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Abstract—Standardized file types play a key role in the
development and use of computer software. However, it is possible
to abuse standardized file types by creating a file that is valid
in multiple file types. The resulting polyglot (many languages)
file can confound file type identification, allowing elements of the
file to evade analysis. This is especially problematic for malware
detection systems that rely on file type identification for feature
extraction. Although work has been done to identify file types
using more comprehensive methods than file signatures, accurate
identification of polyglot files remains an open problem. Since
malware detection systems routinely perform file type-specific
feature extraction, polyglot files need to be filtered out prior to
ingestion by these systems. Otherwise, malicious content could
pass through undetected. To address the problem of polyglot
detection we assembled a data set using the mitra tool. We
then evaluated the performance of the most commonly used file
identification tool, £ile. Finally, we demonstrated the accuracy,
precision, recall and F1 score of a range of machine and deep
learning models. Malconv2 and Catboost demonstrated the high-
est recall on our data set with 95.16% and 95.45%, respectively.
These models can be incorporated into a malware detector’s file
processing pipeline to filter out potentially malicious polyglots
before file type-dependent feature extraction takes place.
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I. INTRODUCTION
A. Overview

A polyglot is a form of steganographic file that can be
successfully interpreted in two or more types [ 1[|-[3]. In other
words, a JPG+JAR polyglot is one that presents an image when
interpreted by an image viewer and executes self-extracting
Java code when fed to the Java Runtime Environment. Many
combinations are possible, including a polyglot that can be
interpreted as an image, a video, a PDF, and a video game
depending on which program interprets the polyglot [1]]. As
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we demonstrate in our results (section [[V), common utilities
for identifying files do not reliably identify polyglots. Ergo,
malware detection systems that rely on common utilities for
file type identification prior to feature extraction are vulnerable
to polyglot files. If a detector recognizes only the JPG portion
of a JPG+JAR polyglot, then two problems can arise.

o For ML/DL-based detecters, feature extraction will only
extract fields from the JPG portion of the file

o For signature-based detectors, only malware signatures
associated with JPG files will be matched [4]

In either instance, malicious code in the JAR portion passes
through without accurate analysis. In 2019, researchers at Oak
Ridge National Laboratory established that multiple commer-
cial off-the-shelf (COTS) malware detection systems failed to
detect 100% of polyglot malware in the data set [5]. These
polyglots were created by Assured Information Security as
part of their red team campaign. Motivated by this failure,
we compiled a data set of normal and polyglot files, trained
multiple classifiers on this data set, and evaluated the recall
and F1 score of these classifiers. Our objective is to protect
malware detection systems that rely on file type identification
for feature extraction or signature sub-selection by developing
a model to filter polyglots out of the file processing pipeline.
This will allow COTS tools to filter out potentially malicious
polyglots while still benefiting from the rich information
provided by file type-specific feature extraction [6].

B. Motivation

Malware detection systems commonly rely on file type-
specific features in order to classify an unknown file as either
malicious or benign [6]. For example, the header of a PE file
contains a great deal of information about the file, e.g., the
read/write/execute flags of all sections, the offset to the import
function table, and the address of the entry point. In a PDf file
the XREF table, if present, is a useful source of information
for determining which portions of the PDF could contain
malicious activity. If the XREF is not present or consistent
with the file contents, then malicious code can be found by
scanning for action objects that launch Javascript code [7]],
[8]. In any event, knowing the file type allows the detector
to extract far more information than otherwise possible. If the
file type is not known, then only generic features like byte
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entropy, n-grams, and strings can be used for classification
[6].

