

TropiRoot 1.0: Database of tropical root characteristics across environments

Amanda L. Cordeiro^{1,2} | Daniela F. Cusack^{1,3} | Nathaly Guerrero-Ramírez^{4,5} |
 Richard J. Norby⁶ | Laura Toro⁷ | Michelle Y. Wong⁸ | S. Joseph Wright³ |
 Kristine Grace M. Cabugao⁹ | Kelly M. Andersen^{1,7,10} | Lucia Fuchsleuger^{11,12} |
 Colleen M. Iversen¹³ | Fiona Soper¹⁴ | Om Prakash Ghimire¹⁵ |
 Laynara F. Lugli¹⁶ | Ana Caroline Miron¹⁷ | Oscar Valverde-Barrantes¹⁸ |
 Marie Arnaud¹⁹ | Sarah A. Batterman^{3,20,21} | Lee H. Dietterich^{1,3} |
 Ming Yang Lee¹⁰ | Monique Weemstra²² | Daniela Yaffar¹³ |
 Shalom D. Addo-Danso²³ | Kerstin Pierick⁴ | Ryan Bridges¹ | Carina Easton¹ |
 Isabella Felsing¹ | Nathan B. Gonçalves^{24,25} | Riley Krudop¹ |
 Mason R. McKinzie¹ | Julia Perbohner¹ | Alejandra N. Pozzoli-Oropeza⁴ |
 Mirna Samaniego³ | Alex W. Smilor¹ | Ilana S. Vargas¹ | Layna Webb¹ |
 Jennifer S. Powers² | M. Luke McCormack²⁶

Correspondence

 Amanda L. Cordeiro
 Email: alonghicordeiro@gmail.com
Handling Editor: Simona Picardi

Abstract

Tropical ecosystems contain the world's largest biodiversity of vascular plants. Yet, our understanding of tropical functional diversity and its contribution to global diversity patterns is constrained by data availability. This discrepancy underscores an urgent need to bridge data gaps by incorporating comprehensive tropical root data into global datasets. Here, we provide a database of tropical root characteristics. This new database, TropiRoot 1.0, will be instrumental in evaluating an array of hypotheses pertaining to root functional ecology and plant biogeography, both within the tropics and relative to other global biomes. The data compilation was conducted by the TropiRoot Initiative, in partnership with the Fine-Root Ecology Database (FRED) and the Global Root Trait (GRoT) database, Colorado State University (CSU) and the Smithsonian Tropical Research Institute (STRI). Literature search and data extraction were conducted between 2020 and 2024. Literature was identified using Web of Science, Scopus, and complemented using the expert knowledge of members of TropiRoot. To provide broad environmental and geographical distributions, literature searches included root characteristics

For affiliations refer to page 2

 This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

 © 2025 The Author(s). *Ecology* published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

(traits) across global change drivers, natural gradients, and from different continents. We adopted FRED standardized data columns and streamlined the format to enhance accessibility for data extraction across various user groups. This optimized framework resulted in a smaller, yet comprehensive datasheet. To make the database compatible with other global root trait initiatives, column identification was standardized following the codes provided by FRED. These efforts culminated in data extracted from 104 new sources, resulting in more than 8000 rows of data (either species or community data). Most of the data in TropiRoot 1.0 include root characteristics such as root biomass, morphology, root dynamics, mass fraction, architecture, anatomy, physiology, and root chemistry. This initiative represents a 30% increase in the currently available data for tropical roots in FRED. TropiRoot 1.0 contains root characteristics from 25 different countries, where seven are located in Asia, six in South America, five in Central America and the Caribbean, four in Africa, two in North America, and 1 in Oceania. Due to the volume of data, when ancillary data were available, including soil data, these data were either extracted and included in the database or its availability was recorded in an additional column. Multiple contributors checked the entries for outliers during the collation process to ensure data quality. For text-based observations, we examined all cells to ensure that their content relates to their specific categories. For numerical observations, we ordered each numerical value from least to greatest and plotted the values, checking apparent outliers against the data in their respective sources and correcting or removing incorrect or impossible values. Some data (soil and aboveground) have different columns for the same variable presented in different units, including originally published units, but root characteristics data had units converted to match those reported in FRED. By filling a gap from global databases, TropiRoot 1.0 expands our knowledge of otherwise so far underrepresented regions and our ability to assess global trends. This advancement can be used to improve tropical forest representation in vegetation models. The data are freely available and should be cited when used.

