of high drilling and development costs. Typically, play fairway analysis
(PFA), a heavily used tool in the hydrocarbon industry, is used for finding spatial locations
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of geothermal resources. Next, an MT survey or exploration drilling is performed to identify
the optimal drilling depth. PFA separately computes the importance of each attribute in a
geothermal dataset and estimates a composite score by combining scores for all attributes.
The composite score is used for defining spatial locations of geothermal resources. Such a
study has a significant human bias. Here, we propose an ML based alternative PFA approach
that simultaneously analyzes all attributes in a dataset without human intervention to find
spatial locations of geothermal resources. Finally, we integrate MT data in the workflow to
identify the most prospective drilling depth. Note that no such study in the literature
combines ML-based PFA and MT data.

Integrating ML and geophysical techniques assesses heat flow, temperature, and
permeability for geothermal exploration and development. Here, we use unsupervised ML
called non-negative matrix factorization with k-means clustering (NMFk). This approach
clusters/groups data related to heat flow, temperature, and permeability to establish groups
with geothermal resource significance in both attribute and spatial domains!'®>*,

NMF* has been successful in various geothermal applications in identifying the location of
potential geothermal resources®> and geologic factors associated with geothermal
production®’. MT is a passive geophysical technique used for measuring electrical resistivity
structures in the subsurface and is commonly used to characterize geothermal resources®-
3135 Generally, high-potential geothermal systems are characterized by low resistivity
because of high salinity of geothermal fluids. Geothermal systems commonly include faults
and fractures filled with highly conductive high-salinity fluids. In addition, clay products
from mineral alteration in a geothermal system also have low electrical resistivity. The
correlation between low resistivity measurements and geothermal resources makes MT
surveys ideal for geothermal resource development.

This study aims to demonstrate how NMF£k analysis identifies the most prospective locations
for geothermal resource development, and MT inversion aids in the subsurface
characterization of those resources. Play fairway analysis (PFA) performed by Ruby
Mountain Inc. and the Energy and Geoscience Institute at the University of Utah identifies
two highly prospective geothermal locations within the Tularosa Basin, New Mexico: White
Sands Missile Range and the McGregor Range at Fort Bliss. Due to data limitations, heat
flow, temperature, and permeability data from White Sands Missile Range is used to
demonstrate the ability of NMFk to further characterize a predetermined high-potential
geothermal location, whereas McGregor Range is used to demonstrating the ability of MT
data to identify geothermal prospects in the subsurface. Finally, we demonstrate how NMFk
and MT may be integrated to provide a 3D assessment of high-potential geothermal
resources, facilitating fast and economic geothermal play development.

Geologic background

The Tularosa Basin is located on the eastern flank of the Late Paleogene Rio Grande ri
The Rio Grande Rift occurs as a north-trending, intermontane graben within south-central
New Mexico and is bounded to the east by the Sacramento Mountains and to the west by the
Organ and San Andreas Mountains (Fig. 2.1). Faults associated with the Rio Grande Rift
have several thousand feet of displacement and separate the basin from the surrounding
uplifted mountains®®. Paleogene rifting induces high heat flow within southwestern New
Mexico and therefore, makes the southern portion of the Tularosa Basin favorable for
geothermal exploration®. In the southern part of the basin, temperatures recorded from

ft56’57.
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wellbores range from 170°C to 200°C?® and clay mineral analysis indicates temperatures as
high as 225°C3>%,

The Tularosa Basin is filled with strata of Paleozoic to Tertiary age>®%%6? (Fig. 2.2). Bedrock
consists primarily of Paleozoic carbonates, including Ordovician and Silurian dolomite,
Devonian and Mississippian interbedded chert-rich shales and limestones, and
Pennsylvanian limestone with thinly bedded shales. Tertiary felsic intrusions commonly
crosscut the Paleozoic bedrock, and Quaternary graben fill overlies the bedrock and is

composed of gravel, sand, silt, and clay derived from prograding alluvial fans originating
from the edge of the rift valley.
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Fig. 2.1: Location of the White Sands Missile Range and McGregor Range study areas within
the Tularosa Basin of southern New Mexico. The Tularosa Basin is an intermontane graben
located on the eastern flank of the Rio Grande Rift.
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Generalized Lithological

Stratigraphic Unit Description

Quaternary Alluvial basin fill

Tertiary Felsic sills and dikes

CENOZoOIC

Black lime mudstones and
Pennsylvanian | Wackestones; cherty limestones
interbedded with grey shale

Il

e Limestone interbedded with

Mississippian black shale

Black shale

PALEOZOIC

Cherty dolomite

Dolomite

Fig. 2.2: Generalized stratigraphic succession of the Tularosa Basin sedimentary and igneous
fill.

Data

The dataset has 10 attributes at 120 locations (Fig. 2.3). With an observational dataset,
obtaining values for 10 attributes at each location is difficult. In this study, the only attribute
available at all 120 locations is temperature@2m, and the remaining attributes had missing
values for some locations. To address the missing values, we apply the nearest neighbor
interpolation techniques® based on distance (not points) to heat flow, gravity, NaK-
Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, silica
geothermometer, and Li" concentration. The distance is calculated using a variogram
analysis. Note, we also use block mean®, kriging®, and inverse distance weighting®
interpolation techniques. However, the nearest neighbor method provides the best results for
the dataset used in this study. R? score (Eq. 1.7) based on interpolated and actual values is
used to evaluate four interpolation techniques. ArcMap is used to interpolate fault distance
and fault density values. Specifically, the near coverage tool was used to find the distance
from the location to the nearest fault, and the kernel density function was used to calculate
fault density.
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Fig. 2.3: Locations (120 total) near White Sands is selected as input data for NMFk. At each
site, 11 geothermal attributes are collected and used as input into the NMFk model.

A 56-station MT survey was conducted at the McGregor Range by Quantec Geoscience and
the inversion modeling was completed by the Energy and Geoscience Institute at the

University of Utah (Fig. 2.4)%.
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Fig. 2.4: Geologic map of the McGregor Range with MT station locations (blue) and
slimhole core locations (red). McGregor is largely covered by Recent eolian sands, although

27


https://www.zotero.org/google-docs/?OxkVyC

Paleozoic and Tertiary outcrops occur in the northeast portion of the study area at Davis
Dome.

Results

Geothermal characterization of NMFk signatures

We applied NMFk on the dataset and it determines the optimal solution for by evaluating
reconstruction quality and average silhouette width (Fig. 2.5). Optimal solutions have low
and high values. Generally, low and >0.25 are acceptable solutions'*®. NMFx is run for 2 to
10 signatures, and the k=4 solution is found to be the optimal solution because of its low and
high values. The solution with k<4 is an underfitting representation of data, whereas k>4 is
an overfitting representation of data.

1.0

— Reconstruction Error
— Silhouette Width

0.5

PERFORMANCE
METRICS

2 4 6 8 10

NUMBER OF SIGNALS

Fig. 2.5: NMFk reconstruction error (red curve) and silhouette width (blue curve) for
different numbers of clusters k. The optimal k value has low reconstruction error and higher
silhouette values. In this study, the optimal number of signatures is 4.

Each column of the attribute matrix, Huk 1s known as a signature and captures certain
characteristics in the dataset (Fig. 2.6A). The characteristics are defined by the
contribution/weight of each attribute in a signature. The warm colors represent a high weight
between the signatures and attributes and the cool colors represent a relatively low weight
(Fig. 2.6A). Furthermore, for the geothermal attributes the warm colors correlate to high
values and the cool colors correlate to lower values. The spatial distribution of each signature
is plotted with a different color on Fig. 2.6B.

The dominant attributes of signature A are heat flow, K-Mg geothermometer, silica
geothermometer and quaternary fault density indicating high heat flow, subsurface
temperature, and permeability. Like signature A, signature B is characterized by high heat
flow, temperature@2m, and Li" concentration. Furthermore, the high Li" concentration
indicates that signature B is characterized by high vertical permeability. No geothermometer
had a significant contribution to signature B. Fault distance is the major attribute in signature
C. This indicates locations assigned as C have lower potential vertical permeability because
they are relatively far from faults that act as conduits for fluid flow. Signature C is
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characterized by lower heat flow and temperature relative to the other signatures. The
dominant attributes for signature D are the Na-K Giggenbach geothermometer and NaK-
Fourneir geothermometer indicating high subsurface temperatures. Moderate weights for
quaternary fault density and Li concentrations in signature D indicate relatively high
permeability. Heat flow and temperature(@2m have a relatively low contribution to signature
D
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Fig. 2.6: Results from the NMFk model. A) Heatmap identifying the dominant geothermal
attributes in each signature. The warmer the color the more dominant the attribute for a
particular signature. B) Spatial distribution of signatures for the 120 locations at White
Sands.

Subsurface characterization of potential geothermal locations

Apparent resistivity and phase curves display resistivity trends using the period as a proxy
for depth (longer periods correspond to increased depth). Congruent MT apparent resistivity
curves of Zyy and Z,x indicate a 1D resistivity structure, whereas separation indicates more
complicated 2D or 3D resistivity structure?’. For example, MT apparent resistivity curves for
station 017 located in the northeast section of the survey show separation between the two
curves at shorter periods, i.e., shallower depths (Fig. 2.7). This corresponds to geological
structures related to Davis Dome, a small intra-bolson horst near station 017,
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Fig. 2.7: Apparent resistivity curves for station MT017. The period is a proxy for depth, i.e.,
longer periods are deeper depths. Separation of , and curves at 0.05 s indicate 2D or 3D
resistivity structures.

MT apparent resistivity and phase curves of Zy and Zx from all 56 MT sites are shown in
Fig. 2.8. The apparent resistivity values show a cyclic trend from shorter to longer periods
(shallower to deeper depths). At shallower depths, the apparent resistivity gradually
decreases. Between 1 s and 100 s the apparent resistivity increases. At deeper depths, longer
than 100s, the apparent resistivity decreases. Furthermore, at longer periods, the Zy and Zyx
curves diverge indicating complex, 3D resistivity structure at deeper depths. The depth of
the low apparent resistivity varies from east to west. For MT stations 019, 022, and 025 the
troughs for apparent resistivity occur at 1 s, 0.3 s, and 0.1 s, respectively (Fig. 2.9). The
longer period to the west indicates that the low resistivity unit occurs deeper in the west than
in the east.
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Fig. 2.8: Apparent resistivity curves from all 56 MT stations. From shorter to longer periods
the general apparent resistivity trend is lower at shorter periods, increases at medium periods,
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and then decreases at longer periods for a low-high-low trend. Furthermore, at longer periods,
the Zyxy and Z,x curves separate indicating 2D or 3D structure at deeper depths.
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Fig. 2.9: Apparent resistivity curves for MT stations 019, 022, and 025. The curves show a
change in the low resistivity unit depth from west to east. The low apparent resistivity trough
of the Zxy and Z)x curves for MTO19 occurs at 1s. The trough of the Zy and Zyx curves for
MTO022 occurs at 0.3 s. The trough of the Zx, and Z,.x curves for MT025 occurs at 0.1 s.

