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The Dynamic Strength of Polymers is not well e
characterized -

. Aerospace Engineering

R

- Little work done regarding strength in the shock 3\%5?3 &

- Recent particle tracking experiments performed by e e &;;
Bober et al indicated that silicone has a flow strength L S G
of 500 to 750 MPa, stronger than some metals : iS4

- Epon 828 Epoxy ve )g;}

- Has been previously investigated in planar et Tacking Exporments in Sicone
impact experiments poberetal (19
- Can be polymerized with a variety of curing oy
agents samd elctio it 3 s
- Many shock Hugoniot datasets in the literature . L
fail to list curing agent TR
- Often assumed that the Equation-of-State (EOS) i 3& & o &2 12 & o

[LASL Marsh Compendium]

is the same regardless of curing agent
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Tamped Richtmyer-Meshkov Instability S
(RMI) Experiments | Aerospate Enginesring

- Used for constitutive model calibration
- Experimental behavior is compared to simulations to calibrate the material strength

- RMlinversion behavior is affected by 5 | | | |
- Driver strength, Y, e | As08 | hiera
- Tamper strength, Y+

0.75

- Shock stress, o

- Atwood Number, A = 2L_£2
Pr + PpD

- Corrugation aspect ratio kn,
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Experimental Details and Setup T e
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Evaluating Radiography Data T i -
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Extracted Contours i

- Contour locations can be used for three evaluations: - AAerospace Engineering

1. Obtaining particle velocities (u,)
2. Obtaining shock velocities (U,)
3. Obtaining shock compressed density
4. Comparing experiment to simulation in time to find the dynamic strength of a material
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Relating Experiment to Simulation | Departmentof
- Two material specific properties that need to be accurately represented
- Equation-of-State (EOS)
- Mie-Grlneisen
- Strength Model
- Elastic Perfectly-Plastic

- These are typically done using two separate types of experiments
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Calibrating an Equation-of-State (EOS) from kil
Us'up Data . Aerospace Engineering

- Us-u, data tends to form a linear trend ”
that can be approximated by the di
equation 55|
- Us=co+ sy, s sl
- ¢ Is a sound speed-like quantity S
in the material 0
- s is the slope 4
- Using prior literature data from as|
Anderson (2000) in addition to the  odoon 100
data gathered from this study, three I T
possible Us-u, relationships were T
. ——U_=1.852u_+2.533 Fit with all data
determlnec’ . U: = 1.888uz+2.438 Fit with one point filtered out

— US = 1.496up+3.045 Fit on RMI data alone



EOS calibrated to RMI datapoints best Derarimantor
reproduces Anderson (2002) data
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- Simulation performed under hydrostatic conditions
- Matched the shock behavior with a 0.48% difference between simulation and experiment

. Aerospace Engineering

_— U5 . 1.852up+2.533 Fit with all data
—_ US = 1.888up+2.438 Fit with one point filtered out
N US = 1.496up+3.045 Fit on RMI data alone
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Calibrating dynamic strength Separimero
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Loading Conditions
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Conclusions Department of
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- Epon 828/DEA can exhibit dynamic

strengths around 1..5 (.SPa. at strain 1600 [ [~ Fpon §28/7-403 Chen ot al(1998)
rates of 10° 1/s which is higher than 1400 1 5 Eron S29/DEA e Cear 2008
copper and comparable to high © Epon 828 Pepper ct al. (Spall Strength, 2018)
1200 -| * Copper Follansbee et al. (1991)
strength metals such as tool steel Copper Tong et al. (1992)
- Showed a method for calibrating both E 1000 | e i o Eoon §25
the EOS and the dynamic strength off 2 800 -
of a single type of experiment g |
- This method eliminates the need o &
for two separate types of 400 coppeR %}I
experiments 200
- Contributed to the available Hugoniot N e o EPOXy |
data for Epon 828/DEA 107 10° 107 10* 10° 108
- Presented a validated EOS in the 4-12 Strain Rate (1/5)

GPa Hugoniot stress range
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