

Cation Exchange Separation of Radium and Actinium using Lactic Acid-DTPA Buffer

J Despotopoulos, K Kmaka, T Huynh

November 2025

Journal of Radioanalytical and Nuclear Chemistry

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1 Cation Exchange Separation of Radium and Actinium

2 using Lactic Acid DTPA Buffer

3 Kelly N. Kmak¹, John D. Despotopoulos¹, Tony L. Huynh¹

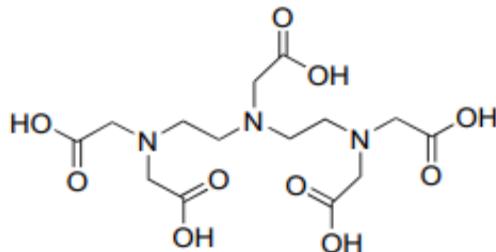
*⁴1Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore,
⁵CA, USA*

6 Abstract

7 The separation of actinium (^{228}Ac) from radium ($^{223,228}\text{Ra}$) on cation exchange resin with a
8 diethylenetriaminopentaacetic acid-lactate buffer solution is demonstrated with series of
9 columns. High yield, high radiopurity (~100%) separations of Ac from Ra are feasible
10 with small columns in biologically compatible conditions and pHs. As Ac is eluted before
11 Ra on these columns, further studies were performed to determine if this separation system
12 could be applied to Ra/Ac isotope generators, but these were not successful. The
13 separations presented in this work may be relevant for radiopharmaceutical purifications
14 of ^{225}Ac which is typically obtained from its ^{225}Ra parent isotope.

15 **Keywords**

16 Radium; actinium; isotope generator; cation exchange; DTPA


17 Introduction

18 Actinium-225 is a candidate for Targeted Alpha Therapy (TAT) for cancer treatment [1] [2]
 19 [3] [4]. This isotope is typically derived from the decay of ^{229}Th ($^{229}\text{Th} \rightarrow ^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$).
 20 As this method relies on a significant supply of ^{229}Th , other methods for producing ^{225}Ac
 21 are under investigation. Typically, these methods focus on separating ^{225}Ac from the ^{225}Ra .

22 parent [3] as this is a route to isotopically pure ^{225}Ac without contamination of longer-lived
23 Ac isotopes, such as ^{227}Ac .

24 Therefore, it is important to develop separations that not only separate Ra from Ac, but do
25 so under conditions compatible with the end application of delivery into patients. While
26 there are many established ways of separating Ra and Ac, most of these rely on high acid
27 concentrations [1] [2] [3] [4], which is not optimal for radiopharmaceutical applications.
28 Along with separations that do not require concentrated acids, there is research into
29 $^{225}\text{Ra}/^{225}\text{Ac}$ isotope generators, which would not only require a biologically compatible
30 eluant but also would require Ra to be retained by the resin while Ac elutes, which is the
31 reverse elution order compared to many procedures in the literature [1] [2] [3] [4].

32 One promising avenue for such separations is the chelator diethylenetriaminopentaacetic
33 acid (DTPA), Fig. 1. The use of DTPA in medicine is well established. It has approval
34 from the Food and Drug Administration (FDA) to treat internal radioactive contamination
35 [5] and DTPA derivations have been used for *in vivo* studies with ^{225}Ac for TAT
36 applications [6] [7].

40 **Fig. 1** Diethylenetriaminopentaacetic acid, the chelating ligand used in this work.

41 The use of DTPA to separate actinides and lanthanides based on pH is well established in
42 both liquid-liquid extraction and column chromatography separations [8] [9]. These
43 separation systems typically rely on a buffer of lactic acid, an organic phase (or resin) with
44 a cation exchanger and DTPA to selectively chelate the desired actinide or lanthanide,
45 pulling it into the aqueous phase. Such separation should be applicable for Ac due to its
46 similarities to other trivalent actinides and lanthanides. Furthermore, a similar concept
47 utilizing DTPA and cation exchange resin has been demonstrated for the separation of
48 ^{223}Ra from its decay daughters, $^{211}\text{Pb}/^{211}\text{Bi}$ [10]. Critically, in this separation radium is not

49 eluted from cation exchange resin using DTPA solutions with a pH < 9 [10], which is much
50 higher than the pH levels for extraction of the trivalent actinides and lanthanides (pH 3 –
51 4). This was utilized for liquid-liquid separation of Ra and Ac with buffered
52 monochloroacetic acid **and DTPA** in Ref. [11], though the exact pH was not specified.
53 Therefore, based on the literature data for trivalent actinides and radium, it should be
54 feasible to separate radium from actinium with buffered DTPA solutions and cation
55 exchange resin.

56 Studies were undertaken to assess whether Ac and Ra could be effectively separated with
57 cation exchange resin using DTPA in a lactic acid/sodium lactate buffer solution. Column
58 studies were performed to demonstrate conditions for a high yield, high purity separation
59 of Ra and Ac. Using the parent-daughter pair $^{228}\text{Ra}/^{228}\text{Ac}$, the separations were tested for
60 applicability to isotope generator systems.