The dimensionality of the resistivity structure is determined by phase tensors. One-
dimensional resistivity structures indicate a natural change in resistivity with depth due to
compaction®*®’. Phase tensors are useful in identifying lateral variations (2D and 3D
resistivity structures) in the underlying regional resistivity*2. Lateral variations in resistivity
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result from changes in porosity due to fault- and/or fracture-related diagenesis, and/or
changes in lithology.

The phase tensor is commonly plotted as an ellipse with a minimum and maximum principal
axis and skew angle, b (a measure of asymmetry) (Fig. 2.10A). In Fig. 2.10B, ellipses are
colored based on the skew angle. Yellow colors indicate a skew angle of 0 and the red and
blue colors indicate larger skew angles (= 5°). The larger the skew angle, the more
asymmetric the phase tensor indicating higher dimension resistivity structures. For 1D
resistivity structures, the minimum and maximum principal axes are the same (fnax = fmin)
resulting in the phase tensor characterized by a yellow, circular shape. The phase tensor of a
2D resistivity structure is characterized by an elliptical shape and skew angle close to zero
(£ 3°). For 3D resistivity structures, the phase tensor is asymmetric; hence, the phase tensor
is characterized by blue or red. Furthermore, a rapid direction change in the phase tensor’s
principal axes between sites indicates a 3D resistivity structure®®.

In general, across the study area, the shorter periods are characterized by 1D resistivity
structures and then higher dimension 2D and 3D resistivity structures with depth (Fig.
2.10B). This observation is consistent with the separation in apparent resistivity curves at
longer periods (Fig. 2.7). Specifically, at 0.01s and 0.1s the phase tensors are characterized
by 1D structures as indicated by the yellow circles. An exception to this observation is the
northeastern corner of the study area where the shape of the tensors is more elliptical, and
the skew angle is higher indicating lateral variation in the resistivity structure. This increase
in dimensionality is consistent with shallow structural features and northwest-trending faults
associated with Davis Dome®!. The shape of the ellipses and the red, blue, and orange colors
at periods greater than 1s indicate 2D or 3D resistivity structures. Specifically, the abrupt
changes in the ellipse’s shape at 10s suggest possible faulting. Caution must be taken when
interpreting phase tensors at longer periods as they are more affected by attenuation.
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Fig. 2.10: A) Graphical representation of the phase tensor. B) Phase tensor maps at 0.1, 0.01,
1, 10, 50 and 100s indicate the spatial distribution of resistivity structures with depth.

Discussion

The geothermal resource potential of signature
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Temperature, heat flow, and permeability are the main geothermal attributes driving
geothermal success™. The locations associated with signature A have high geothermal
resource potential because of the characteristically high heat flow, high K-Mg and silica
geothermometers, and medium to high quaternary fault density. Therefore, signature A has
a high likelihood of possessing higher temperature, heat flow, and permeability compared to
the other signatures. The locations associated with signature D have moderate geothermal
potential because of the combination of high NaK-Giggenbach and NaK-Fourneir
geothermometers values and low temperature(@2m and heat flow. The locations associated
with signature B have moderate geothermal potential because of high temperature@?2m, heat
flow, quaternary fault density, and Li" concentrations; however, low values for the
geothermometers suggest subsurface temperatures may not be suitable for a geothermal
resource. The locations associated with signature C have the lowest geothermal resource
potential because no geothermal attributes have a major contribution to the signature.

MT inversion interpretation

Once a spatial location is determined through NMF£k, MT can be a valuable tool to aid in the
subsurface characterization of a potential geothermal resource by analyzing resistivity trends.
Resistivity values are found through numerical inversion of MT data. Generally, geothermal
fluid demonstrates low resistivity because of the presence of high concentration elemental
composition or total dissolved solids. The resistivity values of the McGregor geothermal
system potentially indicate three resistivity layers and two resistivity structures (Fig. 2.11).
Layer 1 (L1) is characterized by the lowest resistivity (<8 Q2m) and is confined generally to
the upper 500 m of the study interval. L1 is thickest to the west and thins to about 300 m in
the east (Fig. 2.11). L1 is thinnest in the northeast corner near Davis Dome. This regional
low resistivity cap is most likely attributed to basin-fill deposits. O’Donnell, Jr., et al.
(2001)8! performed a seismic reflection survey over the same study area and observed a
wedge-shaped feature above the bedrock attributed to alluvial fan deposits shed from the
surrounding mountains. The observed thickening of L1 to the west in the MT data is
consistent with the wedge-shaped feature observed in the seismic survey (Fig. 2.11).

Layer 2 (L2) is a low resistivity (10 — 100 Qm) layer with the top 200 — 600 m beneath the
surface. In general, L2 is shallower to the east (~300 m) and deeper to the west (~ 600 m).
Wells drilled in the northeast portion of the study area suggest that the top of L2 corresponds
to Paleozoic (Pennsylvanian limestone) bedrock®®’. Finger & Jacobson (1997)°® observed
and measured fracture permeability in cores in nearly all Paleozoic units. Phase tensor
analysis in the western part of the study area indicates a 2D resistivity structure that suggests
the presence of a possible fault system (Fig. 2.10B). The thicker and lower resistivity L2 in
the west may be attributed to an increase in fractures and/or faults that act as storage or
conduits for geothermal fluids decreasing resistivity, i.e., L2 in the west is influenced by
higher fractured and/or faulted units.

A low resistivity structure (RS1) is present below MT stations 039, 047, 051, 052, and 053
in the southeast section of the study area (Fig. 2.11). The structure has similar resistivity as
L2 but extends to 2000 m. The lower resistivity of RS1 is interpreted to be related to a
deformation observed in surrounding wells. A thrust fault and overturned beds are observed
in cores from well 51-8 located to the northeast of cross-section EW3 suggesting deformation
in the area (Fig. 2.11). Units related to this structure are pervasively fractured and may
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provide a conduit for fluid flow and associated lower resistivity in RS1 as observed in Fig.
2.11.

Layer 3 (L3) is characterized by the highest resistivity values (>100 Qm) and the top is
located about 250 — 2000 m beneath the surface (Fig. 2.11). L3 follows a similar east-west
thickening trend as observed within L2. In the east, the top of L3 is shallower (~500 m) and
in the west, the top of L3 is deeper (~1800 m).
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Fig. 2.11: Three north-south and east-west MT cross sections with interpreted resistivity
layers and structures. The low resistivity to the west is interpreted as a fault system. The
faults, fractures, and possible dissolution because of geothermal fluids increase porosity thus
decreasing resistivity. Assuming temperature is consistent with a geothermal reservoir, the
west-central part of the McGregor Range has the highest geothermal potential because of the
increase in porosity and associated permeability attributed to the interpreted fault system.

34



A high resistivity structure (RS2) is present in the northeast portion of the study area and has
similar resistivity values to L3 (Fig. 2.11). The spatial distribution of resistivity and cored
wells in the area (45-5, 46-6, and 61-6) suggest RS2 coincides with structures related to Davis
Dome, an intrusive igneous laccolith (Fig. 2.11). Cored wells encounter felsic sills, a felsic
laccolith, and Mississippian limestone and shale at relatively shallow depths between 360 m
and 530 m**®', The thin L2 layer above RS2 is most likely fractured Paleozoic strata and high
resistivity RS2 is most likely a low permeability felsic body associated with the Davis Dome
intrusion. These interpretations are consistent with a structural high from a laccolith intrusion
observed in reflection seismic data velocity, and gravity models from O’Donnell Jr. et al.,
2001¢",

The west-central section of L2 is interpreted as a possible fault system with the highest
geothermal potential. Geothermal reservoirs tend to have resistivity values between 10 — 60
Qm similar to those observed in L2°*%, The location where L2 is the thickest coincides with
north-northwest trending, anomalously high thermal gradients (up to 140°C/km). The
anomaly may be due to geothermal waters rising along a common fault zone or fractured
bedrock adjacent to the fault zone®, which is consistent with the highly faulted and/or
fractured units observed in L2 to the west (Fig. 2.11). Furthermore, the westward thickening
of L2 suggests the possibility for a corresponding increase in reservoir transmissivity and an
increase in well productivity™.

Limitations of MT

MT data is limited by its hectometer-scale vertical resolution. Resistivity is measured in well
56-6 using wireline logs with a vertical resolution of 0.6’!. Compared to inverted MT
resistivity, the well logs provide more detailed variations in resistivity (Fig. 2.12). For
example, from 90 — 220 m, well-log resistivity is characterized by high variability due to
thinly interbedded limestones and shales that are not detected in the MT resistivity. Only
general interpretations of fluid saturation and porosity can be made with MT data because of
the low vertical resolution.
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Fig. 2.12: Comparison of wireline logs, resistivity logs, and MT resistivity of well 56-5. The
resistivity from well logs provides more detailed variations in resistivity that are not detected
from lower resolution, inverted MT resistivity data. Lithologies are based on petrophysical
interpretations from accompanying gamma ray (GR), neutron and density porosity,
photoelectric effect (PE), deep resistivity logs, and core cutting descriptions.

Lithologic interpretations from MT inversions are difficult since resistivity is primarily
influenced by the salinity of pore-filling fluid and secondarily by porosity>’. Because all rock
matrices are potentially saturated with similar saline water, porosity controls resistivity
variations. In general, lithification increases with depth and is associated with a decrease in
porosity and permeability consistent with the observed increase in MT resistivity from L1 to
L3 (Fig. 2.11)*7. Correlations between the four cored wells in the northeast portion of the
study area indicate that L1 coincides with Quaternary basin fill that is under-compacted and
highly porous and permeable, and therefore, characterized by low resistivity. Older strata
associated with L2 and L3 are highly compacted and cemented and characterized by lower
porosity and permeability and higher resistivity. The transition from L2 to L3 is controlled
by porosity rather than lithology. For example, as seen in EW2, L2 thickness increases to the
west suggesting an increase in porosity. The phase tensors in the west show 2D resistivity
structures with increasing depth suggestive of a possible fault system (Fig. 2.11). Secondary
pore networks derived from fluid-rock interactions induced by the high permeability fault
system are interpreted to be filled with high salinity, and low resistivity fluids. Also, cored
wells 61-6, 45-5, 46-6, 56-6, and 51-5 indicate that L2 and L3 coincide with Paleozoic
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bedrock composed primarily of resistive carbonates. The resolution limitations of MT
resistivity measurements mean that small-scale changes in carbonate lithologies are not
detected and suggests that differences between L2 and L3 are not related to lithology (Fig.
2.12).

