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Abstract

The separation of actinium (**®Ac) from radium (***??®Ra) on cation exchange resin with a
diethylenetriaminpentaacetic acid-lactate buffer solution is demonstrated with series of
columns. High yield, high radiopurity (~100%) separations of Ac from Ra are feasible
with small columns in biologically compatible conditions and pHs. As Ac is eluted before
Ra on these columns, further studies were performed to determine if this separation system
could be applied to Ra/Ac isotope generators, but these were not successful. The
separations presented in this work may be relevant for radiopharmaceutical purifications

of 22> Ac which is typically obtained from its ’Ra parent isotope.

Keywords
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Introduction

Actinium-225 is a candidate for Targeted Alpa Therapy (TAT) for cancer treatment [1] [2]
[3] [4]. This isotope is typically derived from the decay of *°Th (**Th — ?*°Ra — ?°Ac).
As this method relies on a significant supply of **Th, other methods for producing **>Ac

are under investigation. Typically, these methods focus on separating *>Ac from the ?>°Ra
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parent [3] as this is a route to isotopically pure ***Ac without contamination of longer-lived

Ac isotopes, such as **’Ac.

Therefore, it is important to develop separations that not only separate Ra from Ac, but do
so under conditions compatible with the end application of delivery into patients. While
there are many established ways of separating Ra and Ac, most of these rely on high acid
concentrations [1] [2] [3] [4], which is not optimal for radiopharmaceutical applications.
Along with separations that do not require concentrated acids, there is research into
225Ra/**Ac isotope generators, which would not only require a biologically compatible
eluant but also would require Ra to be retained by the resin while Ac elutes, which is the

reverse elution order compared to many procedures in the literature [1] [2] [3] [4].

One promising avenue for such separations is the chelator diethylenetriaminpentaacetic
acid (DTPA), Fig. 1. The use of DTPA in medicine is well established. It has approval
from the Food and Drug Administration (FDA) to treat internal radioactive contamination
[5] and DTPA derivations have been used for in vivo studies with **°Ac for TAT

applications [6] [7].

Fig. 1 Diethylenetriaminpentaacetic acid, the chelating ligand used in this work.

The use of DTPA to separate actinides and lanthanides based on pH is well established in
both liquid-liquid extraction and column chromatography separations [8] [9]. These
separation systems typically rely on a buffer of lactic acid, an organic phase (or resin) with
a cation exchanger and DTPA to selectively chelate the desired actinide or lanthanide,
pulling it into the aqueous phase. Such separation should be applicable for Ac due to its
similarities to other trivalent actinides and lanthanides. Furthermore, a similar concept
utilizing DTPA and cation exchange resin has been demonstrated for the separation of

?23Ra from its decay daughters, >!'Pb/?!'Bi[10]. Critically, in this separation radium is not
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eluted from cation exchange resin using DTPA solutions with a pH < 9 [10], which is much
higher than the pH levels for extraction of the trivalent actinides and lanthanides (pH 3 —
4). This was utilized for liquid-liquid separation of Ra and Ac with buffered
monochloroacetic acid and DTPA in Ref. [11], though the exact pH was not specified.
Therefore, based on the literature data for trivalent actinides and radium, it should be
feasible to separate radium from actinium with buffered DTPA solutions and cation

exchange resin.

Studies were undertaken to assess whether Ac and Ra could be effectively separated with
cation exchange resin using DTPA in a lactic acid/sodium lactate buffer solution. Column
studies were performed to demonstrate conditions for a high yield, high purity separation
of Ra and Ac. Using the parent-daughter pair ***Ra/**®Ac, the separations were tested for

applicability to isotope generator systems.

Experimental

Solutions were prepared from nitric acid (Ultrex II, J. T. Baker), L-(+)-lactic acid (>98%,
Sigma), sodium L-lactate (>99.0%, Sigma) and diethylenetriaminepentaacetic acid (=99%
titration, Sigma). Millipore Milli-Q deionized water (18.2 MQ cm) was used as needed for
dilution. The solutions used in this work are shown in Table 1. To determine the pH of the
solutions, a Mettler Toledo SevenExcellence Multiparameter system with a Mettler Toledo

InLab Expert Pro-ISM Sensor was used; no pH adjustments were performed.

