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Reinforcement Learning-Based Approach for EMT 

Automation of Large-Scale PV Plants 

 

  

Abstract— In the pursuit of efficient and precise modeling of 

large-scale power systems, particularly utility-scale photovoltaic 

(PV) plants, Electromagnetic Transient (EMT) simulations play a 

crucial role. As utility-scale PV plants increase in size and 

complexity, traditional computational methods become 

inadequate, necessitating more advanced techniques. This paper 

highlights the progressive efforts made to accelerate EMT 

simulations. A novel continuous reinforcement learning (RL) 

strategy is explored to automate the differentiation and 

categorization of stiff and non-stiff differential algebraic 

equations (DAEs). The use of stiff and non-stiff integration 

methods applied to relevant parts of the DAEs assists with the 

speed-up of the simulations. The paper details the data 

acquisition, development and offline training of the RL model, 

leading to its validation that demonstrates a high precision in 

optimizing simulation methods. The proposed RL promises to 

significantly enhance the efficacy of EMT simulations, offering a 

robust framework for the future of power system analysis. 

 
Index Terms— Photovoltaic, Electromagnetic transient, 

Reinforcement learning. 

I. INTRODUCTION 

Electromagnetic Transient (EMT) simulations are integral 
to power systems, particularly as renewables and inverter-
based resources are increasingly integrated into the grid. The 
EMT simulations aid in understanding intricate system 
dynamics, behaviors, and potential faults. As power systems 
grow in size and complexity, EMT simulations require more 
computational power. The escalating demand for accurate and 
fast simulations has motivated the research community to 
explore innovative techniques to expedite EMT simulations.  
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Historically, EMT simulations for large systems like utility 
scale PV power plants were limited by computational 
constraints. However, over the years, numerous methodologies 
have been proposed like using network [1] and node splitting 
[2] to achieve parallel processing, using hybrid co-simulator 
comprising EMT and dynamic phasor-based simulators [3], 
neglecting the switched systems that are present in power 
electronics, and using high-performance computing (HPC) 
algorithms to speed up EMT simulations [4][5].  

Simulating a vast power plant consisting of numerous PV 
plants can be time-consuming, in this paper, an advanced 
numerical simulation algorithms in [6] and [7] are applied to 
reduce the dimension of matrix inversion and speed up the 
simulation of up to 326x. The algorithms include numerical 
stiffness-based segregation, time constant-based segregation, 
clustering and aggregation on differential algebraic equations 
(DAEs), and multi-order integration approaches. These 
algorithms apply multiple discretization algorithms rather than 
a single discretization algorithm that further reduces the 
computational burden. However, system configurations may 
change due to maintenance, grid events, or faults, which can 
result in changes to the stiff and non-stiff characteristics of the 
system's states. Consequently, this necessitates adjustments in 
the discretization algorithms applied to these states. This paper 
proposes a continuous reinforcement learning (RL) approach 
for the automatic segregation and dynamic allocation of stiff 
and non-stiff DAEs, which is crucial for real-time, adaptive 
simulation management. 

Research into the application of RL algorithms within the 
domain of power systems and power electronics has been 
gaining attention. The majority of applications address 
decision-making, control, and optimization challenges in 
power systems. These include areas such as energy 
management [8], demand response [9], electricity market [10], 
operational control [11]. Notably, one publication has explored 
the use of RL for the control of DC/DC converters [12]. 
However, to the author's knowledge, there has yet to be 
literature that specifically applies RL to the EMT simulation of 
power systems and power electronics.  

This paper introduces RL algorithms as a novel approach to 
the discretization challenges in EMT simulations for large-
scale PV plant. It formulates the problem to align with the 
foundational elements of RL: state, rewards, and actions, 
tailored to the system's dynamics. A robust offline training 
setup for RL is designed, and an automated data acquisition 
process is developed to efficiently manage PV systems with 
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varying and evolving configurations. The RL model's 
capability to handle the diverse characteristics and operational 
changes of these systems without manual intervention marks a 
significant advancement in EMT simulation and is being 
performed for the first time. This contribution not only 
streamlines the simulation process but also enhances the 
adaptability and scalability of EMT simulations in response to 
the increasing complexity of large-scale IBRs connected grid 
system.  

II. EMT SIMULATION FOR LARGE-SCALE POWER PLANT 

The simulation of large-scale power plants, which can 
include several PV systems, is inherently time-consuming. The 
challenge is compounded when frequent changes in PV 
configuration occur due to maintenance, grid events, or faults. 
This paper discusses the application of simulation algorithms 
to streamline this process. 