61 Experimental

62 Solutions were prepared from nitric acid (Ultrex II, J. T. Baker), L-(+)-lactic acid ($\geq 98\%$,
63 Sigma), sodium L-lactate ($\geq 99.0\%$, Sigma) and diethylenetriaminepentaacetic acid ($\geq 99\%$
64 titration, Sigma). Millipore Milli-Q deionized water ($18.2\text{ M}\Omega\text{ cm}$) was used as needed for
65 dilution. The solutions used in this work are shown in Table 1. To determine the pH of the
66 solutions, a Mettler Toledo SevenExcellence Multiparameter system with a Mettler Toledo
67 InLab Expert Pro-ISM Sensor was used; no pH adjustments were performed.

68 **Table 1** DTPA-Lactate buffer solutions used for column elutions.

Solution #	[Latic Acid] (M)	[Sodium Lactate] (M)	pH	Total [Lactate] (M)	[DTPA] (M)
1	0.96	0.04	~3	1	--
2	0.02	0.98	4.5-4.7	1	0.05

70 Cation exchange resin (AG 50x12, 100-200 mesh) was cleaned and stored in dilute HCl.
71 All columns were 2 mL snap-tip from Eichrom Technologies and packed under gravity
72 flow with either 1.8 mL or 1 mL resin. Pre-packed 2 mL DGA resin (Eichrom
73 Technologies, 50-100 μ m) was used as received.

74 Initial experiments were conducted with ^{223}Ra and ^{228}Ac to simplify the counting. Later
75 studies were performed with the parent-daughter pair $^{228}\text{Ra}/^{228}\text{Ac}$. All isotopes were
76 separated from long-lived decay chains (^{231}Pa for ^{223}Ra ; ^{232}Th for $^{228}\text{Ra}/^{228}\text{Ac}$) and prepared
77 in 0.2 M HNO_3 solutions for column studies. Activity measurements were performed with
78 an HPGe gamma-ray detector (ASPEC multi-channel analyzer, Ortec NIM electronics).
79 **Peak fitting** was performed with Maestro software (Ortec). Samples were counted relative
80 to the load solution (or a standard solution) in an identical geometry.

81 For all measurements, ^{228}Ac was identified based on its 911 keV gamma-ray emission,
82 which has no interferences from either of the Ra isotopes (Table 2). The main gamma-ray
83 emission for ^{223}Ra is at \sim 270 keV, which has an interference from a minor emission from
84 ^{228}Ac . To resolve this, all experiments with these isotopes were counted twice,
85 immediately after the experiments to quantify the ^{228}Ac , and then again 72 hours later, to
86 allow for the decay of ^{228}Ac to background and quantification of ^{223}Ra . All counts were
87 relative to separate ^{223}Ra and ^{228}Ac standards. Similarly, since ^{228}Ra has no detectable
88 gamma-ray emissions, samples containing both ^{228}Ac and ^{228}Ra were also counted
89 immediately after elution and then again 72 hours later. In this case, the second count
90 allowed the quantification of ^{228}Ra via the in-growth of ^{228}Ac .

91 **Table 2** Relevant nuclear decay data for the isotopes used in this work, including half-
92 lives, decay mode, and significant gamma-ray energies and intensities [12].

Isotope	Decay Mode	Half-Life	Photopeak and Intensity
^{223}Ra	α	11.44 d	269.463 keV (13.3%)
^{228}Ac	β^-	6.15 h	270.245 (3.46%) 911.204 (25.8%)
^{228}Ra	β^-	5.75 y	--