Conclusions

1) NMFk is a useful ML tool to assess prospective geothermal regions by evaluating
variability in geothermal, geological, geophysical, and geochemical attributes. In the
southwestern portion of the Tularosa Basin at White Sands Missile Range, four
signatures (A-D) were established through NMF for their geothermal resource potential.
Signature A is interpreted to have the highest geothermal potential due to a combination
of high heat flow, reservoir temperatures, and comparatively high porosity and
permeability. Signatures B and D have moderate potential because of their relatively low
heat flow and temperature. Signature C has the lowest geothermal resource potential
because no geothermal attributes have a major contribution to the signature.
2) MT inversions detect subsurface geothermal prospects based on resistivity. MT
provides insight into relative porosity and associated permeability that is related to the
subsurface resistivity trends detected in the MT inversion. From an MT survey from
McGregor Range, three resistivity layers (L1, L2 and L3) and 2 resistivity structures
(RS1 and RS2) are identified. The layers are inferred to be related to a combination of
depth-related compaction and lithification effects and the resistivity structures are related
to Davis Dome, laccolith, and faulting. A fault system is interpreted in the western
portion of the study area as indicated by the thickening of L2. Because low resistivity is
a defining characteristic of geothermal prospects, the western portion of the McGregor
MT survey has the highest geothermal potential.
The low vertical resolution of MT data, in contrast with high-resolution borehole resistivity
measurements, makes it difficult to relate lithological variability and associated rock
attributes with MT inversions. MT is limited in that the interpreted resistivity layers only
provide insight into relative porosity and do not correlate with lithological or stratigraphic
units. Only large-scale characterization of porosity and associated permeability can be made
when interpreting MT inversions. Therefore, the MT survey may be used as a preliminary
study before drilling a well, which will provide more detailed information for developing a
geothermal field.
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Chapter 3: Characterization of Potential
Geothermal Energy Ultilization in West Texas

Introduction
The total U.S. energy consumption is ~13.68x10° GJ*, and a majority of which comes from
fossil fuels that emit carbon into the atmosphere. To reduce CO: emissions, carbon-free
energy sources such as wind, solar, and geothermal are becoming more prevalent.
Geothermal energy is poised to become an important continuous source of heat and energy.
Currently, geothermal energy makes up <1% of U.S. electricity generation but can increase
dramatically as the U.S. has ~2x10'* GJ of extractable geothermal energy*®.

Large areas of land in the U.S. with a high geothermal gradient may possess hot water
resources. Most importantly, a large portion of oil and gas fields have high thermal gradient
that can be converted into geothermal energy. As geothermal energy use becomes more
prevalent, it is important to easily determine the proper setting and attributes for utilizing this
energy to displace the greatest amount of fossil fuels. Therefore, the main purpose of this
work is to estimate geothermal prospectivities and commercial feasibility in western Texas
(Fig. 3.1) using publicly available oil and gas field data.

Plains
Eastern
Lower Rio Grande Valley

Far West

HEREN

Winter Garden and South/Central
Fig. 3.1: The map of Texas including their basin configuration. Study area is in west Texas
bounded by the red rectangle.

Western Texas because it not only has a high number of existing and orphaned oil fields/wells
but also has a medium geothermal gradient and easy-to-drill sedimentary formations. These
existing or abandoned oil wells are a great opportunity for geothermal energy as their
interconnected piping infrastructure and drilled wells can be repurposed for geothermal
energy production, reducing a large portion of the costs associated with geothermal
development. Medium geothermal gradient and soft sedimentary formations favor drilling
new wells if necessary. Additionally, geothermal resources in the form of water and other
heated fluids can be found along with oil and gas.

We mainly used three geothermal attributes including thermal conductivity, heat flow,
geothermal gradient, and bottom hole temperatures (BHT). Next, preprocessing was

38


https://www.zotero.org/google-docs/?bFSLqg
https://www.zotero.org/google-docs/?KRDRQg

performed to remove spurious data. Next, we interpolated using the inverse distance
weighting (IDW) technique to estimate values at unknown locations based on known
locations. Next, we delineated the proper utilization of this geothermal energy for electricity
production, spas & balneology, and greenhouse farming based on their temperatures at 1, 2,
3, and 4 km depths.

Three variables used in this study contained about 48% outliers. For instance, the maximum
and minimum values for the temperature gradient far exceeded the appropriate range of the
geothermal gradient throughout the U.S. Whereas the average geothermal gradient range in
western Texas is contoured between 15 — 40°C/km, the provided data ranged between O -
1386°C/km [2]. We removed these outliers from the data by creating a new dataset that only
included values that were greater than or equal to 15°C/km or less than or equal to 40°C/km.
Additional outliers existed within the heat flow data set, so we instead opted to use the
following formula to calculate new data for the heat flow throughout the West Texas region:

q = K VT 3.1)

where q is the heat flow (W/m?), Kr is the geothermal conductivity (W/mC), and is the
temperature gradient (C/m). To obtain accurate heat flow data, we located the thermal
conductivity points either in the same location or closest to those in the new geothermal
gradient dataset. To do so, we conducted a nearest neighbor calculation using a binary search
tree or K-D tree to determine the shortest Euclidean distance between points based on the
longitude and latitude data. The data provided by this calculation allowed us to extract only
the points in thermal conductivity data that geospatially coincided with the new geothermal
gradient dataset. Next, we performed the IDW described in the method section of Chapter
1.

Utilization Scheme

Each industry has a unique temperature requirement to continue their business. For spas, a
comfortable inlet water temperature is around 40 °C with 50 °C[insert source here]. While
current spas can use water temperatures above 50 °C, this water requires additional cooling
to achieve a safe temperature. Following Germany’s example, the maximum allowed inlet
water temperature was 60 °C [insert source here].

The temperature required for heating systems in greenhouses ranges from 40 — 100 °C, as
greenhouses can use various heating systems [insert source here]. These greenhouses can
utilize this geothermal energy through finned pipes, fan coil units, soil heating, plastic tubing,
cascading, bare pipes, unit heaters, or a combination [insert source here]. The heating method
used in these greenhouses will determine the inlet temperature for the water.

There are three major types of geothermal power plants in the market (cite) namely dry
steam, flash steam, and binary (Table 3.1). A dry steam power plant primarily uses steam
extracted directly from the geothermal reservoir. Flash steam is the most common type of
power generation plants in operation today that use fluids at temperatures greater than 150
°C. This fluid is rapidly vaporized to produce vapor in order to spin a turbine. The power
plant with the greatest potential for geothermal utilization however is the binary cycle power
plant. This plant differs from the previous plants in that it uses the water acquired from the
geothermal resource to heat a secondary fluid through a heat exchanger. The benefit here is
that binary cycle power plants can use low-enthalpy fluids with temperatures ranging from
95 - 150°C.
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Table 3.1: A list of geothermal power plant types, corresponding fluid types and
temperature ranges.

Geothermal power plant type Fluid type | Temperature range (°C)
Dry steam Steam >150

Flash steam Liquid >150

Binary Liquid 95-150

Results and Discussion

We received numerous attributes from the Bureau of Economic Geology, UT Austin. Among
those attributes, only bottomhole temperature, geothermal gradient, thermal conductivity,
and heat flow possess good quality data (Fig. 3.2). Continuous interpolated contour at 1 km
depth of each attribute is shown in Fig. 3.2a-c.
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Fig. 3.2: Continuous contours of geothermal gradient (a), thermal conductivity (b), and
heat flow (c) in the study area at 1km.

Thermal gradient is the change in temperature per unit depth and is vital in determining
temperatures at specified depths. The geothermal gradient in the study area had much greater
variation in values than the other attributes and averaged 27.5°C/km with a maximum of
39.5°C/km and a minimum of 15.3°C/km (Fig. 3.2a). The average of 27.5°C/km is only 5.3%
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below the average gradient for the continental U.S. However, when compared to western
states, the West Texas geothermal gradient was 21.14% below the 34°C/km value [5].

The thermal conductivity throughout the majority of the West Texas region lies at
approximately 2.5 W/mK with spikes in conductivity up to 5.44 W/mK towards the western
edge and throughout the center of the region (Fig. 3.2b). Thermal conductivity describes a
material's ability to transfer heat through conduction. For a geothermal resource, thermal
conductivity is critical to understand as it directly controls the steady state temperature field
[3]. Additionally, it can have a large impact on required bore hole depth to meet the heating
demands of a utility when utilizing a ground-source heat pump or ground coupled heat
exchanger.

Heat flow in a geothermal context is, “the movement of heat/energy from the interior
of the Earth to the surface” [4]. A larger heat flow is typically indicative of good geothermal
heat production. Additionally, heat flow determines vertical conductive heat flow losses as
geothermal fluids rise to the surface either naturally or through piping. Throughout the West
Texas Region heat flow averages around 0.0637 W/m?, with a few spikes up to 0.1635 W/m?
(Fig. 3.2¢).

To determine the bore hole temperatures at depths between 1 km and 4 km with 1 km
incremental depth, the geothermal gradient dataset was multiplied by the chosen depth and
added to the standard surface temperature of 25°C. Utilities were then added to their
corresponding temperature ranges on the plots to highlight the potential forms of utilization
and their pervasiveness throughout the region (Figs. 3.3-3.6). Bottom hole temperature rises
following geothermal gradients, ranging from a minimum of 40°C at 1 km to a maximum of
178°C at 4 km, hence the utilization (Table 2).
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Fig. 3.3: Spas could be a favorable utility at 1 km depth.
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Fig. 3.4: Green house farming could be a favorable utility at 2 km depth.
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favorable utility at 3 km depth.
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Fig. 3.6: Electricity production through binary & steam flash geothermal power plant
could be a favorable utility at 4 km depth.

Table 3.2. Summary of potential utilities for 1 - 4 km depth.