A. PV System Architecture 

A large-scale PV plant may consist of different types of PV 
systems. The PV system considered in this paper consists of a 
dc-dc boost converter that interfaces the PV panels and the 
two-level three phase ac-dc inverter, the ac side of the inverter 
is connected with the ac grid through a LCL filter.  

The dual control of the boost converter includes an outer 
loop input voltage control and an inner loop control of the 
input side inductor current. The ac-dc inverter controls the dc-
link voltage and reactive power sent to the ac grid and 
generates the dq current references for the inner dq current 
control. The PV system is shown in Fig. 1. 

B. EMT Models 

The dynamic equations representing the 𝑘𝑡ℎ PV system in a 
large PV plant are expressed as follows: 
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C. Numerical Stiffness and Time Constant  

The "sgn" function introduces stiffness due to its 
discontinuous nature. This discontinuity leads to rapid changes 
in the values of the solutions, meaning that the equations have 
components that are varying at different rates. Solvers often 
have trouble at these points, and it may require very small 
timesteps to accurately capture the behavior. 

In order to address stiffness caused by the "sgn" function, 
an event handling method is introduced in [13] with its hybrid 
discretization algorithms. And the nonlinearity of the sgn 
function is handled by the hysteresis relaxation technique.  

The DAEs representing the dynamics of the system are 
categorized into stiff DAE and nonstiff DAE based on the time 
constant , following protocols from reference [6], especially for 
equation (1) and (3), (5). For stiff DAEs, a stiff-decay 
discretization algorithm, such as backward Euler, is preferred, 
whereas non-stiff DAEs are treated with forward Euler for 
discretization. 

The circuit configuration of the PV system is not always 
static and unchanged. It may undergo changes in circuit 
parameters like input capacitance and inductance due to fault, 
capacitor degradation, capacitor replacement, and may feature 
different configurations like different power rating, voltage 
rating, different PV panels. It is also likely that they may 
experience circuit upgrade like changing from an ac-dc inverter 
to a dc-dc boost converter followed with ac-dc inverter, or a 
dual active bridge and ac-dc inverter or changing the filter from 
LC to LCL. In one PV plant, there are hundreds of PV systems 
and if one were to perform segregation of stiff and non-stiff 
DAE manually, it would be extremely time consuming, 
especially if it needs to be done online and requires limited 
time. Thus, continuous RL methods are proposed to automate 
mapping and partitioning in real-time of the models in dynamic 
simulations to parallelizable resources.  

Given the multitude of systems within a single plant, 
manual segregation of stiff and non-stiff DAEs is impractical, 
especially when real-time adjustments are needed. Continuous 
RL is proposed to automate the mapping and partitioning of 
models in dynamic simulations to parallelizable resources, thus 
optimizing the process. 

III. REINFORCEMENT LEARNING  

A. Problem Definition 

The objective is to enhance the speed of numerical 
simulations—specifically DAEs—by automating the 
decomposition or disaggregation process based on the 
characteristics of the DAEs. This automation aims to scale the 
process for large-scale problems without the need for manual 
selection of DAE properties. The challenge involves 
continuous, sequential decision-making, where a RL agent 
interacts with the simulation environment by: 
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Fig. 1. PV system. 

 

• Observing the current state. 

• Taking actions that influence the simulation, such as 
those depicted in Fig. 2. 

• Transitioning the environment to a new state based 
on these actions. 

• Receiving scalar feedback (reward) from the 
environment. 

• Refining its policy to improve performance. 

The RL agent's goal is to discover an optimal policy that 
maximizes long-term rewards. In this context, the state, the 
environment, and the reward structure are central to the RL 
process, and they are specifically defined to address the issue 
of manually selecting DAE discretization parameters and 
simulation time steps. 

 
Fig. 2. Reinforcement learning. 

1) State 

The states represent the conditions and properties of the 

circuit that influence its dynamic behavior and are relevant to 

the learning process: 

• Circuit components (States_DAE): the components 

responsible for the dynamic change in the circuit 

configuration 

• Stiffness: stiffness is associated with the particular terms in 

the system of DAEs that cause rapid variation in the 

solution of DAEs. At times, improper selection of 

numerical methods to solve such terms might jeopardize 

the numerical stability of the system. 

• Time constants: one of the time-domain parameters to 

evaluate the system performance using the circuit 

parameter values. 