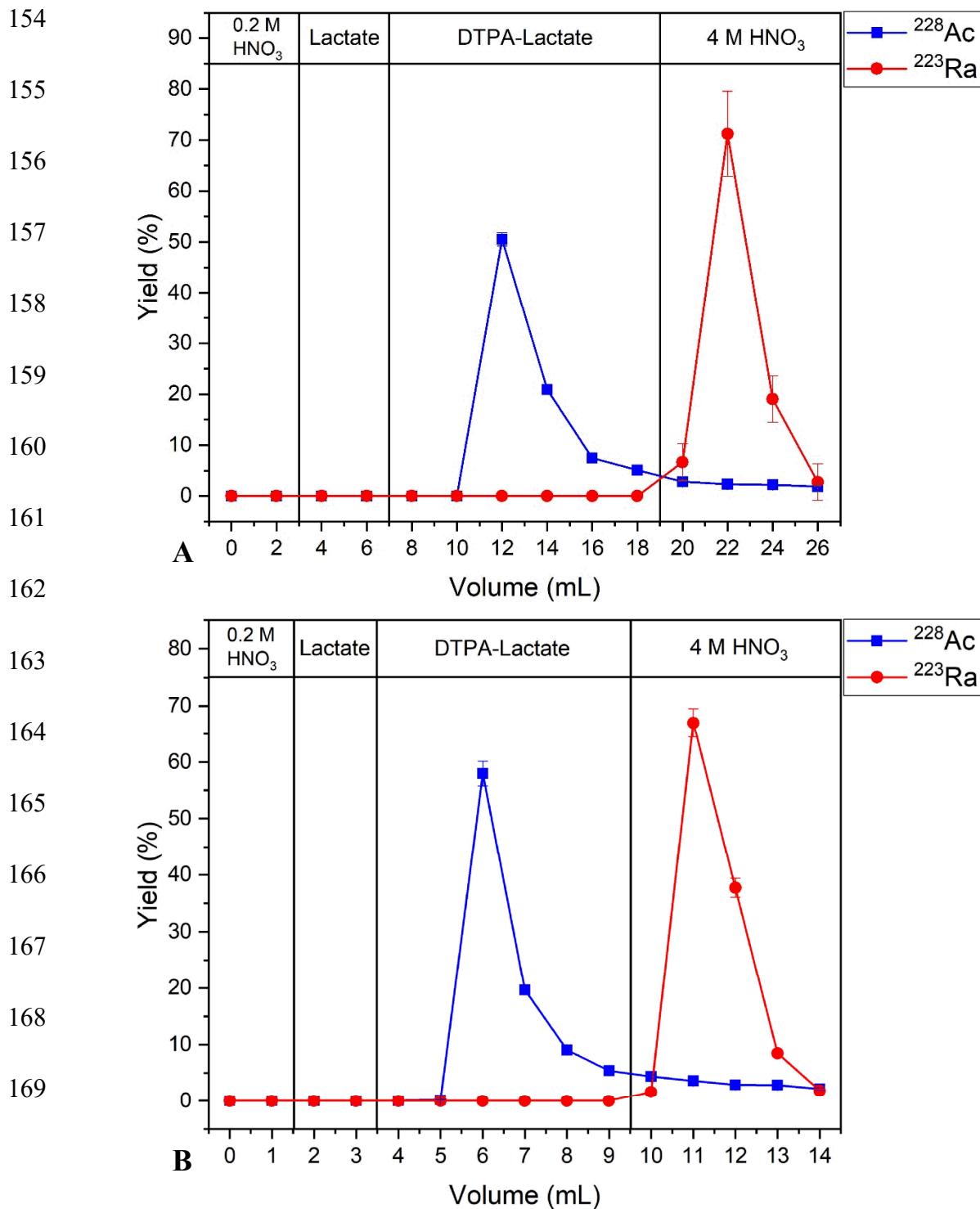
93 Initial Column Studies

94 The first column studies were performed with both ^{223}Ra and ^{228}Ac . First, a load solution
95 containing both isotopes was prepared in 2 mL 0.2 M HNO_3 . This was loaded onto a 1.8
96 mL AG 50x12 column (Column 1) that had been preconditioned with 6 mL 0.2 M HNO_3 .
97 The load fraction was collected, followed by 4 mL of a lactate buffer (Solution #1), 12 mL
98 of a DTPA-lactate solution (Solution #2), and finally 8 mL 4 M HNO_3 . **The flow rate of**
99 **the columns was 0.3 mL/min.** All fractions were 2 mL in volume. As mentioned
100 previously, samples were counted twice: immediately after elution and again 72 hours later.
101 The second column (Column 2) was nearly identical, but with a 1 mL load solution and 1
102 mL column volume. It was conditioned with 4 mL 0.2 M HNO_3 and eluted with 2 mL
103 Solution #1, 6 mL Solution #2, 5 mL 4 M HNO_3 . All fractions were 1 mL and were counted
104 as described above.

105 Column Studies – DTPA Removal with DGA Resin

106 For the next column study, Column 2 was repeated identically (1 mL load; 1 mL bed
107 volume) and the 3 highest activity ^{228}Ac fractions (containing ~85-90% of the activity)
108 **were combined, counted in the 3 mL geometry and then** acidified with 5 mL 12 M HCl to
109 a final concentration of 7.5 M HCl (**total volume 7 mL**). A 2 mL pre-packed DGA cartridge
110 was conditioned with 8 mL 8 M HCl . The column was conditioned and eluted using an
111 Eichrom 12-hole polycarbonate vacuum box; the eluent flow rate was ~1 mL/min (~5
112 inHg). The acidified ^{228}Ac solution was loaded; the load fraction was collected (**7 mL**)
113 followed by 6 mL 8 M HCl and 18 mL 0.1 M HCl . All fractions were 3 mL and were
114 counted relatively to the initial solution before acidification (**3 mL geometry as described**
115 **above**). **The load fraction was counted relative to the initial solution after acidification (7**
116 **mL) to ensure the geometry was consistent.** Samples were counted relative to the load
117 solution before acidification (3 mL) or after (7 mL) to ensure that every sample could be
118 compared to the load solution in the same geometry. A second DGA column study was
119 performed identically to the first except the 0.1 M HCl was replaced with Solution #1
120 diluted by half (0.48 M HLa , 0.02 M NaLa). Finally, a third column study was conducted

121 by repeating the cation exchange column identically to the first two, followed by
122 acidification with 0.75 mL conc. HNO_3 (to a final concentration of 3.2 M HNO_3). The
123 DGA column was conditioned with 8 mL 3 M HNO_3 ; the load fraction was collected
124 followed by 6 mL 0.3 M HNO_3 and 12 mL ~0.5 M HLa (Solution #1 diluted by half).