Table 1 DTPA-Lactate buffer solutions used for column elutions.

Solution | [Latic Acid] [Sodium pH Total [DTPA] (M)
# M) Lactate] (M) [Lactate] (M)
1 0.96 0.04 ~3 1 --
2 0.02 0.98 4.5-4.7 1 0.05
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Cation exchange resin (AG 50x12, 100-200 mesh) was cleaned and stored in dilute HCI.
All columns were 2 mL snap-tip from Eichrom Technologies and packed under gravity
flow with either 1.8 mL or 1 mL resin. Pre-packed 2 mL DGA resin (Eichrom

Technologies, 50-100 um) was used as received.

Initial experiments were conducted with ?>*Ra and **®Ac to simplify the counting. Later
studies were performed with the parent-daughter pair ***Ra/**®Ac. All isotopes were
separated from long-lived decay chains (**'Pa for *Ra; **Th for *Ra/**® Ac) and prepared
in 0.2 M HNO:s solutions for column studies. Activity measurements were performed with
an HPGe gamma-ray detector (ASPEC multi-channel analyzer, Ortec NIM electronics).
Peak fitting was performed with Maestro software (Ortec). Samples were counted relative

to the load solution (or a standard solution) in an identical geometry.

For all measurements, >*Ac was identified based on its 911 keV gamma-ray emission,
which has no interferences from either of the Ra isotopes (Table 2). The main gamma-ray
emission for ?>’Ra is at ~270 keV, which has an interference from a minor emission from
228Ac.  To resolve this, all experiments with these isotopes were counted twice,
immediately after the experiments to quantify the **®Ac, and then again 72 hours later, to
allow for the decay of ***Ac to background and quantification of ***Ra. All counts were
relative to separate **’Ra and **®Ac standards. Similarly, since ***Ra has no detectable
gamma-ray emissions, samples containing both *?*Ac and ***Ra were also counted
immediately after elution and then again 72 hours later. In this case, the second count

allowed the quantification of *®Ra via the in-growth of **%Ac.

Table 2 Relevant nuclear decay data for the isotopes used in this work, including half-

lives, decay mode, and significant gamma-ray energies and intensities [12].

Isotope Decay Mode Half-Life Photopeak and Intensity
22Ra o 11.44d 269.463 keV (13.3%)
28 Ac B 6.15h 270.245 (3.46%)

911.204 (25.8%)
22%Ra B 575y --
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Initial Column Studies

The first column studies were performed with both ?**Ra and ***Ac. First, a load solution
containing both isotopes was prepared in 2 mL 0.2 M HNOs. This was loaded onto a 1.8
mL AG 50x12 column (Column 1) that had been preconditioned with 6 mL 0.2 M HNOs.
The load fraction was collected, followed by 4 mL of a lactate buffer (Solution #1), 12 mL
of a DTPA-lactate solution (Solution #2), and finally 8 mL 4 M HNOs;. The flow rate of
the columns was 0.3 mL/min. All fractions were 2 mL in volume. As mentioned
previously, samples were counted twice: immediately after elution and again 72 hours later.
The second column (Column 2) was nearly identical, but with a 1 mL load solution and 1
mL column volume. It was conditioned with 4 mL 0.2 M HNOs3 and eluted with 2 mL
Solution #1, 6 mL Solution #2, 5 mL 4 M HNOs. All fractions were 1 mL and were counted

as described above.

Column Studies — DTPA Removal with DGA Resin

For the next column study, Column 2 was repeated identically (1 mL load; 1 mL bed
volume) and the 3 highest activity *?®Ac fractions (containing ~85-90% of the activity)
were combined, counted in the 3 mL geometry and then acidified with 5 mL 12 M HCl to
a final concentration of 7.5 M HCl (total volume 7 mL). A 2 mL pre-packed DGA cartridge
was conditioned with 8 mL 8 M HCIl. The column was conditioned and eluted using an
Eichrom 12-hole polycarbonate vacuum box; the eluent flow rate was ~1 mL/min (~5
inHg). The acidified ??®Ac solution was loaded; the load fraction was collected (7 mL)
followed by 6 mL 8 M HCl and 18 mL 0.1 M HCI. All fractions were 3 mL and were
counted relatively to the initial solution before acidification (3 mL geometry as described
above). The load fraction was counted relative to the initial solution after acidification (7
mL) to ensure the geometry was consistent. Samples were counted relative to the load
solution before acidification (3 mL) or after (7 mL) to ensure that every sample could be
compared to the load solution in the same geometry. A second DGA column study was
performed identically to the first except the 0.1 M HCI was replaced with Solution #1
diluted by half (0.48 M HLa, 0.02 M NaLa). Finally, a third column study was conducted
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by repeating the cation exchange column identically to the first two, followed by
acidification with 0.75 mL conc. HNO3 (to a final concentration of 3.2 M HNO3). The
DGA column was conditioned with 8 mL 3 M HNOs;; the load fraction was collected
followed by 6 mL 0.3 M HNO3 and 12 mL ~0.5 M HLa (Solution #1 diluted by half).