In some instances, malware detectors will ignore files if
the file type has no known malicious capability. If a polyglot
file is identified as having only one file type, only that type
will be used for feature extraction and further analysis. File
sections from the undiscovered type will simply be ignored,
allowing potential malicious activity to go undetected or
misunderstood [4f]. One solution is to forego file type-specific
feature extraction. However, this greatly reduces the number
of available manual features [6], [9]. Deep learning could be
used to perform automatic feature extraction that is effective
across all desired file types. However, this would require the
complete overhaul of a file type-specific malware detection
system. Instead, we propose simply adding a polyglot filter as
a pre-processing step for existing malware detection systems.
Provided the polyglot filter has sufficiently high recall, this
solution would require minimal alteration to existing solutions.
Furthermore, existing solutions would continue to benefit from
the rich features that can be extracted once a file is known to
contain only one file type.

Aside from the afore-mentioned trial at ORNL, additional
evidence of the pressing need for polyglot detection is pro-
vided by a 2019 attack on DICOM files [10], [11]. DICOM
files are commonly used medical imaging files. The attack
involves the creation of a PE+DICOM polyglot that functions
as expected when loaded into medical imaging software, yet
is also capable of execution as a Windows PE file. The
DICOM type is intentionally flexible; the authors anticipated
the creation of TIFF+DICOM polyglots for non-malicious pur-
poses [12]. However, this flexibility lends itself well to more
malicious pursuits when the second file contains malicious
code.

Due to the wide variety of file types that exist, we felt
that a rule-based approach to polyglot detection would require
excessive revision and, at best, only account for previously-
encountered forms of polyglots. There are also a large number
of discrepancies in terms of malformed files that make the
rule-based approach difficult [4].

In an attempt to create a solution that learns the general
problem and has the possibility of protecting against novel
polyglots, we decided to explore machine and deep learning
classifiers. This required the creation of a sizable training set
that includes a wide variety of existing polyglots. Before we
discuss this data set, we first provide a detailed look at the
various types of polyglots that are included within it.

II. BACKGROUND
A. Polyglot Mechanics

Although there has been some academic research into file
type identification methods (discussed in the related works
section [[I-B)), polyglot creation has largely been driven by
researchers from industry [If], [2]. Ange Albertini demon-
strated multiple methods for creating polyglots at industry
presentations and released the python-native mitra tool on
Github to enable fellow researchers. We utilized this tool to

create our polyglot dataset. Albertini classified polyglots based
on the method used to combine donor files into the polyglot.
Ergo, mitra attempts to create stacks, zippers, parasites, and
cavities from pairs of donor files.

1) Stacks: A stack is the simplest type of polyglot. The
second file is simply appended to the end of the first file. The
caveat is that any byte offsets in the second file may need to
be adjusted (increased by the length of the first file) in order
for the second file to function as expected. Although there is
no restriction on the first file, the second file must not strictly
enforce the magic number at offset zero rule. A magic number
is an arbitrary (hence the magic moniker) hexadecimal value
that uniquely identifies a file type. This number is used for
fast file type identification, since a utility need only scan the
first few bytes of the file in order to identify it. However, there
are many file types that do not enforce this rule.

PDF readers commonly accept files as valid PDFs if the
magic number is anywhere within the first 1024 bytes of the
file [1]], [[13] despite the requirement listed in the official docu-
mentation [14]. Additionally, some types have no requirement
at all for a magic number at offset zero. Zip files commonly
begin with a magic number. However, this number is part of
the local file header for the first file contained within the Zip
archive. According to the specifications [15], the Zip file is
indexed via a central directory at the end of the file. This
central directory has its own magic number for identification.
Ergo, Zip files have no requirement that any magic number
be the first byte. This makes them an ideal candidate for the
second file in a stack polyglot.

2) Parasites: In a parasite polyglot, the second file is added
within comment sections—offset by comment markers—of the
first file. Many file types allow for comment sections that are
not displayed when the file is interpreted. These comments
are only visible when the file is opened for editing by a hex
editor like vim. In order for the second file within the comment
sections of the first file to remain functional, it must not have
the strict magic number at offset zero rule. The byte offsets
for both files must be updated. In the case of the first file, the
byte offsets must now account for the second file contents that
are now hidden within the comment sections. In the case of
the second file, the offsets must account for the fact that the
second file contents are now scattered in comment sections of
the first file. As long as these offsets are updated correctly, both
files will continue to function normally. Although this update
process is more complex than the updates necessary for a stack
polyglot, there are many file types than can combine to create
a parasite.