KEY WORDS

database, plants, root traits, root characteristics, tropical, TropiRoot, functional traits, FRED

AFFILIATIONS

¹Ecosystem Science and Sustainability Department, Colorado State University, Fort Collins, Colorado, USA
²Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
³Smithsonian Tropical Research Institute, Smithsonian, Balboa, Panama
⁴Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen, Germany
⁵Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
⁶Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA

⁷Science and Conservation Division, Missouri Botanical Garden, Saint Louis, Missouri, USA

⁸Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA

⁹The Nature Conservancy, Arlington, Virginia, USA

¹⁰Asian School of the Environment, Nanyang Technological University, Singapore, Singapore

¹¹Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria

¹²Environment and Climate Hub, University of Vienna, Vienna, Austria

¹³Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

¹⁴Department of Biology and School of Environment, McGill University, Montreal, Quebec, Canada

¹⁵Plant and Environmental Sciences Department, Clemson University, Clemson, South Carolina, USA

¹⁶School of Life Sciences, Technical University of Munich, Freising, Bavaria, Germany

¹⁷Functional Forest Ecology, University of Hamburg, Hamburg, Germany

¹⁸Department of Biological Sciences, Institute of Environment, International Center of Tropical Botany, Florida International University, Miami, Florida, USA

¹⁹CNRS, IRD, Sorbonne Université, INRAE, Institute of Ecology and Environmental Sciences (IEES), Paris, France

²⁰Cary Institute of Ecosystem Studies, Cary Institute, Millbrook, New York, USA

²¹School of Geography, University of Leeds, Leeds, UK

²²Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, Florida, USA

²³Forest and Climate Change Division, CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana

²⁴Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA

²⁵Department of Forestry, College of Agriculture & Natural Resources, Michigan State University, East Lansing, Michigan, USA

²⁶Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA

DATA AVAILABILITY STATEMENT

The dataset is available as [Supporting Information](#) to this Ecology data paper and is also accessible in the ESS-DIVE repository at <https://doi.org/10.15485/2507279>.

ORCID

Amanda L. Cordeiro <https://orcid.org/0000-0001-7226-0133>

Daniela F. Cusack <https://orcid.org/0000-0003-4681-7449>

Nathaly Guerrero-Ramírez <https://orcid.org/0000-0001-7311-9852>

Michelle Y. Wong <https://orcid.org/0000-0002-7830-8035>

S. Joseph Wright <https://orcid.org/0000-0003-4260-5676>

Fiona Soper <https://orcid.org/0000-0002-9910-9377>

Laynara F. Lugli <https://orcid.org/0000-0001-8404-4841>

Marie Arnaud <https://orcid.org/0000-0003-4001-6499>

Sarah A. Batterman <https://orcid.org/0000-0002-7703-9873>

Lee H. Dietterich <https://orcid.org/0000-0003-4465-5845>

Ming Yang Lee <https://orcid.org/0000-0002-4538-9342>

Riley Krudop <https://orcid.org/0009-0007-2329-4215>

M. Luke McCormack <https://orcid.org/0000-0002-8300-5215>

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Cordeiro, Amanda L., Daniela F. Cusack, Nathaly Guerrero-Ramírez, Richard J. Norby, Laura Toro, Michelle Y. Wong, S. Joseph Wright, et al. 2025. “TropiRoot 1.0: Database of Tropical Root Characteristics across Environments.” *Ecology* 106(5): e70074. <https://doi.org/10.1002/ecy.70074>