Column Studies — Isotope Generators

Based on the results from the initial column studies and Ref. [10], an isotope generator
system was tested using this separation system. For these studies, two columns were
prepared, one with 1.8 mL AG 50x12 resin, and the other with 1 mL AG 50x12 resin. The
columns were conditioned with 6 mL and 4 mL of 0.2 M HNOs, respectively. Load
solutions of ?®Ra/**®Ac, in equilibrium, were prepared in 200 uL 0.2 M HNOs. Counting
standards were prepared in 200 pL, 1 mL and 2 mL sizes. Each column was loaded and
the empty tubes rinsed with 100 pL 0.2 M HNOs;. The load fraction and rinse were
collected followed by two fractions of Solution #1, six fractions of Solution #2 and another
two fractions of Solution #1. Fractions for the 1.8 mL column were 2 mL in volume; for
the 1 mL column, fractions were 1 mL in volume. After loading, the columns were eluted
24 hours later and then every 48 hours for one week. These elutions consisted of one
fraction of Solution #1 (what remained on the column from the previous elution), followed
by six fractions of Solution #2 and two fractions of Solution #1. The experiment was
stopped after 7 days due to **®Ra breakthrough. For all isotope generator studies, the

activity of 2® Ac was ~100 cps and the detection limit for ?*Ra was ~0.04 cps.

Results and Discussion

The elution of Column 1 and Column 2 are shown in Fig. 2. Both **Ac and ?**Ra are
retained by the resin in dil. HNOj3 and the lactate buffer (pH ~3) with no DTPA. When
DTPA is added to the eluant, Ac is selectively extracted, leaving Ra on the resin. Finally,
Ra can be eluted with 4 M HNOs. For Column 1 (Fig. 2a), the yield of *®Ac in the DTPA-
lactate fractions is 84 + 2%, with the remainder eluting with the ?*’Ra fractions; there is no

detectable breakthrough of ***Ra in the **Ac fractions (~100% radiochemical purity). For
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Column 2 (Fig.2b), the yield of 2*Ac in the DTPA-lactate fractions is ~100% and as before
there is no detectable breakthrough of ***Ra in the **®Ac fractions. The recovery of **’Ra
for both columns is ~100%. The elution is similar between the 1 mL and 2 mL columns,
the elution band for *?®Ac is slightly sharper on the column with less resin, as expected,
and this results in less tailing into ***Ra fractions, as indicated by the yields for each

column.

90 + Eﬁgﬂ Lactate DTPA-Lactate 4MHNO, [—®— 2280¢
3

80 +

70

L I
A 0 2 4 6 8 10 12 14 16 18 20 22 24 2
Volume (mL)

228
80 22N lLactate|  DTPA-Lactate 4AMHNO, |[—=—%°Ac
3

' L T T rTTrTrd L L L L
B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Volume (mL)
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Fig. 2 Cation exchange separation of **Ac and ?**Ra. Error is from counting statistics,
some error bars are smaller than the data points; lines are to guide the eye. (a) Column 1
— bed volume 1.8 mL; all fractions 2 mL. (b) Column 2 — bed volume 1 mL, all fractions

1 mL.

The chelation of trivalent actinides and radium with DTPA has been thoroughly studied in
the literature [8] [9] [13] [14] [15] [16] [17]. The interaction between DTPA and these
elements is highly pH dependent, which allows for specific separations, such as the
separation of Am and Cm from the lanthanides separations [8] [9]. While the heavier
trivalent actinides (Am, Cm, Cf) can be extracted with DTPA at pH values of 3 — 4 [16],
Ac is more basic and requires higher pHs for effective chelation. For the synthesis of Ac-
DPTA complex for medical studies, pH ~5 is utilized [6]. Radium is even more basic than

Ac and requires higher pH values to extract with DTPA, typically pH >8 [10] [18].

