Reinforcement Learning-Based Approach for EMT
Automation of Large-Scale PV Plants

Qianxue Xia
Energy Science and Technology
Directorate
Oak Ridge National Laboratory
Knoxville, USA
xiag@ornl.gov

Abstract— In the pursuit of efficient and precise modeling of
large-scale power systems, particularly utility-scale photovoltaic
(PV) plants, Electromagnetic Transient (EMT) simulations play a
crucial role. As utility-scale PV plants increase in size and
complexity, traditional computational methods become
inadequate, necessitating more advanced techniques. This paper
highlights the progressive efforts made to accelerate EMT
simulations. A novel continuous reinforcement learning (RL)
strategy is explored to automate the differentiation and
categorization of stiff and non-stiff differential algebraic
equations (DAEs). The use of stiff and non-stiff integration
methods applied to relevant parts of the DAEs assists with the
speed-up of the simulations. The paper details the data
acquisition, development and offline training of the RL model,
leading to its validation that demonstrates a high precision in
optimizing simulation methods. The proposed RL promises to
significantly enhance the efficacy of EMT simulations, offering a
robust framework for the future of power system analysis.

Index Terms— Photovoltaic, transient,
Reinforcement learning.

Electromagnetic

. INTRODUCTION

Electromagnetic Transient (EMT) simulations are integral
to power systems, particularly as renewables and inverter-
based resources are increasingly integrated into the grid. The
EMT simulations aid in understanding intricate system
dynamics, behaviors, and potential faults. As power systems
grow in size and complexity, EMT simulations require more
computational power. The escalating demand for accurate and
fast simulations has motivated the research community to
explore innovative techniques to expedite EMT simulations.
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Historically, EMT simulations for large systems like utility
scale PV power plants were limited by computational
constraints. However, over the years, numerous methodologies
have been proposed like using network [1] and node splitting
[2] to achieve parallel processing, using hybrid co-simulator
comprising EMT and dynamic phasor-based simulators [3],
neglecting the switched systems that are present in power
electronics, and using high-performance computing (HPC)
algorithms to speed up EMT simulations [4][5].

Simulating a vast power plant consisting of numerous PV
plants can be time-consuming, in this paper, an advanced
numerical simulation algorithms in [6] and [7] are applied to
reduce the dimension of matrix inversion and speed up the
simulation of up to 326x. The algorithms include numerical
stiffness-based segregation, time constant-based segregation,
clustering and aggregation on differential algebraic equations
(DAEs), and multi-order integration approaches. These
algorithms apply multiple discretization algorithms rather than
a single discretization algorithm that further reduces the
computational burden. However, system configurations may
change due to maintenance, grid events, or faults, which can
result in changes to the stiff and non-stiff characteristics of the
system's states. Consequently, this necessitates adjustments in
the discretization algorithms applied to these states. This paper
proposes a continuous reinforcement learning (RL) approach
for the automatic segregation and dynamic allocation of stiff
and non-stiff DAEs, which is crucial for real-time, adaptive
simulation management.

Research into the application of RL algorithms within the
domain of power systems and power electronics has been
gaining attention. The majority of applications address
decision-making, control, and optimization challenges in
power systems. These include areas such as energy
management [8], demand response [9], electricity market [10],
operational control [11]. Notably, one publication has explored
the use of RL for the control of DC/DC converters [12].
However, to the author's knowledge, there has yet to be
literature that specifically applies RL to the EMT simulation of
power systems and power electronics.

This paper introduces RL algorithms as a novel approach to
the discretization challenges in EMT simulations for large-
scale PV plant. It formulates the problem to align with the
foundational elements of RL: state, rewards, and actions,
tailored to the system's dynamics. A robust offline training
setup for RL is designed, and an automated data acquisition
process is developed to efficiently manage PV systems with



varying and evolving configurations. The RL model's
capability to handle the diverse characteristics and operational
changes of these systems without manual intervention marks a
significant advancement in EMT simulation and is being
performed for the first time. This contribution not only
streamlines the simulation process but also enhances the
adaptability and scalability of EMT simulations in response to
the increasing complexity of large-scale IBRs connected grid
system.

Il. EMT SIMULATION FOR LARGE-SCALE POWER PLANT

The simulation of large-scale power plants, which can
include several PV systems, is inherently time-consuming. The
challenge is compounded when frequent changes in PV
configuration occur due to maintenance, grid events, or faults.
This paper discusses the application of simulation algorithms
to streamline this process.