Utility 1km 2km 3km 4km
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Spas & GH Farming 0.10% N/A N/A

GH Farming 1.06% 6.8% 0.10%
GH Farming & Elec Prod (Binary) | N/A 0.93% 10.97% 0.21%
Elec Prod (Binary) N/A 0.12%

Elec Production N/A N/A N/A

It is important to note that Table 3.2 is reflective of only the data points created from the
interpolated datasets and not the actual geospatial locations. As displayed above, at 1km spas
and greenhouse farming could potentially be the dominant utility encompassing 98.94% of
the West Texas geothermal resources. However, beyond a 1 km, the temperature becomes
too high to support safe and efficient geothermal spas, so spas are essentially infeasible. At
2 km the greenhouse farming utility dominates 98.84% of the potential available utilities.
Since the average depth of crude oil and natural gas wells is approximately 2 km [6],
geothermal greenhouse farming operations become the most potentially viable utilities if
they are able to take advantage of the existing infrastructure. Additionally, 2 km is where it
can be seen that some binary electricity production can begin to occur. At 3 and 4 km, binary
electricity production becomes the dominant utility with some potential for greenhouse
farming. Flash steam power plant is only feasible at or beyond 4 km. While BHT at 4 km is
still considered “reasonable”, it is quite costly to drill that deep. If electric utility companies
are willing to spend higher upfront costs, there is a large potential for the expansion of flash
steam cycle energy production.

We also plotted orphan wells on top of the BHT map at 2km (Fig. 3.7). Many of the
wells are located on top of geothermal resources that could be used for greenhouse farming
with some located on resources that could be used to produce electricity from a binary cycle
power plant (Fig. 3.7). These orphan wells might be a good avenue to reduce upfront cost to
set up utility facilities.
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Fig 3.7: Orphan wells could be used to extract hot fluid; however, a detail study is
required on whether they can sustain thousands of barrel fluid withdrawal in a day.

Conclusions

West Texas has a huge potential for certain geothermal utilization facilities ranging between
spas to electricity production that varies with depth. For instance, at 1 km depth, geothermal
spas could be a favorable utility while greenhouse farming can be expected to make great
use of not only the geothermal resources, but the existing oil and gas infrastructure at 2 km
depth. At 3 & 4 km, binary cycle power plants would predominantly use the geothermal
resource to produce clean and continuous electricity. At 4 km depth, steam-flash power plant
could be used to generate electricity although spatially sporadically. Orphan wells can be
used to reduce cost; however, thorough study is required if they can sustain 1000s barrel fluid
extraction in a day.

Chapter 4: Machine learning and a process model
to better characterize hidden geothermal
resources

Introduction

Geothermal is a growing renewable energy resource that can be utilized 24 hours a day
without shutting off a geothermal power plant. However, in the U.S. ~3.7 Gl/year (<1%) of
electricity generation is from geothermal resources*® although it has ~2 x 10'* Gl/year
tappable energy®®’?. This potential energy resource is largely unexplored because many
geothermal reservoirs are hidden or blind (no apparent surface exposures), which often leads
to expensive and risky exploration’*’*, Typically, play fairway analysis (PFA), adapted from
the oil & gas industry, is performed for geothermal discovery, exploration, and development.
PFA integrates available geologic, geophysical, and geochemical attributes indicative of
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geothermal activity and estimates the importance of these attributes for the characterization
of the geothermal resource” 8’ PFA separately quantifies the relative importance of each
attribute instead of simultaneous usage of all attributes. Here, we used a tool called
GeoThermalCloud, which simultaneously analyzes available attributes, finds geothermal
prospectivities, and discovers key parameters defining geothermal prospectivities'-’.

GeoThermalCloud (GTC) utilizes different machine learning (ML) methods. GTC can (1)
analyze large field datasets, (2) assimilate model simulations (large inputs and outputs), (3)
process sparse datasets, (4) perform transfer learning (between sites with different
exploratory levels), (5) extract hidden geothermal signatures in the field and simulation
data, (6) label geothermal resources and processes, (7) identify high-value data acquisition
targets, and (8) guide geothermal exploration and production by selecting optimal
exploration, production, and drilling strategies. Although GTC can implement different ML
methods, its core component is an unsupervised machine learning (ML) called non-negative
matrix factorization with customized k-means clustering (NMFk)!16255% Here, we applied
NMFk to the Tularosa Basin PFA dataset collected by the Department of Energy (DOE).

The Tularosa Basin is located in the Basin and Range province, which exhibits high
favorability of occurrence for geothermal resources due to high heat flow related to the Rio
Grande rift. A few geothermal facilities have been developed within the Basin and Range
province®!®2. Recently, it has been the subject of geothermal studies due to its high
geothermal potential coupled with the U.S. Army’s interest in using the geothermal resource
as an energy source for White Sands Missile Test Range and McGregor Range®®¢%-6!,

Geologically, the Tularosa Basin is located on the eastern flank of the Rio Grande rift zone
as a north trending, intermontane graben located in south central New Mexico. It is bounded
to the east by the uplifted Sacramento Mountains and to the west by the uplifted Organ and
San Andreas Mountains. Faults related to the Rio Grande rift with several thousand feet of
displacement separate the basin from the surrounding, uplifted mountains. Stratigraphically,
the Tularosa Basin consists of Paleozoic limestones and shales to Tertiary age rocks®®60-62,
Rifting during the Paleogene resulted in characteristically high heat flow in south-central
New Mexico®*3, High heat flow makes the southern part of the Tularosa Basin favorable for
geothermal exploration.

Recently, the DOE has collected data to develop geothermal fields in the Tularosa Basin.
The data include geological, geophysical, geothermal, and geochemical attributes. Also, a
comprehensive PFA study was conducted by Ruby Mountain Inc.**%4, and they demonstrated
prospective geothermal locations. In this study, we curated data from the DOE Geothermal
Data Repository and then used them as input parameters for GTC. Results from GTC provide
insights into the relationship between attributes and prospective geothermal locations which
we then compared to the PFA study by Ruby Mountain Inc.. Lastly, we discussed how NMFk
and Burns’ equation®* can be coupled to obtain a better understanding about prospective
geothermal sites.

45


https://www.zotero.org/google-docs/?tSFfq5
https://www.zotero.org/google-docs/?R2gvgN
https://www.zotero.org/google-docs/?NaYVPa
https://www.zotero.org/google-docs/?ybhlK1
https://www.zotero.org/google-docs/?XHRNzl
https://www.zotero.org/google-docs/?CxMGhQ
https://www.zotero.org/google-docs/?RonHGc
https://www.zotero.org/google-docs/?G1tXvR
https://www.zotero.org/google-docs/?FRBTDN

106°40'W 106°36'W 106°32'W 106°28'W 106°23'W
1 | h 1 h L h ! h
005 2 INA N

B ™ Miles é S

S

L

NASA Site

San‘Augustin

Mountain
N

L

Missile Range

Organ
Mountain

[® Data point
| ; — Faults

32°18'N 32°20'N 32°22'N 32°23'N 32°26'N 32°28'N 32°30'N 32°32'N 32°34'N
1

Fig. 4.1: Data locations and Quaternary faults in the study area.

Data

In this study, we used a total of 10 attributes: temperature at 2m depth (temperature @2m),
heatflow, NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir
geothermometer, silica geothermometer, gravity, fault distance, quaternary fault density,
and Li concentration. All these attributes are critical for geothermal resources discovery and
exploration. Temperature (@2m has been used to explore geothermal fields at Dead Horse
Wells, the Hawthorne Army Depot, and Emerson Passin in Nevada®. Heatflow defines how
heat flows to the geothermal reservoir from the deep subsurface. Geothermometers (NaK-
Giggenbach geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, and
silica geothermometer) are used to estimate potential reservoir temperature and geochemical
processes in the reservoir. These geothermometers help estimate potential reservoir
temperature leading to less number of exploratory well drilling. Gravity may represent
secondary mineralization and help characterize geologic structure®. Faults can act as
conduits of (1) groundwater flow water from depth to the ground surface as well as (2)
groundwater recharge. We have two fault attributes: fault distance and quaternary fault
density. Fault distance represents distance from fault to the data point. Fault density
(quaternary) is the number of faults per square meter of an area. Finally, Li concentration is
a geochemical element that represents deep fluid circulation. All these attributes were used
at 120 locations (Fig. 4.1)

However, all attributes are dispersely located and are not available at 120 locations except
temperature @2m. We applied different interpolation techniques to sample all attributes at
the specified 120 locations. For heatflow, NaK-Giggenbach geothermometer, K-Mg
geothermometer, NaK-Fourneir geothermometer, silica geothermometer, gravity, and Li
concentration interpolation was used by making the study area as a grid. Interpolation was
performed based on block mean, kriging, and inverse distance weighting. Next, R? score was
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computed based on interpolated values and real values. We found all methods provide
equivalent R? scores. Block mean was selected as the optimal interpolation method because
it takes least time to execute. The interpolated values were used in the nearest neighbor
algorithm to sample 120 values at 120 locations. The nearest neighbor algorithm finds mean
value based on either radius or number of points around a point. Here, we use radius to find
the mean value. The radius was calculated based on variogram study in the data.

Fault distance and fault density were estimated using different approaches. For estimating
fault distance, we generated a normal raster on ArcMap. The raster was converted to points.
Next, a near coverage tool on ArcMap was used to compute the distance of each point from
nearest faults. For estimating fault density, we also generated normal raster followed by
converting points. Next, the near coverage tool was used to find the distance from point to
nearest faults. Finally, the kernel density function was used to calculate fault density. Unit of
fault density is m/m?.

For developing a neural network based ML model, we generated data based on Eastern Snake
River Plain by varying input parameter ranges based on variance and mean of data using
Eqn. 6. Next, we form a 1D deep neural network with three layers. Each layer has 256, 128,
and 64 layers, respectively. We used relu as the activation function. We trained the model
for 500 epochs with a learning rate of 0.001. Using a data matrix instead of generating files
is the main benefit of utilizing the neural network model. Also, point based prediction is
feasible with the neural network based model that is not possible with Burns’ equation.

Results

Fig. 4.2 shows the reconstruction quality O(k) and average silhouette width S(k) for
different number of geothermal signatures, k. O (k) values exponentially decrease with the
increase of the number of signatures. However, that is not generally true for S(k). Although
optimal solutions have low O(k) and high S(k)values, their optimal values are not
theoretically established. Generally, low O(k) and S(k)>0.25 can be considered to be
acceptable. Here, the solutions for £=2, 3, 4, 5, and 6 were accepted, while the A=S8 to 10
solutions were rejected by the algorithm. This conclusion is based on the high S(k)values
(>0.25) and the O(k) decline curve (Fig. 4.2). The k=4 solution is found to be optimal
because of its low O(k) and high S(k) values. The solution with £<4 is an underfitting
representation of data while >3 is an overfitting representation of data. In the following
paragraphs, we will describe each signature of the k=4 solution (Fig. 4.3(a&Db)).
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Fig. 4.2: NMFk results for normalized reconstruction quality/fit O(k)in red color
and solution robustness (based on the average silhouette S(k) width of the
clusters) in blue color for different numbers of signals k.