In this work, it was desirable to use a low pH to maximize the retention of Ra, while still
allowing for the elution of Ac, as such conditions would be most favorable for an isotope
generator. A slightly lower pH (3-3.5) was tested for Ac elution but no *Ac was eluted
under these conditions. Therefore, pH ~4.5 was used for column separations as this pH
was sufficiently high to allow for Ac elution in a reasonable volume while still low relative
to the ideal pH to elute Ra. Hydrolysis is not a concern for these elements, Ac does not
hydrolyze until pH ~9 [19] and, while there is a lack of hydrolysis studies for Ra, it is more
basic than actinium [21] and therefore would hydrolyze at higher pHs.

In the load solution and lactate buffer, both Ra and Ac (Ac®" and Ra**, respectively) retain
on cation exchange resin. The extracted species of Ac is likely Ac(DPTA)* based on
studies with other trivalent actinides and lanthanides [27]. DTPA is fully deprotonated in
order to have a strong octadenate interaction with Ac. Finally, in 4 M HNOs, Ra forms
neutral nitrate species and therefore is eluted from the column along with any residual Ac,

which is also a neutral species at this concentration.

As mentioned previously, many literature separations of Ra and Ac utilize high acid
concentrations (>1 M HNO;) and require Ra to be eluted first in chromatography

separations [1] [2] [3] [4]. These methods are effective but not optimal for
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radiopharmaceutical applications. High acid concentrations cannot be used directly for
radiopharmaceuticals [20], requiring additional purification steps or dilution with large
volumes. Furthermore, the elution order is critical for isotope generator applications,
where the medically relevant *>Ac would be produced from the decay of *>’Ra. For a
resin-based isotope generator it is critical that the parent isotope can be retained on the
resin while only the daughter isotope is eluted. This separation scheme allows for the
elution of Ac in biologically friendly pH conditions, and Ac is eluted prior to Ra, which

indicates potential for an isotope generator application.

If DTPA is undesired in the final Ac sample, it can be readily removed with DGA resin as
shown in Fig. 3. From the cation exchange column, the Ac fractions with DTPA are
acidified to a sufficiently low pH to prevent the chelation of Ac by DTPA. The solution is
then passed through a DGA resin cartridge which retains Ac and allows DTPA, lactate and
other salts, such as Na, to pass through the resin. Actinium can be stripped quantitatively
(100% yield) in a variety of dilute acids including HLa and HCI, allowing for optimization
of the procedure for the final application as desired. The removal of DTPA was assessed
by residue mass: the **Ac fractions from the DGA columns were dried and compared to
an identically run “blank” column (without a load solution). For all of the DGA columns,
there was no excess residue as compared to the blank within the measurement limits (0.1
mg). The mass of DTPA in the *?®Ac load solution for these columns is 59 mg, therefore
excess DTPA would be detectable, and the columns demonstrate a reasonably good
removal of the chelator. While the separation is effective whether the solution is acidified
with HCI or HNOs (Fig. 3), there are advantages and disadvantages to using either acid.
For the HCl separation, a higher concentration of acid is required for the load solution and
the wash (~8 M HCIl vs. ~3 M HNOs3) which leads to a very low pH (< 0) for the subsequent
228 Ac fractions. However, trace nitrates are undesirable in many applications as they are
more difficult to remove than chlorides, therefore separation in HCI media, followed by
neutralization, could be preferable for some applications. For the separation in HNOj3, the
pH of the eluted **®Ac fractions is ~1, which would require less base to neutralize as
compared to the HCIl separation, which may also be advantageous under some

circumstances.
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Fig. 3 The elution of **Ac from DGA from a (a) 7.5 M HCI load solution with 8 M HCI
wash and (b) 3.2 M HNO:; load solution with a 0.3 M HNOj3 wash. Error is from counting

statistics, some error bars are smaller than the data points; lines are to guide the eye.