125 **Column Studies – Isotope Generators**

126 Based on the results from the initial column studies and Ref. [10], an isotope generator
127 system was tested using this separation system. For these studies, two columns were
128 prepared, one with 1.8 mL AG 50x12 resin, and the other with 1 mL AG 50x12 resin. The
129 columns were conditioned with 6 mL and 4 mL of 0.2 M HNO_3 , respectively. Load
130 solutions of $^{228}\text{Ra}/^{228}\text{Ac}$, in equilibrium, were prepared in 200 μL 0.2 M HNO_3 . Counting
131 standards were prepared in 200 μL , 1 mL and 2 mL sizes. Each column was loaded and
132 the empty tubes rinsed with 100 μL 0.2 M HNO_3 . The load fraction and rinse were
133 collected followed by two fractions of Solution #1, six fractions of Solution #2 and another
134 two fractions of Solution #1. Fractions for the 1.8 mL column were 2 mL in volume; for
135 the 1 mL column, fractions were 1 mL in volume. After loading, the columns were eluted
136 24 hours later and then every 48 hours for one week. These elutions consisted of one
137 fraction of Solution #1 (what remained on the column from the previous elution), followed
138 by six fractions of Solution #2 and two fractions of Solution #1. The experiment was
139 stopped after 7 days due to ^{228}Ra breakthrough. **For all isotope generator studies, the**
140 **activity of ^{228}Ac was ~100 cps and the detection limit for ^{228}Ra was ~0.04 cps.**

141 **Results and Discussion**

142 The elution of Column 1 and Column 2 are shown in Fig. 2. Both ^{228}Ac and ^{223}Ra are
143 retained by the resin in dil. HNO_3 and the lactate buffer (pH ~3) with no DTPA. When
144 DTPA is added to the eluant, Ac is selectively extracted, leaving Ra on the resin. Finally,
145 Ra can be eluted with 4 M HNO_3 . For Column 1 (Fig. 2a), the yield of ^{228}Ac in the DTPA-
146 lactate fractions is $84 \pm 2\%$, with the remainder eluting with the ^{223}Ra fractions; **there is no**
147 **detectable breakthrough of ^{228}Ra in the ^{228}Ac fractions (~100% radiochemical purity).** For

148 Column 2 (Fig.2b), the yield of ^{228}Ac in the DTPA-lactate fractions is $\sim 100\%$ and as before
 149 there is no detectable breakthrough of ^{228}Ra in the ^{228}Ac fractions. The recovery of ^{223}Ra
 150 for both columns is $\sim 100\%$. The elution is similar between the 1 mL and 2 mL columns,
 151 the elution band for ^{228}Ac is slightly sharper on the column with less resin, as expected,
 152 and this results in less tailing into ^{223}Ra fractions, as indicated by the yields for each
 153 column.

170 Fig. 2 Cation exchange separation of ^{228}Ac and ^{223}Ra . Error is from counting statistics,
171 some error bars are smaller than the data points; lines are to guide the eye. (a) Column 1
172 – bed volume 1.8 mL; all fractions 2 mL. (b) Column 2 – bed volume 1 mL, all fractions
173 1 mL.

174 The chelation of trivalent actinides and radium with DTPA has been thoroughly studied in
175 the literature [8] [9] [13] [14] [15] [16] [17]. The interaction between DTPA and these
176 elements is highly pH dependent, which allows for specific separations, such as the
177 separation of Am and Cm from the lanthanides separations [8] [9]. While the heavier
178 trivalent actinides (Am, Cm, Cf) can be extracted with DTPA at pH values of 3 – 4 [16],
179 Ac is more basic and requires higher pHs for effective chelation. For the synthesis of Ac-
180 DPTA complex for medical studies, pH \sim 5 is utilized [6]. Radium is even more basic than
181 Ac and requires higher pH values to extract with DTPA, typically pH $>$ 8 [10] [18].

182 In this work, it was desirable to use a low pH to maximize the retention of Ra, while still
183 allowing for the elution of Ac, as such conditions would be most favorable for an isotope
184 generator. A slightly lower pH (3-3.5) was tested for Ac elution but no ^{228}Ac was eluted
185 under these conditions. Therefore, pH \sim 4.5 was used for column separations as this pH
186 was sufficiently high to allow for Ac elution in a reasonable volume while still low relative
187 to the ideal pH to elute Ra. Hydrolysis is not a concern for these elements, Ac does not
188 hydrolyze until pH \sim 9 [19] and, while there is a lack of hydrolysis studies for Ra, it is more
189 basic than actinium [21] and therefore would hydrolyze at higher pHs.

190 In the load solution and lactate buffer, both Ra and Ac (Ac^{3+} and Ra^{2+} , respectively) retain
191 on cation exchange resin. The extracted species of Ac is likely $\text{Ac}(\text{DPTA})^{2-}$ based on
192 studies with other trivalent actinides and lanthanides [27]. DTPA is fully deprotonated in
193 order to have a strong octadenate interaction with Ac. Finally, in 4 M HNO_3 , Ra forms
194 neutral nitrate species and therefore is eluted from the column along with any residual Ac,
195 which is also a neutral species at this concentration.