Fig. 3(a) shows a heatmap of signatures found by GeoThermalCloud. Each signature captures
certain characteristics in the dataset. Colors in each signature represent the contribution of
each attribute. Green, yellow, and brown-red colors represent minor, moderate, and major
contributions, respectively. Note, minor and major contributions also means low and high
attribute values in the actual dataset.

The dominant attributes of Signature A are heat flow, K-Mg geothermometer, silica
geothermometer, and quaternary fault density (Fig. 3a). Heat flow is one of main geothermal
attributes while K-Mg and silica geothermometers potentially represent high reservoir
temperature. Low contribution from NaK-Giggenbach and NaK-Fourneir geothermometers
suggests that geochemical processes in the reservoir are not controlled by Na enriched
minerals. High contribution of quaternary fault density may indicate elevated secondary
permeability. The contribution of Temperature (@2m is medium that is consistent with high
heat flow. Another critical component of this signature is low contribution from fault
distance. Low fault distance means fault is close to the locations associated with this
signature that may lead to elevated secondary permeability. All these factors are good
indicators for high geothermal prospects; therefore, the locations associated with Signature
A have a high chance of having geothermal resources (Fig. 3b).
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Fig. 4.3: Geothermal signature heatmap (a) and their spatial distribution (b). Each
signature captures certain characteristics in the data. Here, Signatures A and B
represent highly prospective geothermal signatures. Green, golden, and red colors
in (a) represent low, medium, and high contributions, respectively.

The dominant attributes of Signature B are Temperature @2m and heat flow, quaternary
fault density, and Li concentration (Fig. 3a). Temperature @2m and heat flow are two main
geothermal attributes. The high contribution of quaternary fault density may indicate
elevated secondary permeability. The high contribution from Li suggests a potential fluid
circulation from the deep subsurface that is a good indicator of potential geothermal
resources. The contribution from fault distance is also low. Low fault distance means faults
are close to the locations associated with this signature. All these factors are good indicators
for high geothermal prospects; therefore, the locations associated with Signature B have a
high chance of potential geothermal resources (Fig. 3b). However, no geothermometers had
major contributions on this signature except close to medium contribution from silica
geothermometer suggesting the geothermal potential is not as high as Signature A. a careful
approach should be taken prior to making any decision about geothermal resource
development.

No geothermal attributes had a major contribution on Signature C; therefore, we conclude
that the locations associated with it have a low chance of possessing geothermal resources.
In Signature D the dominant attributes are NaK-Giggenbach and NaK-Fourneir
geothermometers. These attributes suggest that the reservoir has a high temperature. The
medium and high contribution of Quaternary fault density and Li concentration suggest
elevated secondary permeability and deep fluid circulation. However, temperature (@2m and
heat flow had low contribution. All these factors suggest that the locations associated with
Signature D (Fig. 3b) may or may not have high prospectivity. However, Signature D has
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some positive characteristics for exploring geothermal resources and because of its proximity
to Signature A (high prospective signature), there is some potential for sustainable
geothermal resources in the locations associated with Signature A. Note, the prospective
geothermal locations are consistent with the Ruby Mountain’s PFA prospective locations.

NMFk results help us discover potential geothermal resources and their spatial locations.
Regional hydrogeological and geothermal conditions would facilitate a better understanding
on whether we can develop a long-term geothermal facility here. To obtain such results, we
can apply Eq. (3) to compute aquifer temperature, viscous heat flux, vadose heat flux, and
advective heat flux. Among these four attributes, viscous heat flux and advective heat flux
could be used to estimate the potential time to heat up the geothermal reservoir temperature
during energy production and injection; hence, the viability and sustainability of geothermal
reservoirs. We coupled the Burns’ equation with NMFk and GeoThermalCloud has the
capability to perform such tasks. However, we could not demonstrate a study because of lack
of data. We will conduct and demonstrate such a study if we receive a good dataset in the
future.

Conclusions

Tularosa basin has potential geothermal resources, which can be used to support several
federal facilities in the area. To find geothermal prospects, we studied 10 attributes at 120
locations.  Attributes include temperature (@2m, heatflow, NaK-Giggenbach
geothermometer, K-Mg geothermometer, NaK-Fourneir geothermometer, silica
geothermometer, gravity, fault distance, quaternary fault density, and Li concentration. The
dataset was used as input parameters to GTC. GTC finds four signatures (A, B, C, and D),
two of which are geothermal signatures. The locations associated with Signatures A and B
have high geothermal resource prospectivities that are spatially consistent with the Ruby
Mountain’s PFA study. We also found that the locations associated with Signature D are not
as prospective as Signatures A and B, but they might assist a sustainable geothermal reservoir
in the area around the locations of Signature A. The key attributes defining the geothermal
resources are heat flow, K-Mg geothermometer, silica geothermometer, quaternary fault
density, temperature (@2m, fault density, and Li concentration. Finally, we discussed how
we can couple an existing analytical equation to GTC computing the viability and
sustainability of geothermal reservoirs.

Chapter 5: A FORGE Datathon Case Study to
Optimize Well Spacing and Flow Rate for Power
Generation

Introduction

Enhanced geothermal systems (EGS) present a significant and long-term opportunity for
widespread power production and direct heat’*%”. But high exploration costs combined with
uncertainties associated with subsurface characteristics (such as permeability, reservoir
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temperature, fault connectivity, geochemistry, and in situ stress distribution) have impeded
the geothermal market growth’**’. Moreover, building a profitable EGS is a major challenge.
Profitable EGS fields will depend on many design parameters®*. We will focus on the
parameters of reservoir depth, project lifespan, injection temperature, well spacing, well
length, well azimuth, well depth, well skew (i.e., non-parallel wells), well count, well toe
(i.e., decreasing well spacing from heel to toe), well proportion (i.e., the ratio of injection
well length to production well length), well phase (i.e., the placement of the production well
above, beside, or below the injection well), well intervals (i.e., the number of isolated
perforation clusters), production well pressure drawdown, stimulation flow rate, stimulation
volume, and circulation flow rate. Finding optimal values for these design parameters is a
computationally expensive task to say the least.

To tackle this challenge, PIVOT (a conference supported by the U.S. Department of Energy)
organized a first-ever Geo Datathon event in 2022%. The primary goal of this Datathon was
to identify production well placement. Participants in this event used different machine-
learning methods to solve a geothermal engineering problem on a simulated dataset of the
Utah FORGE site (Fig. 5.1). Data for the Datathon was generated by geothermal design tool
(GeoDT) to investigate the power production potential of an EGS system. In this event, six
teams (Team Naturals, Benjamin Cassidy, Pebbles, GeoT360, S-Team, and GeotherML)
completed the competition. Team Naturals of Stanford University, Benjamin Cassidy of
Hammer and Tongs Polymer Development, and Pebbles of the Colorado School of Mine
were awarded champion, 1st runner up, and 2nd runner up, respectively.

Despite a short time for the competition and a challenging task, each team made a great
contribution to identifying suitable locations for the production well. Team Naturals
included metrics for risk by considering averages and standard deviations in power
production. Also, they clearly demonstrated that net power production was not the best value
to optimize. Benjamin Cassidy applied a unique set of approaches to the ML challenge to
optimize well placement from more than one perspective. Crucially, these competitors also
revealed several problems that needed to be solved to get the best answer to optimizing the
well spacing: (1) identifying a suitable objective function (e.g., net present value), (2) finding
a robust optimization method for the complex dataset, and (3) accounting for uncertainty and
risk tolerance.

Here, the primary purpose of our study is to find optimal well spacing (w_spacing) and per-
interval circulation flow rate (Qinj) for the same dataset. First, we define a new objective
function, which yields reduced parameters for comparing realizations, e.g., average power
or net present value (NPV) in dollar amount. We chose NPV because it provides the best
estimate of monetary value. Second, we developed a binning-based optimization approach.
Third, we identified optimized w_spacing and Qinj with an assessment of uncertainty.
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Fig. 5.1: Utah FORGE site with the injection well 16A(78)-32 and five monitoring
wells (taken from Moore et al. 2021%).

Net Present Value (NPV) Estimation

Our new economic module in GeoDT yields estimated NPV in circa 2019 U.S. dollar
amounts for a hot dry rock EGS geothermal project®. Such a reduced value is critical for
optimizing geothermal design parameters. This module considers capital costs, maintenance
costs, pumping costs, and power sales. Following the theme of fast-simplified physics, this
module uses simplified methods to estimate costs where the underlying goal is to give a
conservative view of the economic potential of a project. The cost terms that we employ in
this study are summarized in Table 5.1. True costs for an EGS site depend on many factors
beyond what our simple model includes. Ultimately, we use this cost model as an objective
function to better contrast increasing power production with increasing capital costs and

other financial risks.

Table 5.1: Constants used to estimate NPV.

Parameter Unit Value Reference
Electricity sales per kilowatt-hour USD/kWh 0.1372 EIA, 2022
Drilling cost per length USD/m 2763 Lowry et al., 201
Drill pad cost kUSD 590 Lowry et al., 201
Power plant cost USD 2026 GETEM
Exploration cost per depth USD/m 2683 GETEM
Operating cost per kilowatt-hour USD/kWh 0.0365 GETEM

Outputs from GeoDT that pair with these cost factors include the net power output (Pout) for
each model timestep and timestep parameters (TimeSteps and LifeSpan). The net power
production term (Pout) for the Datathon only included the flash steam cycle for power
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generation. In this study, we add a simplified estimate for isobutane binary-cycle power
generation and an improved estimate of injection well pumping losses that accounts for open-
loop fluid losses (https://github.com/GeoDesignTool/GeoDT). Each power term includes the
effect of inefficiencies, with this study using a conservative 85% efficiency (GenEfficiency).
Discrete fracture networks with open-flow boundaries formed the basis of all the GeoDT
models.

Data Description

The 16 most critical controllable design parameters (Table 2) can be divided into four
categories: reservoir/site, power cycle, well, and stimulation. Of these, only 10 design
parameters were varied to a meaningful degree because the first well at the site, well
16A(78)-32, has already been drilled at a diameter of 0.11 m to a depth of 2350 m with a
highly-deviated lateral length of 1114 in the direction of 1.833 radians Azimuth at a dip of
0.483 rad below the horizon. This azimuthal direction is near-parallel to the in-situ minimum
horizontal stress direction. Reservoir depth is the only controllable reservoir parameter, but
it is not a variable in this study because of the preceding reasons. Injection temperature was
the only power cycle parameter that was varied because this study focuses on subsurface
EGS design optimization, not power systems engineering. While GeoDT is capable of
modeling hydraulic stimulation separately from circulation, in this study the circulation stage
is treated as a continuous stimulation stage for the lifespan of the EGS, so we did not
parameterize these two stages independently. In other words, GeoDT predicts hydraulic
fracturing and shearing at the same rate of injection as what is used for long-term circulation
and heat mining. Our focus for design optimization will be set on well spacing (w_spacing)
and per-interval circulation rate (Qinj) because these two terms were predicted to be first-
order controls for power production.