A. PV System Architecture

A large-scale PV plant may consist of different types of PV
systems. The PV system considered in this paper consists of a
dc-dc boost converter that interfaces the PV panels and the
two-level three phase ac-dc inverter, the ac side of the inverter
is connected with the ac grid through a LCL filter.

The dual control of the boost converter includes an outer
loop input voltage control and an inner loop control of the
input side inductor current. The ac-dc inverter controls the dc-
link voltage and reactive power sent to the ac grid and
generates the dq current references for the inner dg current
control. The PV system is shown in Fig. 1.

B. EMT Models

The dynamic equations representing the k" PV system in a
large PV plant are expressed as follows:
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C. Numerical Stiffness and Time Constant

The "sgn" function introduces stiffness due to its
discontinuous nature. This discontinuity leads to rapid changes
in the values of the solutions, meaning that the equations have
components that are varying at different rates. Solvers often
have trouble at these points, and it may require very small
timesteps to accurately capture the behavior.

In order to address stiffness caused by the "sgn" function,
an event handling method is introduced in [13] with its hybrid
discretization algorithms. And the nonlinearity of the sgn
function is handled by the hysteresis relaxation technique.

The DAEs representing the dynamics of the system are
categorized into stiff DAE and nonstiff DAE based on the time
constant , following protocols from reference [6], especially for
equation (1) and (3), (5). For stiff DAEs, a stiff-decay
discretization algorithm, such as backward Euler, is preferred,
whereas non-stiff DAEs are treated with forward Euler for
discretization.

The circuit configuration of the PV system is not always
static and unchanged. It may undergo changes in circuit
parameters like input capacitance and inductance due to fault,
capacitor degradation, capacitor replacement, and may feature
different configurations like different power rating, voltage
rating, different PV panels. It is also likely that they may
experience circuit upgrade like changing from an ac-dc inverter
to a dc-dc boost converter followed with ac-dc inverter, or a
dual active bridge and ac-dc inverter or changing the filter from
LC to LCL. In one PV plant, there are hundreds of PV systems
and if one were to perform segregation of stiff and non-stiff
DAE manually, it would be extremely time consuming,
especially if it needs to be done online and requires limited
time. Thus, continuous RL methods are proposed to automate
mapping and partitioning in real-time of the models in dynamic
simulations to parallelizable resources.

Given the multitude of systems within a single plant,
manual segregation of stiff and non-stiff DAEs is impractical,
especially when real-time adjustments are needed. Continuous
RL is proposed to automate the mapping and partitioning of
models in dynamic simulations to parallelizable resources, thus
optimizing the process.

I11. REINFORCEMENT LEARNING

A. Problem Definition

The objective is to enhance the speed of numerical
simulations—specifically = DAEs—by  automating  the
decomposition or disaggregation process based on the
characteristics of the DAEs. This automation aims to scale the
process for large-scale problems without the need for manual
selection of DAE properties. The challenge involves
continuous, sequential decision-making, where a RL agent
interacts with the simulation environment by:
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Fig. 1. PV system.

Observing the current state.
Taking actions that influence the simulation, such as
those depicted in Fig. 2.

e Transitioning the environment to a new state based
on these actions.

e Receiving scalar
environment.

e Refining its policy to improve performance.

feedback (reward) from the

The RL agent's goal is to discover an optimal policy that
maximizes long-term rewards. In this context, the state, the
environment, and the reward structure are central to the RL
process, and they are specifically defined to address the issue
of manually selecting DAE discretization parameters and
simulation time steps.

\ i

Fig. 2. Reinforcement learning.

1) State
The states represent the conditions and properties of the

circuit that influence its dynamic behavior and are relevant to

the learning process:

e Circuit components (States_DAE):
responsible for the dynamic change
configuration

o Stiffness: stiffness is associated with the particular terms in
the system of DAEs that cause rapid variation in the
solution of DAEs. At times, improper selection of
numerical methods to solve such terms might jeopardize
the numerical stability of the system.

e Time constants: one of the time-domain parameters to
evaluate the system performance using the circuit
parameter values.

e Minimum time step requirement: the minimum time step in
the simulation needed to accurately capture the dynamics
of the states.

the components
in the circuit

2) Action
The action space comprises two primary decisions that the

agent can make:

e DAE Discretization: This involves choosing a
discretization method for the DAEs, essentially converting
continuous-time models into discrete-time counterparts for
simulation.

e Simulation Time Step: This is the selection of time
increments for updating the simulation's state, critical for
capturing the dynamics of the system accurately.