196 As mentioned previously, many literature separations of Ra and Ac utilize high acid
197 concentrations (>1 M HNO_3) and require Ra to be eluted first in chromatography
198 separations [1] [2] [3] [4]. These methods are effective but not optimal for

199 radiopharmaceutical applications. High acid concentrations cannot be used directly for
200 radiopharmaceuticals [20], requiring additional purification steps or dilution with large
201 volumes. Furthermore, the elution order is critical for isotope generator applications,
202 where the medically relevant ^{225}Ac would be produced from the decay of ^{225}Ra . For a
203 resin-based isotope generator it is critical that the parent isotope can be retained on the
204 resin while only the daughter isotope is eluted. This separation scheme allows for the
205 elution of Ac in biologically friendly pH conditions, and Ac is eluted prior to Ra, which
206 indicates potential for an isotope generator application.

207 If DTPA is undesired in the final Ac sample, it can be readily removed with DGA resin as
208 shown in Fig. 3. From the cation exchange column, the Ac fractions with DTPA are
209 acidified to a sufficiently low pH to prevent the chelation of Ac by DTPA. The solution is
210 then passed through a DGA resin cartridge which retains Ac and allows DTPA, lactate and
211 other salts, such as Na, to pass through the resin. Actinium can be stripped **quantitatively**
212 (**100% yield**) in a variety of dilute acids including HLa and HCl, allowing for optimization
213 of the procedure for the final application as desired. **The removal of DTPA was assessed**
214 **by residue mass: the ^{228}Ac fractions from the DGA columns were dried and compared to**
215 **an identically run “blank” column (without a load solution).** For all of the DGA columns,
216 there was no excess residue as compared to the blank within the measurement limits (0.1
217 mg). The mass of DTPA in the ^{228}Ac load solution for these columns is 59 mg, therefore
218 excess DTPA would be detectable, and the columns demonstrate a reasonably good
219 removal of the chelator. While the separation is effective whether the solution is acidified
220 with HCl or HNO₃ (Fig. 3), **there are advantages and disadvantages to using either acid.**
221 For the HCl separation, a higher concentration of acid is required for the load solution and
222 the wash (~8 M HCl vs. ~3 M HNO₃) which leads to a very low pH (< 0) for the subsequent
223 ^{228}Ac fractions. However, trace nitrates are undesirable in many applications as they are
224 more difficult to remove than chlorides, therefore separation in HCl media, followed by
225 neutralization, could be preferable for some applications. For the separation in HNO₃, the
226 pH of the eluted ^{228}Ac fractions is ~1, which would require less base to neutralize as
227 compared to the HCl separation, which may also be advantageous under some
228 circumstances.