Table 5.2: EGS project design parameters and corresponding units, minimum and
maximum values, and their statistical distributions. Parameters in green color cells
were optimized in this study.

Category Variable Parameter Unit | Min Nominal | Max Distribution
Value | value Value
Site ResDepth Nominal reservoir | m 2340 2360
depth
Power cycle | LifeSpan Project lifespan yr 30 -
Power cycle | Tinj Injection temperature | C 85 99 -

Well w_length Well length m 1114 Lognormal
Well w_azimuth Well azimuth deg 1.833 Uniform
Well w_dip Well dip deg 0.438 Uniform
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Well w_skew Well skew deg |-10 10 Uniform

Well w_count Well count well |1 4 Uniform
s

Well w_toe Well toe deg |-5 5 Uniform

Well w_proportio | Well proportion deg 0.8 1.1 Uniform

n
Well Ww_phase Well phase deg 0, 90, Uniform
180, 270

Well w_intervals | Well intervals zone | 1 6 Uniform
s

Well dPp Production well | MPa | -10 2 Uniform

pressure rise
Well perf Perforation count perfs 1 Uniform

Using statistical distributions for all the known and unknown site, fracture network, and
design parameters, 44,492 realizations were generated for the Datathon (PIVOT, 2022). All
the well parameters were generated using uniform distributions. The minimum and
maximum values of the distribution are listed in Table 5.2, and histograms of six example
parameters are shown in Fig. 5.2. The lifespan of the field was considered only 30 years, and
injection temperatures varied from 85-99°C (Fig. 5.3). The injection rates per-interval (Qiny),
which also serve as the stimulation rates, were generated using exponential distribution
because this offers improved resolution for realizations with low flow rates, relative to the
maximum simulated flow rate. When the optimal flow rate is not known, the exponential
distribution helps explore a larger probability space in order to more clearly identify the
optimal flow rates.
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Fig. 5.3: Distribution of injected flow rate (Qinj), reservoir depth (ResDepth), and
temperature of injected fluid (Tinj).
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Methods

In any optimization technique, identifying a suitable objection function is a crucial first step.
Here, our goal is to maximize the NPV value of a geothermal project because NPV provides
a common framework to measure the relative benefit and cost of each design decision. This
contrasts with optimizing power production where the most productive scenarios can be
unreasonably expensive with respect to drilling and pumping costs. The traditional parameter
estimation study fits a physical model to data, finding optimal parameters. Such a study finds
a single optimal value for each parameter and then the Markov chain Monte Carlo (MCMC)
method or its variant is performed to generate distributions of parameters to provide
uncertainty of the value in its distribution. However, MCMC cannot provide uncertainty
based on the most likely scenarios for peak NPVs, an important attribute to investors.

Investors would like to see what is the most likely chance of a profitable geothermal project
based on NPVs; for instance, what are the 10®, 50, and 90'" percentile of NPVs for a given
set of design parameters? Therefore, we chose binning-based optimization in this study (Fig.
5.4). In this technique, we define a bin volume based on discrete splitting of the design
parameter values of injection rate and well spacing. Then, we compute NPVs of each
realization in the corresponding volume. Finally, we compute the 10® 50" and 90%
percentile of NPVs and their corresponding design parameters. Here, percentile values of
NPV demonstrate the profitability of geothermal fields while the design parameter ranges
provide the range within which the NPV would be profitable. For this study, w_spacing and
Qinj were evenly split into 9 and 4 intervals, giving a total of 36 bins for our realizations.
Nine intervals provided the finest discretization that yielded suitably large populations of
data within each bin for achieving statistical significance.
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Fig. 5.4: Binning based optimization technique where blue dots represent each
realization and red color rectangle shows example binned areas.
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Results

The model’s NPV values are widely distributed, ranging from negative to hundreds of
millions USD (Fig. 5.5). We plotted the frequency distribution plot of NPVs using 30 bins.
The most common outcome was negative NPV due to the relatively cold 200°C temperature
at the current depth of FORGE, when treated as an EGS. Out of 44,492, 42,960 (96.55%)
realizations fall into this non-profitable category. Only 3.45% or 1,532 realizations fall into
the profitable category. The profitable NPVs range from 0 to ~1500 million USD. The most
likely profitable range was 25 to 676 million USD.

42960

40000 -

30000 1

20000 A

Frequency

10000 A

456170125130133116100 71 44 40 41 35 20 16 8 4 7 3 6 0 1 0 0 0 1 2 1 0 2
-26 74 174 275 375 475 575 676 776 876 976 1076 1177 1277 1377 1477
Net present value ($M)

Fig. 5.5: Histogram of NPVs where negative and positive values represent non-
profitable and profitable geothermal fields, respectively. The number on top of each
bar represents the total count of NPV for the corresponding bar. All drilling costs and
pumping losses are included in this model.

All NPVs are plotted against Qinj and w_spacing in Fig. 5.6. Here, only positive or profitable
NPVs are present, while negative values are absent. It is clearly shown that geothermal fields
are non-profitable or marginally profitable for Qinj < 0.01 m?/s. High and extreme Qinj at
rates above 0.2 m’/s do not make a geothermal project profitable either. Therefore
optimization of Qinj is critical for achieving economic EGS, which confirms our apriori
expectation but now better quantifies this trend. A similar optimization trend is less visible
for w_spacing because profitable to non-profitable geothermal fields are present across the
full w_spacing range. Therefore, we applied a binning-based optimization technique to find
optimal w_spacing and Qinj.
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represent NPVs. Warm and larger size circles represent higher NPVs or vice versa.
Most of the realizations are not in this plot because of their negative USD values.

The 10™ percentile values show that profitable geothermal fields most likely occur between
110 to 348 m w_spacing and 0.0005 to 0.001 m>/s Qinj (Fig. 5.7a). Here, the closer space
provides more profit because of the presence of fluid. The highest profit within the 10%
percentile reached up to 0.5 million USD. The 50" percentile values demonstrate that
profitable geothermal fields are feasible between 190 to 747 m w_spacing and 0.001 - 0.01
m?*/s Qinj (Fig. 5.7b). The highest profit within the 50th percentile reached up to 5.5 million
USD.
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Fig. 5.7: 10t (a), 50" (b), and 90" (c) percentile values of NPV in USD for different Qinj
and w_spacing ranges.

The 90" percentile values show more interesting characteristics across the ranges for both
Qinj and w_spacing (Fig. 5.7¢c). Although all Qinj seem profitable, the prominent Qinj is
0.01 to 0.1 m%/s. The next most profitable Qinj range is 0.1 to 0.3 m*/s. The w_spacing range
between 190 to 747 m is profitable. Among these ranges, the most profitable range is between
509 to 588 m. The next most profitable w_spacing range is between 668 to 747 m. The
highest profit within the 90™ percentile can reach up to ~36 million USD. For both 50" and
90™ percentile cases, low w_spacing provides less profit, and high w spacing provides
higher profits. This phenomenon contradicts the idea that close spacing will benefit from
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having a better flow rate. Here, the total fluid volume generated more heat, thereby, more
profits. So, it is clear that a total hot fluid volume is preferred to the flow rate in estimating
NPV. In other words, more w_spacing provides more volume facilitating more fluid
extraction.

Conclusions

We analyzed GeoDatathon data based on the Utah FORGE site parameters. The dataset has
a total of 16 design parameters that control geothermal energy production, hence, its NPVs
in USD. The primary goal of this study is to find the optimal design values for well spacing
(w_spacing) and per-interval injection rate (Qinj) for developing profitable geothermal fields
with specified uncertainties. We used a binning-based optimization technique to compute
NPVs. We subdivided the whole realizations into 36 bins based on nine ranges for both
w_spacing and Qinj. Following, NPV was calculated for all realizations in each bin. Next,
we computed 10™, 50", and 90 percentile scores of NPV in all bins. Based on the analysis,
we came to the following conclusions:

1. The 10" percentile values demonstrate that profitable geothermal fields are feasible
between 110 to 348 m w_spacing and 0.0005 to 0.001 m*/s Qinj. The maximum profit
can reach up to 0.5 million USD.

2. The 50" percentile values demonstrate that profitable geothermal fields are possible
between 190 to 747 m w_spacing and 0.001 - 0.01 m’/s Qinj. Low w_spacing
provides less profit, and high w_spacing provides high profits. The maximum profit
can reach up to 5.5 million USD.

The 90'™ percentile values are better to consider than the 10" and 50™ percentile values
because of (1) higher certainty and wide ranges of w_spacing and Qinj. The most profitable
Qinj is between 0.01 to 0.3 m*/s. The w_spacing range between 190 to 747 m is profitable.
Among these ranges, the most profitable range is between 509 to 588 m. The next most
profitable w_spacing range is between 668 to 747 m. The maximum profit can reach up to
35 million USD.

Chapter 6: Coupling Thermo-hydro-chemical
Modeling and Markov Chain Monte Carlo Method
for Permeability and Porosity Estimation in a
Geothermal Reservoir

Introduction

Accurate geothermal reservoir characterization and maintenance help design a profitable
geothermal power plant®>®!. Specifically, accurate estimation of permeability and porosity is
crucial for understanding the fluid flow mechanism and resources estimation of a geothermal
field. For instance, higher permeability and porosity values could provide over-optimistic
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resources estimation and resources extraction mechanism or vice versa. However, the
detailed permeability and porosity field of geothermal fields remain unknown because of
sparse core measurements. Crucially, there is no workflow for determining permeability and
porosity values with quantified certainties from sparse measurements. The primary goal of
this study is to demonstrate a workflow, which estimates the permeability and porosity
distribution in a geothermal site from sparse core measurements.

There are several studies predicted permeability of geothermal reservoirs using either
numerical simulation or lab experiments®*°%. One notable study was performed by Jafari and
Babadagli®® on estimating correlation coefficient of fractures by investigating the fractal and
statistical parameters of fractures. The major limitation of this study is that they did not use
critical geothermal measurements e.g., groundwater temperature and tracer concentration to
constrain the model. Catinat et al.”® used nuclear magnetic resonance measurements to
establish a relationship between porosity and permeability. This approach is reliable with
two limitations (1) data are sparse and (2) fail to provide a good relation if one considers the
total porosity. Weibel et al.”® developed a relationship between porosity and permeability in
low enthalpy geothermal reservoirs by investigating the effect of diagenesis on sandstone
permeability. However, they did not verify the relationship with groundwater temperature
and tracer concentration. Jiang et al.”” estimated heterogeneous permeability distributions in
an enhanced geothermal synthetic reservoir by combining an autoencoder neural network
and a Bayesian inversion algorithm based on Markov chain Monte Carlo (MCMC) sampling.
They used single-well injection withdrawal as measurement data that are not readily
available. Suzuki et al.”® developed a supervised machine-learning-based model based on
random forest for estimating permeability distributions for a geothermal field using
temperature and pressure distribution as measurements.