3) Zippers: Zippers are a more complex version of a
parasite. In a zipper, both files are contained within each
other’s comment sections. This means that the two donor files
must use different markers to begin and end their comment
sections. This arrangement is rather unusual in practice, so
donor files for zippers are much harder to find. In our data
set, only DCM files combined with either GIF or PDF files
were able to create zipper polyglots.



4) Cavities: Cavities are created when the second file is
hidden within null-padded areas of the first file. This arrange-
ment is only possible when the first file is of an executable or
ISO type, wherein memory is allocated in chunks. Since these
areas are often null-padded to a standard size, executable or
ISO files may contain enough null-padded memory to hide
a second file in the padded areas. This is very similar to
the classic code caving technique often used by malware
authors to hide malicious code. The distinction between a
cavity polyglot and code caving is that the caved material of
a cavity polyglot is a complete file that can function correctly
when interpreted by an appropriate program. Since the first 16
sectors of an ISO file are left empty, the contents of another file
can be placed in the beginning of the ISO file. For executable
files, like Windows PE files, the second file would be written
into the null-padded trailing areas at the end of sections. No
updates will be needed for the first file, but any byte offsets
in the second file will need to be updated if the second file
does not begin at offset zero of the first file.

B. Related Work

File type identification has historically been addressed
through signatures. The Linux utility file matches files
by examining magic bytes in unison with other structural
elements. The magic number is an arbitrary hexadecimal
value that uniquely identifies a file type. Some file types can
be strictly identified simply by their magic number, while
others require additional elements to be scanned. JAR files,
for instance, are simply Zip files with a MANIFEST.INF file
present in the archive. Ergo, file scans for the presence of
this file in order to distinguish a JAR file from a Zip file.
In either event, £ile matches each input file to a unique
signature. Note, file scans until it detects a match, then
halts. There is a ——keep going flag, but in our examination
it did not allow file to detect polyglots. The results of
running £ile (with this flag active) on our polyglot data set
is included in the results section. The signatures that file
utilizes are extremely accurate and efficient in identifying
conventional (monoglot) files, which means little research has
been done to improve on this winning formula.

McDaniels and Heydari used byte histograms in concert
with three different algorithms to identify file types [16].
Under the first algorithm (byte frequency analysis or BFA),
they converted files into a fixed length feature vector. All
files, regardless of type, can be represented as a sequence of
hexadecimal values. Therefore, we can compactly summarize
a file’s contents by placing the number of times each possible
hex value occurs into a 256 (all possible hexadecimal values)
character vector where the index corresponds to the byte value.
Ergo, the 7th value stored in the vector is the number of times
the value 0x7 occurred in the file. This feature is referred to
as a byte occurrence vector, unigram, or byte histogram in
literature. McDaniels and Heydari then normalized each byte
occurrence vector and calculated an average vector for each
file type. Each average vector represented a unique file type
and was referred to as a fileprint. Test files were compared

to the fileprint to calculate correlation scores. Finally, each
test file received its file type label from the most correlated
fileprint.

For the byte frequency cross-correlation or BFC algorithm,
they calculated cross-correlation scores to measure the average
relationships between bytes per file type. This process resulted
in a 256x256 matrix that represented each byte co-occurrence
in the file. As with the previous method, an average vector for
each file type was calculated and files were labeled according
to their correlation with this average vector.