• Minimum time step requirement: the minimum time step in 

the simulation needed to accurately capture the dynamics 

of the states.  

2) Action 

The action space comprises two primary decisions that the 

agent can make: 

• DAE Discretization: This involves choosing a 

discretization method for the DAEs, essentially converting 

continuous-time models into discrete-time counterparts for 

simulation. 

• Simulation Time Step: This is the selection of time 

increments for updating the simulation's state, critical for 

capturing the dynamics of the system accurately. 

 
Fig. 3. One type of action of the problem. 

For the PV system illustrated in Fig. 1, we observe seven 
distinct states. Actions related to the DAE discretization are 
represented as binary variables, with the simulation time steps 
considered being 1, 4, and 10 microseconds. By applying one-
hot encoding to represent each possible action uniquely, we 
have a total action space size of 383 distinct possibilities. 

3) Reward 

The reward function is continuous and designed to 

incentivize the following outcomes: 

• System Stability: Ensuring the system remains stable 

following the chosen actions. 

• Harmonic Level: Minimizing the level of harmonic 

distortion in the system's output. 

• Time Efficiency: Reducing the simulation's runtime 

without compromising the accuracy and stability of the 

results. 
The continuous nature of the reward facilitates detailed 

discrimination among the outcomes of various actions, 
directing the agent toward the most advantageous behavior as it 
learns. 
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B. Automation via RL 

RL algorithms come in various forms. Initially, the simple 
Multi-Armed Bandit algorithm is considered, which focuses 
solely on actions and rewards without interacting with the 
environment. However, this is deemed unsuitable for our 
purposes, as the environment—our circuit topology—provides 
varying states that must be considered. We then explore 
Contextual Bandits, which extend the Multi-Armed Bandit 
problem by incorporating context, or state information, into the 
decision-making process. Here, an agent selects from a set of 
possible actions based on the current context and receives a 
reward dependent on both the action taken and the context 
presented. The agent's task is to learn the optimal action for 
each context to maximize cumulative rewards, despite initially 
unknown reward distributions. This necessitates a balance 
between exploration (testing various actions) and exploitation 
(selecting the best-known action for a given context). 

Fig. 4 illustrates an RL system in which the agent interacts 
with a simulated environment. The 'DAE properties' constitute 
the state or context for the agent. With this context, the agent 
chooses an action that impacts the system's dynamics. The 
consequent feedback—reward—is based on the "convergence 
of simulation states," reflecting the suitability of the chosen 
action against the expected outcomes. The agent aims to learn 
actions that maximize its overall rewards, using the insights 
from the DAE properties. 

 
Fig. 4. Contextual Bandits application in PV system simulation. 

The ϵ-greedy algorithm with a decaying exploration rate is 
selected for its balance between exploring new actions and 
exploiting known good actions. As the agent gains more 
experience, the exploration rate decays, leading the agent to 
increasingly rely on the best-known strategies. This approach 
helps ensure that the agent remains sufficiently exploratory in 
the early stages, while gradually becoming more exploitative as 
it converges towards an optimal policy. 

IV. REINFORCEMENT LEARNING BASED EMT AUTOMATION 

A. Data Acquisition 

The creation of a dataset is a critical step for training an 

RL model. The dataset must reflect a variety of operational 

conditions and parameters that a PV system might encounter. 

For this purpose, different configurations of a PV system are 

used, varying the power and voltage ratings as well as the type 

of PV panel. Changes in the type of PV panel will also alter 

the associated model parameters. The configuration of the 

number of modules in series and parallel is dependent on the 

system's ratings, which influences the circuit parameters such 

as inductance and capacitance, as well as the controller gains. 

An automated process is designed to configure the PV 

parameters, circuit parameters, and some controller parameters 

to facilitate data acquisition. The dataset structure is shown in 

the Fig. 5 below. It contains the DAE properties of all state 

variables, actions for a set of DAE properties, and the rewards 

for those actions. 

 
Fig. 5. Dataset structure. 