The preceding studies did not estimates permeability or porosity constraining the model
based on critical attributes for geothermal exploration. The critical attributes are groundwater
temperature and tracer (e.g., Li", Ba®*") concentration in the subsurface. Groundwater
temperature captures thermal gradient or heat flow while tracer concentration indicates deep
fluid circulation!*°. Moreover, they are easy to measure and USGS installed numerous wells
to measure these two attributes. To address the limitations, we estimated permeability and
porosity of a 3D reservoir scale model constrained by groundwater temperature and tracer
concentration.

For such a parameter estimation study, a large number of the simulation of the flow, heat
flux and chemical transport are often needed. Although the high fidelity coupled thermal-
hydrologic-chemical (THC) model is reliable and accurate on performing this task, the
computational cost is huge. With the growth of the parallel computing hardwares like
Graphical Processing Units(GPU), integrating machine learning (ML) tools could greatly
speed up the simulations while maintaining accuracy. In this study, we train a deep CNN
model as the surrogate using a relatively small and accurate simulation dataset obtained from
the coupled THC model runs using PELOTRAN*. Next, we generated 6,000 realizations of
permeability and porosity distribution coupling the CNN model and MCMC sampling.
Moreover, we discuss when MCMC performs better.
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Data Generation

This study is on thermal-hydrologic-chemical physical processes involved in heat conduction
and energy transfer due to fluid flow and chemical transport in a site-scale reservoir'®. The
governing equations for fluid flow, chemical transport, and heat transfer processes are
explained in Mudunuru et al.!%. This study develops a 3D model with heterogeneous and
anisotropic porous geologic systems representing the Tularosa Basin in New Mexico using
PFLOTRAN. The model dimension is 6000 x 6000 x 6000 m?, discretized into 10 x 10 x 30
grid cells. We developed such a big model to capture the optimal temperature distribution in
the model domain'®!.

The PFLOTRAN simulator takes the following terms as the variable input: the permeability,
the initial temperature profile, the heat flux on the bottom of the reservoir modeling the
geothermal resource, and the tracer concentration of lithium and boron. Other modeling
parameters such as fluid thermal conductivity, solid thermal conductivity, rock density, and
diffusivity are known and are considered uniform over the simulation domain. Same
Neumann boundary conditions are applied to the west, east, north, and south faces of the 3D
rectangular domain, i.e. no flow, no heat or concentration flux. The pressure on the top and
bottom faces are fixed, with the bottom pressure higher; resultantly, the flow is upward. Zero
concentration and zero concentration flux are assumed on the top and bottom surfaces. The
only varying boundary condition is the heat flux on the bottom face.

Aiming for a neural network surrogate model to predict the pressure, tracer concentration,
and temperature field, we adopt a dataset contains various combinations of a stratified
permeability field, initial temperature gradient, and heat flux on the bottom as the input, the
corresponding future temperature gradient, liquid pressure, tracer concentration as the
output.

The initial temperature field is determined with the initial temperature gradient, initial
temperature at top surface is assumed to be 25°C. In the entire domain, the temperature is
proportional of depth assuming a uniform geothermal gradient of 25°C. The bottom heat flux
and initial temperature gradient are randomly drawn from the uniform choices shown in
Table 6.1. The permeability field of the modeling domain is discretized into nine geologic
layers. The rock types, depth, and range of permeability of each layer are listed in Table
6.2"192, The temperature, tracer, and pressure distribution at first and last time steps are
shown in Figs 6.1 and 6.2, respectively.

Table 6.1: Input parameters ranges for the initial temperature gradient and the bottom
heat flux.

Parameter Name Uniform random choices
Initial temperature gradient: °C/m [0.023,0.024, ...,0.04]
Bottom heat flux: W/m? [0.06,0.07,0.08,0.09]

Table 6.2: Permeability of the 9 layers. The permeability of each layer is drawn from
the three choices following Gaussian distribution.
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Layers Rock type Thickness [m] | log,k [m?] range
Layer 1 Fluvial sediments 800 [—13,-12, —11]
Layer 2 Lava flow and ash flow 1000 [—17,—16, —15]
Layer 3 | Sandstone, shale, and conglomerate 2000 [(—18,—-17,—16]
Layer 4 | Sandstone, shale, and conglomerate 200 (—18,—-17, —16]
Layer 5 | Mudstone, sandstone, and siltstone 200 (—16,—15, —14]
Layer 6 Limestone, shale and dolomite 800 [—12,-11, —10]
Layer 7 Limestone and shale 200 [—13,-12, —11]
Layer 8 Limestone and dolomite 400 [—14,-13,-12]
Layer 9 Granite and metamorphic 300 [—16,—15, —14]
T(x): °C Crracer(x): mol/L
230.0 20.0 60.0
177.5 15.0 45.0
125.0 10.0 30.0
72.5 5.0 15.0
a) 20.0 b) 0.0 c) 0.0

Fig. 6.1: Distribution of (a) temperature, (b) tracer, and (c) pressure at the first time step.

T(x): °C 230.0 Ctracer(X): mol/L 0.0 P(x): MPa 60.0
177.5 15.0 45.0
125.0 10.0 30.0
72.5 5.0 15.0
a) 20.0 b) 0.0 c) 0.0

Fig. 6.2: Distribution of (a) temperature, (b) tracer, and (c) pressure at the last time step.

Neural Network Surrogate

For the purpose of inverse analysis and MCMC approach, the model is evaluated multiple
times. Consequently, the development of a surrogate model significantly accelerate the
analysis. We train a deep neural network (DNN) in order to perform the same task as the
PDE solver. For the surrogate model we choose an image-to-image 3D Convolutional Neural
Network (CNN) with encoder decoder architecture because it performs well for simulating
contaminants transports in the subsurface'®!%. The input of the model is a 6 channel of 10
x 10 x 30 voxels, consisting the initial pressure, initial temperature, initial tracer
concentration, permeability, porosity, and heat flux. For using heat flux as a boundary
condition, the heat flux input is a 3D matrix with zero values everywhere except the bottom
where the value of the boundary heat flux is given. The permeability in the vertical direction
is defined as the 1/10 of the horizontal permeability and therefore the vertical input was not
as an input as it would be redundant.
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The kernel of the CNN model consists of 3 x 3 x 3. For capturing physics in teh dataset, the
number of layers in the encoder part is increased while the number of voxels is decreased
after every convolution. The proposed architecture is based on the DenseNet which transfer
the features from all the proceeding layers to facilitate back propagation of gradient
information'®. The softplus is used for activation function. The decoder part takes the same
steps as the encoder but in a reverse order; resultingly, the output matrices have the same
dimensions as the input. The initial number of filters after the first convolution and the rate
of increase of the filters after each following convolution for the encoding are two hyper-
parameter that are investigated for their influence in the model accuracy. The L1 norm is used
as the loss/cost/objective function for training the model.

The output of the model is 72 channel 10 x 10 x 30 voxels, which consists of pressure,
temperature, and tracer concentration for 24 time-steps corresponding to the PFLOTRAN
output timesteps. A different approach would be a auto-regressive approach that would
predict the features for the next time steps and use them as input for the next time-step. The
approach of using all the time-steps as the output instead of advancing the CNN for one time-
step each time is selected because the outputs can have a varying time interval without
cumulative errors.

The output data consist of three quantities of interest that have significantly different order
of magnitude, for this reason a normalization of the data is performed, all input and output
values are divided by their corresponding standard deviation. Furthermore, the quantities of
concentrations of the tracers are more difficult to predict and more localized; therefore, there
are weighted differently for the regions where significant changes are observed in the
domain. The weight of the localized L1 norm of the tracer W¢ is an additional hyperparameter
that was tuned during the study to achieve the best performing surrogate model. The ADAM
algorithm is used to optimize the CNN model because it is good at searching a wide range
of hyperparameters'*®. The additional hyperparameters are the learning rate and the weight
decay of ADAM algorithm. A grid search was performed for the hyperparameters and is
listed in Table 6.3.

Table 6.3: Hyperparamater range for the optimization of the CNN model.

Parameter Name Values

Initial layer number [64, 128, 256, 512]
Growth rate (32, 64, 128]
Learning rate [le-4, le-5, 5e-6, le-6]
Weight decay [le-4, 1e-5, 1e-6]
Tracer weight [1, 10, 50, 100, 200, 500]

MCMC analysis

The main objective of this step is to estimate porosity and permeability of model layers using
temperature, tracer concentration, and pressure as proxies of measurements. For an efficient
sampling of model parameters, the No-U-Turn Sampler (NUTYS) is selected for the MCMC
framework!?’, which is a gradient-based modified Hamiltonian Monte Carlo (HMC)
approach!'®. For MCMC, a PFLOTRAN forward solution is used as the ground truth. The
data/measurement are the surface temperature, the heat flux, and the initial temperature
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gradient. Additionally, we consider that the time-series for the temperature, tracer
concentration, and pressure for voxels are scarcely distributed in three vertical columns. This
sampling immitates the use of three vertical wells measuring required information.
Therefore, the unknown parameters that we try to obtain through inference are the porosity
and permeability.

The permeability and porosity realizations for each layer are generated using the uniform
distribution with their corresponding range. Subsequently, the values are normalized and
formed as the input of the trained CNN model. Next, a normally distributed random noise is
added to the model outputs to capture the model and measurement errors. The final outputs
are conditioned to the solution of the ground truth obtained. Finally, MCMC sampler is used
to obtain the posterior distribution of the inputs. Note, experiments are performed on
hardware with the following specification: Intel Xenon Gold 6126 CPU (2.6 GHz), 60GB
RAM, and Nvidia V100 GPU with 16GB vRAM.

Results

CNN surrogate training

The 2,000 simulation results are used for the training and evaluation of the surrogate model.
After the generation of the input-output pairs, the 1,600 of them are used for training and the
remaining 400 pairs serve as the testing set. The evaluation of the model is based on the R?
value (Fig. 6.3). Training and testing scores are close 1 in the best performing CNN models
(Table 6.4). The optimal hyperparameters for the best performing models are listed in Table
6.4.