Lastly, the file header/trailer or FHT method collected H
bytes from the beginning of the file and 7" bytes from the end
of the file. For each position in this string of bytes, a one-hot
encoding is produced. A one-hot encoding creates a vector
256 characters long (all possible hexadecimal values) where
all values are zero except the value that actually occurs. Ergo,
if the first byte was 0x7, then the 7th value in the vector would
be a 1 while the rest would be 0. Since this encoding is applied
at each offset, the resulting matrix is of size (H + T')x256.
Again, an average fileprint per file type was calculated using
this representation. The algorithms were tested on 120 files
representing 30 file types. The results are as follows:

o BFA: 27.5%

o BFC: 45.83%

o FHT: 95.83%

The relatively high accuracy of the header/footer algorithm
demonstrates that the location of a byte value plays a signifi-
cant role in classification accuracy. The byte histogram, on its
own, was not very discriminative.

Li et al. extended Mcdaniel’s work by using centroids rather
than an average vector as the representation of each file type
[17]. Files were classified based on their Mahalanobis distance
from a centroid. The centroids were chosen using the K-
means algorithm. Note, Manhattan distance is the metric the
authors chose when applying K-means. The authors further
experimented with two variations. In the first, they used
multiple clusters per file type since some file types are assumed
to be quite diverse. In the second variation they randomly
select 80% of their training files for use as exemplars. Under
this approach, instead of calculating the Mahalanobis distance
from an individual file to a cluster, they find the Manhattan
distance to the nearest exemplar. This approach had the highest
accuracy (99.6%) by a slim margin. Interestingly, these authors
found the highest accuracy by truncating the input down to
the first 20 bytes of each file rather than examine the entire
file. The lowest accuracy was 82%, which corresponded to
the single cluster with no truncation method. Their data set
consisted of 800 files across 8 file types.

Karresand [[18]], Veenman [[19], Fitzgerald [20]], Beebe [21]],
[22] all trained machine learning classifiers that used a wide
variety of statistical features extracted from files and frag-
ments, which included unigrams, bigrams, bag-of-words, byte
rate-of-change, Kolmogorov complexity, and common/longest
strings/bytes. Models developed included support vector ma-
chines, K-nearest neighbors, and hierarchical clustering. Beebe
released an open-source tool, Sceadan, which achieved 73.7%



accuracy on 30 file types and 8 data types by utilizing a linear
SVM trained on an input vector of unigrams concatenated with
bigrams. Unigrams simply the natural language processing
(NLP) term for the byte occurrence count vector or byte
histogram. Bigrams are a 256x256 matrix of co-occurrence
counts. This data is usually sparse and slow to compute [23]].

More recently, deep learning has been used to detect the
type of file fragments. File fragments may contain a partial
signature or no signature at all, making rule-based approaches
useless. Moreover, deep learning has an advantage over other
learning algorithms thanks to its automatic feature extraction,
which allows deep models to train on raw bytes. Mittal et al.
built a deep learning model, FiFTY, to identify file fragments
in 2021 [23]]. They trained a one-dimensional convolutional
neural network to identify 75 different file types. Although the
authors experimented with training neural networks and convo-
lutional neural networks on a vector of statistical features that
included Shannon entropy, Kolmogorov complexity, deviation,
skewness, kurtosis, and mean values (arithmetic, geometric,
harmonic) as features, raw bytes as the only input proved the
most accurate. Their model outscored Sceadan (77.5% acc vs
69.0% acc) on a data set of 75 file types, which was released
along with the FiFTY model.

Image classification techniques have also been applied to the
fragment classification problem [24], although this approach
is theoretically unsound. Interpreting a stream of bytes from
a binary file as a two-dimensional image introduces a width
parameter that assumes an underlying 2D structure which is
not present in a binary file.

In terms of cybersecurity, polyglot files are the subject of
a small number of research papers [4]], [10], [11]. Jana and
Shmatikov detailed a wide variety of obfuscation methods that
target discrepancies between how a malware detector parses
a file and how the OS interprets the file [4]. Some of these
discrepancies cause the detector to misidentify the file type of
the incoming file, resulting in the wrong subset of malicious
signatures being applied to the file. These methods are referred
to as Chameleon attacks [4]. Werewolf attacks [4], on the
other had, exploit discrepancies in how the file is parsed.
Jana and Shmatikov describe one type of Werewolf attack
as ’ambiguous files conforming to multiple types’ [4]. These
are polyglot files. They note that a malicious TAR+ZIP stack-
type polyglot is incorrectly classified by 20 out of 36 malware
detectors hosted on Virustotal at that time.