B. Offline Training  

The following is the pseudocode for the Decay epsilon 

greedy based contextual bandit algorithm. Assuming there are 

k number of actions, this algorithm will keep a list of k 

regressors (oracles). 
Algorithm: Decay Epsilon-Greedy 

Inputs exploration probability 𝑝 ∈ (0,1), decay rate 𝑑 ∈ (0,1), 

oracles 𝑓̂1:𝑘, training_frequency 

    Initialize history H for each oracle to empty 

    Initialize exploration probability p 

1. For each successive round t with context 𝑥𝑡 do 

2.        With probability (1-p) and t > training_frequency: 

3.                  Select action 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝑓̂𝑘(𝑥𝑡) using the oracles 

4.        Otherwise: 

5.                  Select action 𝑎𝑡 uniformly at random from 1 to k 

6.        Execute action 𝑎𝑡 and observe reward 𝑟𝑡 

7.        Update history 𝐻 by adding the new observation (𝑥𝑡, 𝑟𝑡) 

8.        Update oracle 𝑓̂𝑎𝑡 with the new history H  

9.        Update exploration probability 𝑝 = 𝑝 × 𝑑 

10. End for 

Fig. 6 depicts the contextual bandit setup, where the agent 

interacts with an environment that presents contexts and 

dispenses rewards based on the agent's actions. Rewards are 

probabilistic, drawn from an unknown distribution. The 

agent's goal is to learn a policy that maximizes cumulative 

long-term rewards, navigating the balance between exploring 

new actions and exploiting known profitable ones. 

For training purposes, instead of a live environment, 

tabulated data are used to emulate the conditions the agent will 

encounter. This data-driven approach allows us to simulate 

interactions and train the agent effectively. 

 
Fig. 6. RL offline training set up. 

C. Model Evaluation and Deployment  

This study focuses on the offline deployment of the RL 

model. The exploration of its online deployment will be part 

of the future work. 

Fig. 7 illustrates the decay of the exploration probability 

epsilon over time steps. It shows that the policy starts with a 

higher likelihood of exploration, which decreases over time as 
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the agent presumably gains more knowledge about which 

actions are better in different states, thus shifting the balance 

from exploration to exploitation. 

 
Fig. 7. Decay of Exploration Probability. 

Subsequent to the offline training phase, the model's 

capabilities were evaluated by the cumulated mean reward and 

its ability to predict actions for a range of input states. Fig. 8 

displays the progression of cumulative mean reward over time 

for an epsilon-greedy strategy in a RL context. The initial high 

slope suggests a rapid gain in reward, which levels off as the 

agent likely starts to exploit more than explore, reflecting a 

stabilization in learning. 

 
Fig. 8. Cumulative mean reward. 

The model demonstrates its ability by determining the 

optimal actions for various states. Take, for example, a state 

delineated by the array [1, 2, 1, 1, 0.215, 1, 0, 60, 1, 0, 12, 1, 

1, 3, 1, 1, 0.41, 1, 1, 0.016, 1], which maps to a series of state 

variables denoted as [S1, TC1, MTR1, S2, TC2, MTR2, S3, 

TC3, MTR3, STR3, ... S7, TC7, MTR7]. Here, 'S' represents 

the stiffness values, 'TC' stands for the time constants, and 

'MTR' indicates the minimum time requirements for the state 

variables. Each element in the sequence provides a snapshot of 

the system's state, detailing the stiffness, time constant, and 

minimum time requirement for each variable, which the model 

uses to compute the most effective action sequence. 

In this specific case, the model predicts the optimal action 

to be [0, 0, 1, 1, 0, 0, 0, 1], after being encoded, translates to 

the selection of numerical methods for various components in 

a PV system. The first 7 variables are for the discretization 

selection,"1"s in the array indicate the application of a forward 

Euler method for the dc-dc converter output capacitor, and the 

dc-ac converter input filter capacitor. Conversely, a backward 

Euler method is selected for the remaining state variables and 

is shown as “0”. The last “1” in the array denotes that the 

timestep for these actions is set to 1 us, which aligns with the 

configuration depicted in Fig. 3. The RL successfully chooses 

the optimal action for given contexts.  

V. CONCLUSION  

The paper proposed a promising application of RL to 

streamline EMT simulations for hundreds of PV system in a 

large PV plant. By employing continuous RL for the 

automatic differentiation and real-time partitioning of stiff and 

non-stiff DAEs, a significant reduction in computational load 

and time taken to simulate can be achieved. The offline 

training and subsequent evaluation of the RL model 

demonstrated high accuracy in selecting optimal discretization 

methods and simulation timestep for various system 

configurations. The groundwork laid by this research suggests 

a transformative potential for RL in the domain of power 

systems, where the necessity for real-time, adaptive simulation 

management is becoming increasingly crucial. As the paper 

indicates, further exploration into the online deployment and 

training of these RL models is poised to enhance the 

efficiency and reinforce the reliability and robustness of EMT 

simulation.  
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