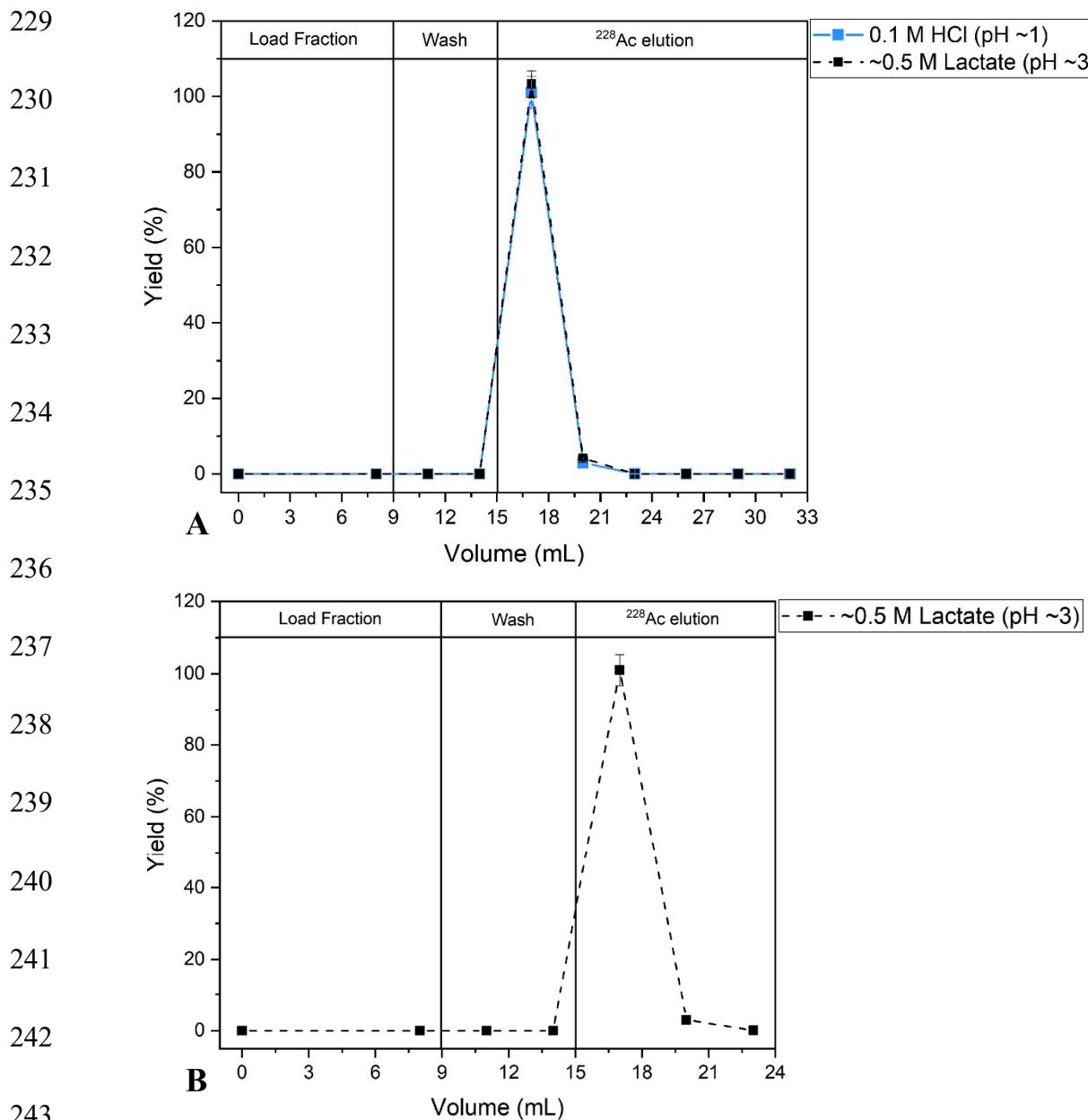


Fig. 3 The elution of ^{228}Ac from DGA from a (a) 7.5 M HCl load solution with 8 M HCl wash and (b) 3.2 M HNO_3 load solution with a 0.3 M HNO_3 wash. Error is from counting statistics, some error bars are smaller than the data points; lines are to guide the eye.

Based on the initial column studies, further experiments were conducted to assess whether this separation system would be applicable to an isotope generator to produce Ac from Ra. A generator relevant to radiopharmaceutical applications would be based on the $^{225}\text{Ra}/^{225}\text{Ac}$ parent-daughter pair, but these isotopes are difficult to produce and were not

251 available for this study. Therefore, the $^{228}\text{Ra}/^{228}\text{Ac}$ parent-daughter pair, which is readily
252 obtained from ^{nat}Th , was used as a surrogate. While the 1 mL column performed better
253 than the 1.8 mL column in the initial test, both sizes were used in the isotope generator
254 studies. This is because resin degradation in isotope generators, particularly those with
255 high levels of α activity, can reduce the extraction on the resin and larger bed volume can
256 be useful to enhance retention.

257 The results from the isotope generator studies are shown in Fig. 4. Each column was loaded
258 on Day 0, with 200 μL 0.2 M HNO_3 and one fraction of Solution #1 were collected as a
259 load fraction and wash, respectively, before the elution was continued as shown in Figs. 4
260 and 5. The load fraction and wash are not plotted to ensure all elutions could be compared
261 on the same axis (as there was no load fraction or wash required for later elutions) and
262 neither had detectable activity. The column was stored in Solution #1, which is the first
263 fraction collected (with no activity) in all elutions.