Based on the initial column studies, further experiments were conducted to assess whether
this separation system would be applicable to an isotope generator to produce Ac from Ra.
A generator relevant to radiopharmaceutical applications would be based on the

225Ra/**’ Ac parent-daughter pair, but these isotopes are difficult to produce and were not

10
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available for this study. Therefore, the *?®Ra/**®Ac parent-daughter pair, which is readily
obtained from "™ Th, was used as a surrogate. While the 1 mL column performed better
than the 1.8 mL column in the initial test, both sizes were used in the isotope generator
studies. This is because resin degradation in isotope generators, particularly those with
high levels of a activity, can reduce the extraction on the resin and larger bed volume can

be useful to enhance retention.

The results from the isotope generator studies are shown in Fig. 4. Each column was loaded
on Day 0, with 200 pL 0.2 M HNOs and one fraction of Solution #1 were collected as a
load fraction and wash, respectively, before the elution was continued as shown in Figs. 4
and 5. The load fraction and wash are not plotted to ensure all elutions could be compared
on the same axis (as there was no load fraction or wash required for later elutions) and
neither had detectable activity. The column was stored in Solution #1, which is the first

fraction collected (with no activity) in all elutions.

11
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Fig. 4 ??®Ra/**® Ac isotope generator studies using cation exchange resin and DTPA-
lactate solutions. Error is from counting statistics, some error bars are smaller than the
data points; lines are to guide the eye. (a) Column 1 — bed volume 1.8 mL; all fractions 2

mL. (b) Column 2 — bed volume 1 mL, all fractions 1 mL.
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These studies were not successful over a reasonable duration for Ra/Ac isotope generator
applications. As the half-life of **Ra is 15 days [12], an isotope generator would need to
last at least one half-life of the parent to have any practical use and an even longer lifetime
(~4-5 half-lives) to be comparable to current nuclear medicine generators, e.g. *Mo/”*™Tc
[21]. The 1 mL isotope generator tested had breakthrough of *Ra on only the second
elution (Day 3), amounting to ~0.3% of the total activity and higher breakthrough on the
third elution (~4%). The 2 mL isotope generator did not have break through until the third
elution (Day 5) with the elution of ~1% of the total *®Ra activity. The breakthrough is not
due to resin degradation or capacity as these columns are relatively low activity (<1000
dps) and the radionuclides are carrier-free. Therefore, the breakthrough is due to slow

228Ra elution in the DTPA-lactate solution.

Reference [10] demonstrated a >*Ra/*'?Pb generator based on elution of the daughter by
DTPA at pH 5.5. The generator described in this work had a useful lifetime of 2 weeks
based on the half-lives of the isotopes studied, rather than breakthrough. The difference in
behavior as compared to the generators studied in this work is likely explained by the
solution containing DPTA. The eluant used in Ref. [10] is 80% methanol, which has
different hydrating properties and increases the extraction of Ra on cation exchange resin
above what is possible at similar concentrations of HNOj3 in purely aqueous solutions [10]
and therefore preclude Ra breakthrough for longer durations. Furthermore, the lactic acid
used in this work is more complexing than HNO3, which was used to adjust the pH in Ref.
[10]. However, methanol itself is highly toxic, and methanolic-nitric solutions are also
explosive and highly corrosive; such solutions require special handling and are problematic

for radiopharmaceutical applications.

Conclusions

This work demonstrates a high yield, high radiopurity separation of Ac from Ra with
recoveries of ~100% of both isotopes and no detectable Ra in the Ac fractions using DTPA-
lactate solutions. While attempts to utilize this separation for isotope generators were

unsuccessful due to early 2*Ra breakthrough, the successful column separation is viable

13
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for many applications. In particular, the separation of Ra and Ac is important for the
production of #*°Ac, a potential isotope for cancer treatment. Development of procedures
for the separation of these elements without the need for strong acids is critical for
separation methods appropriate for radiopharmaceuticals, which must be safe for use in
humans. There are environmental applications for such columns as well, as the separation

of ?2Ra and *?®Ac is important for the characterization of **Ra in water [18].

Future work is needed to optimize this separation system for isotope generator applications.
Based on the results from this work as compared to Ref. [10], this will focus on the buffer
solutions to develop an solution that is biologically-compatible, allows for elution of Ac in

a small volume, and a can sustain more elutions before Ra breakthrough.
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