III. METHODOLOGY

A. Polyglot Data Set

Our dataset, described in Table [I], consists of 7 monoglot
or normal files types as the negative class and 21 polyglot
file types as the positive class with an 80/20 train/test split.
We should note that these polyglots do not contain malicious
code. Our objective is a polyglot filter, not a malware detector.
Additionally, the use of benign polyglots greatly simplifies
data sharing.

TABLE I: Data Set Overview

Data Set Train Test
Monoglot | 31,199 | 7,799
Polyglot 25,210 | 6,303

There are 3120 of each file type in the monoglot training
set and 780 of each file type in the test set. The monoglot file
types are as follows:

« PDF o TIFF « JAR o ISO
« PNG « JPG ] le
« GIF « DCM « PE

Feeding a subset of the above files to mitra, we created 21
different polyglot combinations. There are 1200 of each file
type combination in the training set and 300 in test set.

« DCM+GIF o GIF+Zip « PNG+JAR
« DCM+JAR o JPG+JAR o« PNG+PDF
« DCM+ISO o JPG+Zip « PNG+Zip

« DCM+PDF « PE+ISO « TIFF+ISO
« DCM+Zi[ o PE+JAR « TIFF+JAR
o GIF+ISO o PE+Zip « TIFF+PDF
o GIF+JAR « PNG+ISO o TIFF+Zip

Since each pair of file types can only be combined in certain
ways (stack, zipper, parasite, cavity), the number of each type
of polyglot in this data set is not balanced. Our future work
includes the production of a data set that is balanced according
to polyglot combination method rather than file type. Table [[I]
contains the breakdown of polyglot combination methods in
our training and test sets.

TABLE II: Data Set Polyglot Combination Method

Polyglot Method | Train Test
Stack 10267 | 2574
Parasite 10301 | 2542
Zipper 1795 463
Cavity 2847 724

B. Model Selection

We trained a wide variety of models to identify polyglot
files. Traditionally, machine learning models used in cyber
security applications rely on manual features that are spe-
cific to each file type [25], [26]. Since polyglot files can
confound file type-specific feature extraction, our models
are file type agnostic. In the case of ML models trained
through scikit—-1learn, the input vector consists of a byte
histogram. In other words, the feature vector is 256 integers
in length where the value at each index corresponds to the
number of times that index occurs as a byte value in the file.
Since files are stored internally as hexadecimal values (hence
256 possible values for each byte), this feature can be used
regardless of file type. The models we tested include random



forest, support vector machine, stochastic gradient descent,
light GBM, gradient boosting, and CatBoost.

We also trained and tested a deep learning model. Deep
learning via a convolutional neural network (CNN) utilizes
automatic feature extraction [27]-[30], making it ideally suited
for our task. We follow in the footsteps of Mittal et al. in
utilizing a deep learning model trained on raw bytes [23].
The deep learning model we chose is designed for binary
(two class) classification of binary (compiled) files, namely,
Malconv?2 [29]. This model is a one-dimensional convolutional
neural network developed for malware detection. The first
Malconv model demonstrated that CNNs can be effective
malware classifiers [28]. However, it had some issues that
prompted the authors to develop a second, more effective
model.

Since Malconv reads in raw bytes as features, the input file
must be truncated if it exceeds the maximum capacity of the
model. In the second iteration of the model, Malconv2, the
authors exploited the sparse nature of temporal max pooling.
This allowed them to partition the varying size files into N
sections, then collect only the bytes that would actually get
updated with nonzero gradient during the backward pass of
the training process. This temporal max pooling allows Mal-
conv2 to intake much larger files than the original Malconv.
Moreover, temporal max pooling is used in conjunction with
a gating mechanism to provide an attention mechanism. This
allows Malconv2 to correlate features that are distant from
one another in the byte space. This is especially important for
polyglots, where two separate headers might be in the same
file at a great distance from one another.