264

265

266

267

268

269

270

271

272

273

274

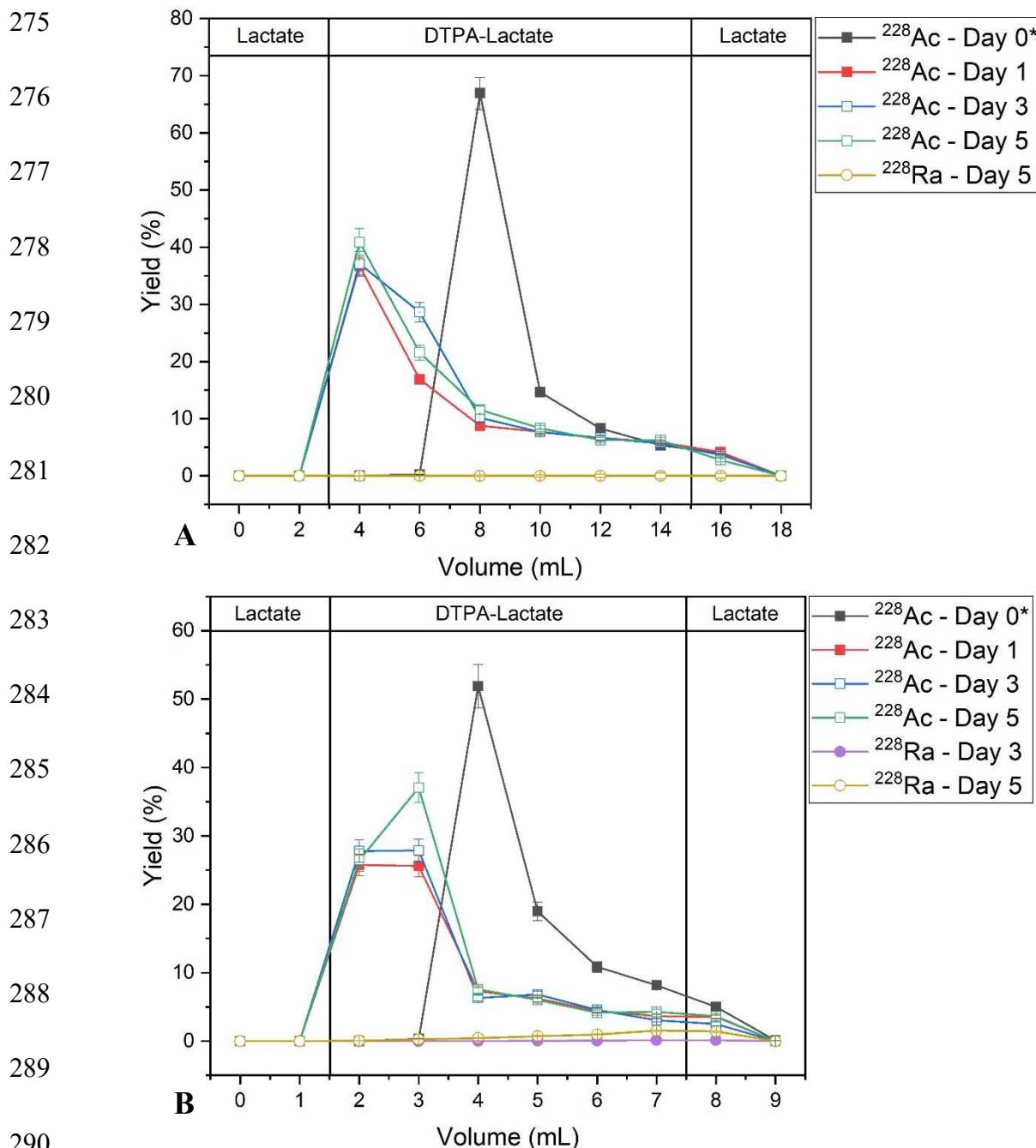


Fig. 4 $^{228}\text{Ra}/^{228}\text{Ac}$ isotope generator studies using cation exchange resin and DTPA-lactate solutions. Error is from counting statistics, some error bars are smaller than the data points; lines are to guide the eye. (a) Column 1 – bed volume 1.8 mL; all fractions 2 mL. (b) Column 2 – bed volume 1 mL, all fractions 1 mL.

295

296 These studies were not successful over a reasonable duration for Ra/Ac isotope generator
297 applications. As the half-life of ^{225}Ra is 15 days [12], an isotope generator would need to
298 last at least one half-life of the parent to have any practical use and an even longer lifetime
299 (\sim 4-5 half-lives) to be comparable to current nuclear medicine generators, e.g. $^{99}\text{Mo}/^{99\text{m}}\text{Tc}$
300 [21]. The 1 mL isotope generator tested had breakthrough of ^{228}Ra on only the second
301 elution (Day 3), amounting to \sim 0.3% of the total activity and higher breakthrough on the
302 third elution (\sim 4%). The 2 mL isotope generator did not have break through until the third
303 elution (Day 5) with the elution of \sim 1% of the total ^{228}Ra activity. The breakthrough is not
304 due to resin degradation or capacity as these columns are relatively low activity (<1000
305 dps) and the radionuclides are carrier-free. Therefore, the breakthrough is due to slow
306 ^{228}Ra elution in the DTPA-lactate solution.

307 Reference [10] demonstrated a $^{223}\text{Ra}/^{212}\text{Pb}$ generator based on elution of the daughter by
308 DTPA at pH 5.5. The generator described in this work had a useful lifetime of 2 weeks
309 based on the half-lives of the isotopes studied, rather than breakthrough. The difference in
310 behavior as compared to the generators studied in this work is likely explained by the
311 solution containing DPTA. The eluant used in Ref. [10] is 80% methanol, which has
312 different hydrating properties and increases the extraction of Ra on cation exchange resin
313 above what is possible at similar concentrations of HNO_3 in purely aqueous solutions [10]
314 and therefore preclude Ra breakthrough for longer durations. Furthermore, the lactic acid
315 used in this work is more complexing than HNO_3 , which was used to adjust the pH in Ref.
316 [10]. However, methanol itself is highly toxic, and methanolic-nitric solutions are also
317 explosive and highly corrosive; such solutions require special handling and are problematic
318 for radiopharmaceutical applications.

319 **Conclusions**

320 This work demonstrates a high yield, high radiopurity separation of Ac from Ra with
321 recoveries of \sim 100% of both isotopes and no detectable Ra in the Ac fractions using DTPA-
322 lactate solutions. While attempts to utilize this separation for isotope generators were
323 unsuccessful due to early ^{228}Ra breakthrough, the successful column separation is viable

324 for many applications. In particular, the separation of Ra and Ac is important for the
325 production of ^{225}Ac , a potential isotope for cancer treatment. Development of procedures
326 for the separation of these elements without the need for strong acids is critical for
327 separation methods appropriate for radiopharmaceuticals, which must be safe for use in
328 humans. There are environmental applications for such columns as well, as the separation
329 of ^{228}Ra and ^{228}Ac is important for the characterization of ^{228}Ra in water [18].

330 Future work is needed to optimize this separation system for isotope generator applications.
331 Based on the results from this work as compared to Ref. [10], this will focus on the buffer
332 solutions to develop an solution that is biologically-compatible, allows for elution of Ac in
333 a small volume, and a can sustain more elutions before Ra breakthrough.

334 **Acknowledgements**

335 This study was performed under the auspices of the U.S. Department of Energy by
336 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

337 **Ethics Declarations**

338 **Conflict of Interest/Competing Interests**

339 The authors declare that there is no conflict of interest or competing interest relevant to the
340 content of this article.