PV input capacitors with
measuringresistor [R) 1-1

Forward Euler (FE] 1

dc-dc converterinductor
(Lpv) with ESR 1-2

de-de converter output FE
capacitor (Cout) with
measuringresistor R

Backward Euler (BE)

dc-ac converter input FE
filter Capacitor (Cdc) with
measuring resistor R

de-ac converter output BE
filter Capacitor (Clac)
with measuring resistor R

dc-ac inverter output filter BE
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dc-ac inverter output filter BE
inductor (L2ac) with ESR

Fig. 3. One type of action of the problem.

For the PV system illustrated in Fig. 1, we observe seven
distinct states. Actions related to the DAE discretization are
represented as binary variables, with the simulation time steps
considered being 1, 4, and 10 microseconds. By applying one-
hot encoding to represent each possible action uniquely, we
have a total action space size of 383 distinct possibilities.

3) Reward
The reward function is continuous and designed to

incentivize the following outcomes:

e System Stability: Ensuring the system remains stable
following the chosen actions.

e Harmonic Level: Minimizing the level of harmonic
distortion in the system's output.

e Time Efficiency: Reducing the simulation's runtime
without compromising the accuracy and stability of the
results.

The continuous nature of the reward facilitates detailed
discrimination among the outcomes of various actions,
directing the agent toward the most advantageous behavior as it
learns.



B. Automation via RL

RL algorithms come in various forms. Initially, the simple
Multi-Armed Bandit algorithm is considered, which focuses
solely on actions and rewards without interacting with the
environment. However, this is deemed unsuitable for our
purposes, as the environment—our circuit topology—provides
varying states that must be considered. We then explore
Contextual Bandits, which extend the Multi-Armed Bandit
problem by incorporating context, or state information, into the
decision-making process. Here, an agent selects from a set of
possible actions based on the current context and receives a
reward dependent on both the action taken and the context
presented. The agent's task is to learn the optimal action for
each context to maximize cumulative rewards, despite initially
unknown reward distributions. This necessitates a balance
between exploration (testing various actions) and exploitation
(selecting the best-known action for a given context).

Fig. 4 illustrates an RL system in which the agent interacts
with a simulated environment. The 'DAE properties' constitute
the state or context for the agent. With this context, the agent
chooses an action that impacts the system's dynamics. The
consequent feedback—reward—is based on the “convergence
of simulation states," reflecting the suitability of the chosen
action against the expected outcomes. The agent aims to learn
actions that maximize its overall rewards, using the insights
from the DAE properties.

Simulated environment

Physical system Simulation  Voltages,
current

= Pev Active power

a Reactive power, etd
= —_—
[ —_—

[convergence of

DAE
properties Reward Actions
simulation states

Fig. 4. Contextual Bandits application in PV system simulation.

The e-greedy algorithm with a decaying exploration rate is
selected for its balance between exploring new actions and
exploiting known good actions. As the agent gains more
experience, the exploration rate decays, leading the agent to
increasingly rely on the best-known strategies. This approach
helps ensure that the agent remains sufficiently exploratory in
the early stages, while gradually becoming more exploitative as
it converges towards an optimal policy.

IV. REINFORCEMENT LEARNING BASED EMT AUTOMATION

A. Data Acquisition

The creation of a dataset is a critical step for training an
RL model. The dataset must reflect a variety of operational
conditions and parameters that a PV system might encounter.
For this purpose, different configurations of a PV system are
used, varying the power and voltage ratings as well as the type
of PV panel. Changes in the type of PV panel will also alter
the associated model parameters. The configuration of the
number of modules in series and parallel is dependent on the
system's ratings, which influences the circuit parameters such
as inductance and capacitance, as well as the controller gains.

4

An automated process is designed to configure the PV
parameters, circuit parameters, and some controller parameters
to facilitate data acquisition. The dataset structure is shown in
the Fig. 5 below. It contains the DAE properties of all state
variables, actions for a set of DAE properties, and the rewards
for those actions.
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Fig. 5. Dataset structure.