We note that one criticism of Malconv is that it pays far
more attention to headers than data or code [31]. Although
this was an undesirable trait in a malware detector, it is useful
for a polyglot detector since the header structure is closely tied
to the file type. Note, some file types utilizes footers instead
of headers or have no distinct header/footer, so learning which
parts of a file are most relevant is a challenging problem for
a polyglot detector.

Our final method concatenated the byte histogram vector
with the mime-type output of the utility file. Since file is
very accurate on normal files, we theorized that adding file’s
output to the feature vector would lessen the learning load on
a model.

IV. RESULTS

Firstly, Table shows that the most common method for
identifying file types, £ile, has poor recall overall on the
test set of polyglot and monoglot files. Although file does
perform well specifically on zippers and cavities, these two
types are the rarest form of polyglot (in our experience) due
to the requirements for mutual comment markers and padding
bytes, respectively. We used the ——keep—going flag when
running file.

TABLE III: £ile Results on Test Data

Accuracy | Precision | Recall F1 Score
Overall | 67.82% 99.61% 28.11% | 43.85%
Stack 75.75% 90.41% 2.56% 4.99%
Parasite | 80.68% 98.75% 21.68% | 35.55%
Zipper 99.92% 98.51% 100% 99.25%
Cavity 99.54% 98.99% 95.58% | 97.26%

Table |[V| shows the accuracy, precision, recall and F1 score
of a variety of machine learning models and one deep learning
model (Malconv2). The ML models are trained on the byte
histogram of each file while the deep learning model is trained
on the raw bytes.

TABLE IV: ML/DL Results on Test Data

Model Accuracy | Precision | Recall | F1 Score
Malconv2 96.23 96.35 95.16 | 95.75
Random Forest 91.85 92.54 88.94 90.70
CatBoost 88.19 89.06 83.86 86.39
LightGBM 85.93 85.13 83.02 84.06
GradientBoost 80.11 76.49 80.12 78.26
Support Vector Classifier | 62.30 72.29 25.37 37.56

Table [V| shows the accuracy, precision, recall, and F1 score
of the ML models when the feature vector is a concatenation
of the byte histogram and the mime type (generated by file)
for each file. This additional feature boosted the recall of our
machine learning models across the board. Adding the mime
type to the deep learning model’s raw byte input, however,
only degraded its output. Therefore, Malconv2 is not included
in this table.

TABLE V: ML with £ile Results on Test Data

Model Accuracy | Precision | Recall | FI Score
Tuned CatBoost 96.47 96.61 95.45 | 96.03
CatBoost 95.60 95.37 94.75 95.06
Random Forest 95.45 95.85 93.89 94.86
LightGBM 93.98 93.29 9324 | 93.26
GradientBoost 89.14 88.96 86.44 87.68
Support Vector Classifier | 62.29 72.25 25.37 37.55

V. DISCUSSION AND FUTURE WORK

We demonstrated that the most common method for file type
identification fails to reliably detect polyglots. We then evalu-
ated machine and deep learning models for detecting polyglots
and found that Malconv2 had the highest recall. If mime type
is included as a feature, then a hyper-parameter tuned version
of Catboost has the highest recall. Our work is merely the
beginning, however. We need to demonstrate that the above
models have high enough throughput to be incorporated into
a production-grade malware detection system. We also plan to
conduct extensive hyper-parameter tuning to improve model
performance. Additionally, we plan to generate a larger data
set with a much wider variety of donor types to establish
whether our approach is valid for a detection system than can



encounter a huge variety of file types. Finally, we need to
address the instances where polyglots are deployed in a non-
malicious manner, as in a DICOM+TIFE.
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