341 **References**

- 342 1. Fitzsimmons J, Foley B, Torre B, Wilken M, Cutler CS, Mausner L, Medvedev D
343 (2019) Optimization of Cation Exchange for the Separation of Actinium-225 from
344 Radioactive Thorium, Radium-223 and Other Metals. *Molecules* 24(10):1921
- 345 2. Radchenko V, Engle JW, Wilson JJ, Maassen JR, Nortier FM, Taylor WA, Birnbaum
346 ER, Hudston LA, John KD, Fassbender ME (2015) Application of ion exchange and

347 extraction chromatography to the separation of actinium from proton-irradiated thorium
348 metal for analytical purposes. *Journal of Chromatography A* 1380:55-63

349 3. Brown MA (2020) Metal Oxide Sorbents for the Separation of Radium and Actinium.
350 *Industrial & Engineering Chemistry Research* 59(46): 20472-20477

351 4. Kotovskii A, Nerozin NA, Prokof'ev IV, Shapovalov VV, Yakovshchits Yu A,
352 Bolonkin AS, Dunin AV (2015) Isolation of actinium-225 for medical purposes.
353 *Radiochemistry* 57:285-291

354 5. FDA News "FDA Approves Drugs to Treat Internal Contamination from Radioactive
355 Elements" (2004) US Food and Drug Administration.
356 <https://www.fda.gov/drugs/bioterrorism-and-drug-preparedness/fda-approves-drugs-treat-internal-contamination-radioactive-elements>. Accessed 15 August 2025

358 6. Davis IA, Glowienka KA, Boll RA, Deal KA, Brechbiel MW, Stabin M, Bochsler PN,
359 Mirzadeh S, Kennel SJ (1999) Comparison of ²²⁵actinium chelates: tissue distribution and
360 radiotoxicity. *Nuclear Medicine and Biology* 26(5):581-589

361 7. Thiele N, Wilson J (2018) Actinium-225 for Targeted a Therapy: Coordination
362 Chemistry and Current Chelation Approaches. *Cancer Biotherapy and
363 Radiopharmaceuticals* 33(8):336-348

364 8. Filer TD (1974) Separation of the Trivalent Actinides from the Lanthanides by
365 Extraction Chromatography. *Anal. Chem.* 46(4):608-610

366 9. Nash KL (2014) The Chemistry of TALSPEAK: A Review of the Science. *Solv. Extr.
367 Ion Exch.* 33:1-55

368 10. Guseva LI (2009) A tandem generator system for production of ²²³Ra and
369 ²¹¹Pb/²¹¹Bi in DTPA solutions suitable for potential application in radiotherapy. *Journal
370 of Radioanalytical and Nuclear Chemistry* 281:577-583

371 11. Parsa B, Hoffman A (1992) Determination of ²²⁸Ra in drinking water. *Journal of
372 Radioanalytical and Nuclear Chemistry* 158:53-63

373 12. National Nuclear Data Center “NNDC” (2019) Brookhaven National Laboratory.
374 https://www.nndc.bnl.gov/nudat2/idx_dec.jsp. Accessed 6 August 2025

375 13. Grimes TS, Tillotson RD, Martin LR (2014) Trivalent Lanthanide/Actinide Separation
376 Using Aqueous-Modified TALSPEAK Chemistry. *Solv. Extr. Ion Exch.* 32(4):378-390

377 14. Lapka JL, Nash KL (2015) Advanced TALSPEAK Separations Using a Malonate
378 Buffer System. *Solv. Extr. Ion Exch.* 33(4):346-361

379 15. Lumetta GJ, Levitskaia TG, Wilden A, Casella AJ, Hall GB, Lin L, Sinkov SI, Law
380 JD, Modolo G (2017) An Advanced TALSPEAK Concept for Separating Minor Actinides.
381 Part 1. Process Optimization and Flowsheet Development. *Solv. Extr. Ion Exch.* 35(6),
382 377-395

383 16. Kmak KN, Despotopoulos JD, Huynh TL, Kerlin WM (2025) TALSPEAK-based
384 separation of the trivalent actinides from rare earth elements using LN resin. *J Radioanal
385 Nucl Chem* 334:2407-2415

386 17. Kosyakov VN, Yerin EA (1978) Separation of transplutonium and rare-earth elements
387 by extraction with HDEHP from DTPA solutions. *J Radioanal Nucl Chem* 43:37-51

388 18. Jia G, Jia J (2012) Determination of radium isotopes in environmental samples by
389 gamma spectrometry, liquid scintillation counting and alpha spectrometry: a review of
390 analytical methodology. *Journal of Environmental Radioactivity* 106:98-119

391 19. Zielinska B, Bilewicz A (2004) The hydrolysis of actinium. *Journal of Radioanalytical
392 and Nuclear Chemistry* 261(1):195-198

393 20. Saha D, Vithya J, Vijayalakshmi S, Chand M, Kumar R (2023) Radiochemical quality
394 control of the radiopharmaceutical, $^{89}\text{SrCl}_2$ produced in FBTR. *Applied Radiation and
395 Isotopes* 192:110566

396 21. Gupta R, Garg S, Heston TF (2025) Mo99 - Tc99m Generator. StatPearls Publishing:
397 Treasure Island (FL) <https://www.ncbi.nlm.nih.gov/books/NBK565854/> Accessed 15
398 August 2025