B. Offline Training

The following is the pseudocode for the Decay epsilon
greedy based contextual bandit algorithm. Assuming there are
k number of actions, this algorithm will keep a list of k
regressors (oracles).

Algorithm: Decay Epsilon-Greedy

Inputs exploration probability p € (0,1), decay rate d € (0,1),
oracles f;.,, training_frequency
Initialize history H for each oracle to empty
Initialize exploration probability p
1. For each successive round t with context x do
2 With probability (1-p) and t > training_frequency:
3 Select action at = argmax, f, (x*) using the oracles
4. Otherwise:
5. Select action a® uniformly at random from 1 to k
6 Execute action a and observe reward ¢
7 Update history H by adding the new observation (x¢,7%)
8 Update oracle f ;¢ with the new history H
9. Update exploration probability p = p x d
10. End for

Fig. 6 depicts the contextual bandit setup, where the agent
interacts with an environment that presents contexts and
dispenses rewards based on the agent's actions. Rewards are
probabilistic, drawn from an unknown distribution. The
agent's goal is to learn a policy that maximizes cumulative
long-term rewards, navigating the balance between exploring
new actions and exploiting known profitable ones.

For training purposes, instead of a live environment,
tabulated data are used to emulate the conditions the agent will
encounter. This data-driven approach allows us to simulate
interactions and train the agent effectively.
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Fig. 6. RL offline training set up.

C. Model Evaluation and Deployment

This study focuses on the offline deployment of the RL
model. The exploration of its online deployment will be part
of the future work.

Fig. 7 illustrates the decay of the exploration probability
epsilon over time steps. It shows that the policy starts with a
higher likelihood of exploration, which decreases over time as



the agent presumably gains more knowledge about which
actions are better in different states, thus shifting the balance
from exploration to exploitation.
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Fig. 7. Decay of Exploration Probability.

Subsequent to the offline training phase, the model's
capabilities were evaluated by the cumulated mean reward and
its ability to predict actions for a range of input states. Fig. 8
displays the progression of cumulative mean reward over time
for an epsilon-greedy strategy in a RL context. The initial high
slope suggests a rapid gain in reward, which levels off as the
agent likely starts to exploit more than explore, reflecting a
stabilization in learning.
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Fig. 8. Cumulative mean reward.

The model demonstrates its ability by determining the
optimal actions for various states. Take, for example, a state
delineated by the array [1, 2, 1, 1, 0.215, 1, 0, 60, 1, 0, 12, 1,
1,3,1,1,041, 1,1, 0.016, 1], which maps to a series of state
variables denoted as [S1, TC1, MTR1, S2, TC2, MTR2, S3,
TC3, MTR3, STR3, ... S7, TC7, MTRT]. Here, 'S' represents
the stiffness values, 'TC' stands for the time constants, and
'MTR' indicates the minimum time requirements for the state
variables. Each element in the sequence provides a snapshot of
the system's state, detailing the stiffness, time constant, and
minimum time requirement for each variable, which the model
uses to compute the most effective action sequence.

In this specific case, the model predicts the optimal action
to be [0, O, 1, 1, 0, O, O, 1], after being encoded, translates to
the selection of numerical methods for various components in
a PV system. The first 7 variables are for the discretization
selection,"1"s in the array indicate the application of a forward
Euler method for the dc-dc converter output capacitor, and the
dc-ac converter input filter capacitor. Conversely, a backward
Euler method is selected for the remaining state variables and
is shown as “0”. The last “1” in the array denotes that the
timestep for these actions is set to 1 us, which aligns with the
configuration depicted in Fig. 3. The RL successfully chooses
the optimal action for given contexts.

V. CONCLUSION

The paper proposed a promising application of RL to
streamline EMT simulations for hundreds of PV system in a
large PV plant. By employing continuous RL for the
automatic differentiation and real-time partitioning of stiff and
non-stiff DAEs, a significant reduction in computational load
and time taken to simulate can be achieved. The offline
training and subsequent evaluation of the RL model
demonstrated high accuracy in selecting optimal discretization
methods and simulation timestep for various system
configurations. The groundwork laid by this research suggests
a transformative potential for RL in the domain of power
systems, where the necessity for real-time, adaptive simulation
management is becoming increasingly crucial. As the paper
indicates, further exploration into the online deployment and
training of these RL models is poised to enhance the
efficiency and reinforce the reliability and robustness of EMT
simulation.
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