1.00
0.95
0.90
& 085
0.80 4 — train: 0.995
0.757 4 ---- test: 0.996
100 200 300 400
Epoch

Fig. 6.3 High and consisting training and testing scores suggests a well trained model.

Table 6.4: The best performing models and their corresponding hyperparameters.
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R? R? Initial | Growth | Learning | Weight | Tracer
Train Set | Test Set | number rate rate decay | weight
0.995 0.996 512 128 10~ 10-° 100
0.994 0.995 256 128 104 105 100
0.994 0.995 512 128 10~4 106 100
0.993 0.994 256 64 104 10-° 100
0.992 0.994 256 64 104 106 100
0.992 0.994 512 64 104 10~° 100
0.992 0.994 256 128 1074 10-6 100
0.993 0.994 512 64 104 106 100
0.992 0.993 512 128 10~ 10~° 200
0.992 0.993 512 64 104 10—° 200
T(x): °C Ctracer(X): mol/L

230.00 60.00

203.75 17.50 52.50

177.50 15.00 45.00

151.25 12.50 37.50

125.00 10.00 30.00

98.75 22.50
72.50 15.00

46.25

20.00

20.00 0.30

10.00

0.00

-10.00

-20.00 h) -0.30 -3.00

Fig. 6.4: Distribution of temperature by PFLOTRAN (a), ML model (d), and PFLOTRAN-
ML model (g); tracer distribution by PFLOTRAN (b), ML model (e¢), and PFLOTRAN-ML
model (h); pressure distribution by PFLOTRAN (c), ML model (f), and PFLOTRAN-ML
model (i) after the last time step.

The CNN model is only trained for 400 epochs because after it, the R? scores of training and
testing reaches a plateau (Fig. 6.3). The optimal initial number of channels and the growth
rate are relatively large compared to models with similar architecture used for other tasks.
The potential reasons are relatively larger outputs and more time steps in the outputs.
However, similar R? values for training and testing sets indicate that the model is not
overfitted instead of complexity in the dataset (Fig. 6.3). The minimum difference between
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the prediction of temperature, tracer, and pressure by PFLOTRAN and ML model also
suggests a well trained ML model (Fig. 6.4).

MCMC Inference

We draw a total of 6000 samples and discarded 2000 samples in the burn-in stage; therefore,
the estimation of the parameters relies on 4000 samples. MCMC inference of porosity and
permeability values for the first three (bottom) layers is consistent (Figs 6.4—6.5). However,
there are discrepancies in the porosity and permeability prediction for top six layers. Note,

the first layer has high tracer concentration while top layers have low tracer concentration.
Layer 1 Layer 2 Layer 3

1

400 - . 1

200 ~ - b

Counts

T T T
Layer 4 Layer &6

400 +

200 ~

Counts

Layer 7

400 A

200 ~

Counts

0 - T T T T | T T T T T T T :
-19 -17 -15 -13 -11 -9 -19 -17 -15 -13 -11 -9 -19 -17 —-15 -13 —-11 -9

log10k,m? logi0k,m? logi0k,m?

Fig. 6.5: Histograms of assimilated permeability on each layer. The green shaded area
indicates the range of initial guess and the dotted line the ground truth.

The discrepancy of the real value and the estimated value for the higher layers can be
explained by the fact that the tracer plume is not reaching above the third layer and therefore
there is no information that can be assessed by the model. It is worth noting that for the first
layer for which there is the most flow of the tracer the standard deviation of the estimated
parameters are in the order of 0.05 and 0.01 for permeability and porosity accordingly. The
difficulty of the MCMC method to estimate the parameters of the higher layers shows the
importance of the correct regularization as the tracer moves upwards is diluted and the
concentration decreases by an order of magnitude. Therefore, if there was no normalization
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the MCMC would not be able to provide any reliable information for the second and third
layer.

Layer 1 Layer 2 Layer 3
400 - - -
751
et
[
3
O 200 4 - -
U T T T T T T T T T
Layer 4 Layer 5 Layer 6
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| I |
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Fig. 6.6: Histograms of assimilated porosity on each layer. The green shaded area indicates
the range of initial guess and the dotted line the ground truth.

The NUTS sampling uses the information of gradient facilitating the faster convergence of
the distribution. The main advantage of the use of the neural network surrogate model is the
efficient calculation of every iteration as the average time for sampling is 1.5 secs.
Additionally, the PFLOTRAN or other subsurface simulators are not developed to leverage
the GPU architecture; thereby, its integration with probabilistic programming platform
would be more challenging. The use of open-source and off-the-self solution for both the
surrogate model and the MCMC inference do not only decrease the development time but
also increase the efficiency as the implementation have been developed and maintained to
fully utilize modern hardware.

Conclusions

For this study the use of MCMC with NUTS sampling was proposed to infer permeability
and porosity of a geothermal reservoir. The model used was a surrogate CNN trained on data
generated by PDE-based model. For the inference of the parameters an example of the
generated dataset was used as ground truth and the model is conditioned to data on virtual
vertical wells with sparse information. The analysis concludes in the following finding:
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e The CNN-based surrogate model can reproduce the results of the PDE-based solution
of both thermal and advection process.

e The MCMC with the use of surrogate model can evaluate the unknown parameters if
enough information is provided, as it happens for the first layers.

e For the areas where there is no change of concentration and temperature the inference
of the permeability and porosity is not reliable, as the inverse problem is ill-posed.

e The use of surrogate model can significantly decrease the computation time as the
complex PDE-based model is evaluated only 2000 times which is the number of
realizations needed for the training of the model.

In this study it is shown that CNN surrogate model can reproduce PDE-based solutions and
can be used for inference, they have the same limitations with the PDE-based solutions. In
our case, the area where there was not significant movement of the tracer it was possible to
retrieve the rock parameters reliably. The gain of the proposed workflow is that the time
consuming PDE-based simulation are used to explore the parameter space to train the model
and then is substituted with the faster CNN-based to sample the unknown parameters which
is used more time and the gradient information is needed.

Chapter 7: INGENIOUS and GeoDAWN Data
Processing

INGENIOUS

The U.S. Department of Energy’s Geothermal Technologies Office has collected plenty of
data through INnovative Geothermal Exploration through Novel Investigations Of
Undiscovered Systems (INGENIOUS) Project with an aim to accelerate discoveries of new,
commercially viable hidden geothermal systems in the Great Basin, NV, US. The
INGENIOUS Project has released its data in 2022 on the geothermal data repository
available at (https:/gdr.openei.org/submissions/1391)!%°. The dataset includes a total of 24
geological, geophysical, and geochemical attributes. Data counts for each attribute
significantly vary. Some attributes have too fine resolution data while others are too sparse,
and others are in between two. The main purpose of this task is to bring them in the same
scale so that ML practitioners can load the data and use it for their purpose without going
through excruciating preprocessing steps. We curated and processed the dataset. Next, we
some time used only inverse distance weighting (IDW) or use both NMFk and IDW
algorithms for predicting data in unsampled locations.

This regional scale dataset provides information for predicting geothermal favourability in
the Great Basin region. The geochemical attributes include AlI**, BY, Ba**, Be*", Br , Ca*",
chalcedony, Cl |, HCO3, K, Li", Mg?, Na', quartz, total dissolved solids (TDS),
groundwater temperature. These data are heavily sparse. To remove the sparsity, we used
NMFk followed by IDW for interpolation. The common locations were 14,341 geochemical
data locations in the Great Basin®¢. The scaled data are shown in Figs 7.1-7.4.

Other geological and geophysical attributes include depth to the basement, dilation rate,
magnetic anomaly, seismicity (N50 alpha 107'%/yr), strain rate, shear rate,
temperature@2m, and heat flow (Figs 7.5-7.6). Depth to the basement, dilation rate,
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magnetic anomaly, seismicity (N50_alpha 107'?/yr), strain rate, and shear rate contain fine
resolution data while temperature@2m and heat flow contains both coarse resolution and
sparse data (Figs 7.5-7.6). We applied IDW to upscale the fine resolution data and downscale
the coarse resolution data (Figs 7.5-7.6).

AP+ (PPM) B* (PPM) Ba* (PPM) Be* (PPM)

Flg 7. 1 Top and bottom rows represent 1ngen10us and 1nterp01ated data respectlvely Here
each attribute was fine scaled applying IDW on NMFk prediction.

Fig. 7. 2 Top and bottom rows represent ingenious and 1nterp01ated data, respectlvely Here
each attribute was fine scaled applying IDW on NMFk prediction.
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F ig. 7.3: Top and bottom rOws representmgemous and 1nterpolated data, respectlvely Here,
each attribute was fine scaled applying IDW on NMFk prediction.

F ig. 7. 4 Top and bottom rOws representmgemous and 1nterpolated data respectlvely Here,
each attribute was fine scaled applying IDW on NMFk prediction.
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ndependent Seismicity (-)

Fig. 7.5: Top and bottom rows represent ingenious and interpolated data, respectively. Here,
each attribute was upscaled applying IDW.

Strain rate (-) 1 Shear rate (-) Temperature at 2m (-) ‘ Heat flow (-)

Fig. 7.6: Top and bottom rows represent ingenious and interpolated data, respectively.
Applying IDW, strain and shear rates were upscaled while temperature at 2m depth and heat
flow were fine scaled.

GeoDAWN

A recent interagency agreement—Geoscience Data Acquisition for Western Nevada
(GeoDAWN)—unites EERE’s Geothermal Technologies Office (GTO) with the USGS
Earth Mapping Resource Initiative (Earth MRI) and 3D Elevation Program'!®. The purpose
of this initiative is to collect LIDAR and electromagnetic data for finding hidden geothermal
resources and critical minerals. Next, use advanced machine learning algorithm to analyze
the data and to discover new geothermal and critical mineral resources. So far, this project
disseminated LiDAR point cloud (LPC) within Nevada and parts of CA region (Fig. 7.7).
Such a dataset has a huge potential to reduce the risks and costs associated with geothermal
exploration and production.

72


https://www.zotero.org/google-docs/?dujjAf

For an appropriate utilization of this dataset, we need to create labels of favorable geothermal
settings with corresponding LPC data. Labeling such a dataset is a non-trivial task because
they are huge (in terabytes scale) and contains in 1000s of tiles. We have to sort the tiles in

an

orderlerly fashion and find their neighboring tiles. Then, label each tile whether they

contains favorable geothermal settings. For this purpose, we wrote a python script that can

sort the tiles and find their neighboring tiles.

Fig. 7.7: Each color represents a unique flight line duration that was used to collect lidar data
at different times (a) and intensity distribution of the collected lidar data (d).
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