
HPC I/O Innovations in the Exascale Era
International Journal on High Perfor-
mance Computing Applications
XX(X):1–13
©The Author(s) 2024
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Greg Eisenhauer1, Norbert Podhorszki2, Ana Gainaru2, Scott Klasky2, Junmin Gu3, Vicente
Bolea4, Liz Dulac2, Dmitry Ganyushin2, William F. Godoy2, Qing Liu5, Caitlin Ross4, Lipeng
Wan6, Scott Wittenburg4, Kesheng Wu3

Abstract
As high performance computing architectures have evolved to deliver ever increasing performance and applications
have changed to take advantage of new innovations, middleware that supports those applications has had to adapt
as well. The Adaptable Input Output System (ADIOS), which provides scalable IO performance for exascale HPC
applications is one such middleware. During the Exascale Computing Project (ECP), key portions of the ADIOS
environment were adapted to respond to ongoing developments in exascale computing and the stresses and
opportunities inherent in those changes. This paper examines those changes and where appropriate compares them
to pre-exascale implementations.

Keywords
High Performance Computing, ADIOS, I/O

Introduction
ADIOS 2, the latest version of the Adaptable Input Output
System Godoy et al. (2020) was developed as part of
the Exascale Computing Project (ECP). As part of that
development, key aspects of the ADIOS implementation
were re-imagined and optimized to maximize scalability
and performance. One of those innovations is the new BP5
engine and data format.

The key changes in BP5 compared to older approaches
are a) two level metadata representation, b) new memory
management to reduce memory consumption during the I/O
phase, and c) GPU-aware IO. BP5 also enables filtering
output steps for reading so that an analysis code can avoid
reading all steps of data. The new metadata organization
allowed us to use ADIOS in the E3SM application effectively
and to provide fast writing performance when running on the
full scale of the Frontier supercomputer. The new memory
management allowed for saving up to 50% of memory used
for I/O purposes for particle-in-cell codes, like PIConGPU
and WarpX, that wanted to output particles that consume the
majority of the GPU memory. New GPU-integrating allows
computing block statistics and applying GPU-based data
operators, increasing the throughput of write operations.

In order to put these developments into context and
provide a basis for later discussion, we first briefly describe
the development history of ADIOS and its I/O strategies, and
how they have evolved as HPC architectures have changed.

A brief history of BP format
The original ADIOS data format, called Binary Pack
(BP), addressed one of the main writing performance
issue of parallel IO that contemporary parallelization of
logically contiguous file formats like NetCDF-3 and HDF5

suffered from, namely the interleaved access to file regions
by multiple processes for the sake of organizing an N-
dimensional array output from multiple processes into a
single, contiguous, dump of the array, so that any reader
could know a-priori, what offsets in the file corresponds to
each element of the array. BP simply dumped each process’
output into a separate region of the file and avoided much
of the locking contention the other IO libraries suffered
from. This format gave superior write performance and good
scalability for applications running before the appearance of
petascale computers. Obviously, reading the entire variable
on a single reader was slower, since the ADIOS library
had to read and merge multiple blocks of data into a
global, contiguous, array, while the other libraries only had
to issue a single read operation for the entire data. BP
was, however, better at scale for parallel reading, as long
as the decomposition of the readers were not intentionally
orthogonal to the decomposition of the writers Polte et al.
(2009), and it was also competitive and mostly superior
when reading slices of large datasets (e.g. 2D slices of a
3D array) Tian et al. (2011). Moreover, applications could
experience maximum performance when writing and reading

1Georgia Institute of Technology
2Oak Ridge National Lab
3Lawrence Berkeley National Lab
4Kitware
5New Jersey Institute of Technology
6Georgia State University

Corresponding author:
Greg Eisenhauer, College of Computing, Georgia Institute of Technology,
Atlanta, GA 30339
Email: eisen@cc.gatech.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 International Journal on High Performance Computing Applications XX(X)

Figure 1. IO performance comparison of original IO solution vs
ADIOS with BP3 file format for two HPC applications on Jaguar
at Oak Ridge Leadership Facility, a petascale computer.

checkpoint data. Each process could dump and retrieve all
the checkpoint data from the BP file without interfering with
other processes.

When a process was writing many variables, there were
still too many IO requests overall from many processes.
ADIOS buffered all variable outputs in memory and dumped
them all at once into one location in the output file, therefore
issuing one IO request per process in an output step.
Thus, ADIOS traded memory consumption for maintaining
scalability and maximum performance.

With the increase of the number of compute cores
to reach petascale, HPC applications started running on
hundreds of thousands of MPI ranks, which quickly proved
to be a bottleneck when writing to a single file. ADIOS
implemented a two-phase IO by aggregating data across
processes and thus reducing the number of writers to the file.
Maintaining a limited number of processes that request write
operations at the same time was crucial to avoid crushing
the file system, and to provide good IO performance at large
scale.

One issue remained however, namely, that a single file
could not exhaust the total bandwidth available from the
file system. Therefore, the BP output format became a
folder with multiple subfiles in it, directing aggregators to
different file targets. When selecting enough but not too
many aggregators, the application could use the entire file
system bandwidth for a single large output. We explained
this format in more detail and explored the aforementioned
issues and our solutions in Liu et al. (2014) and showed great
application write and read performance on then-current HPC
systems. The first figure from this paper is shown here in
Figure 1 to showcase the IO performance improvement, that
applications experienced on early petascale machines when
switching to ADIOS and its BP file format.

Years later, we studied the WarpX application IO
performance on the pre-exascale computer Summit at the
Oak Ridge Leadership Facility, in Wan et al. (2022) and
showed that performing IO with subfiles and chunking of
datasets was far superior to anything else, both for writing
and for overall read performance when retrieving various
sub-selections of multi-dimensional arrays.

Figure 2. Impact of file creation on a moderately small output
data that is written every time. XGC application on Summit,
fixed 40GB output at all scales, per step, 4TB data total in 100
steps. Total runtime of the application was 1240 seconds on
1024 nodes. The strong-scaling performance of ADIOS writing
40GB of data from increasingly more compute nodes (Stream
file case, BP4 format) is completely shadowed by the cost of
creating a new output file (folder) at every output step (File per
step case).

In the beginning of ECP, we implemented ADIOS-2
from scratch and first we re-implemented the BP format
as it was in the old code base, that we named BP3. As
the file systems kept growing (e.g. a GPFS installation
for Summit at Oak Ridge Leadership Facility, a Lustre
installation for Theta at Argonne Leadership Facility), the
BP3 performance was growing as well, and applications
could produce large amount data with low overhead. On
Summit, several application maintained over a terabyte
per second write performance with ADIOS. Increasingly,
another issue become a bottleneck in IO, namely, the cost
of creating a directory with subfiles in it, that took several
seconds when a large parallel application was doing it which
became vastly more than writing datasets that were once
considered large, see Figure 2. It was increasingly more
beneficial to append new output steps into the existing
dataset. However, BP3 was exponentially slowing down due
to its metadata management, which happened to sort each
variables metadata across all output steps, and therefore
had to be completely updated every time a new output was
appended. The BP4 file format organized the metadata per
step, so that appending only increased the metadata but did
not modify the existing one, and thus, it cost nothing to
append new output steps. Moreover, in case of an unexpected
failure, the existing output steps of a BP4 output would not
become corrupted, even if the error occurred during writing,
when the last output step became incomplete or corrupt.
The latter was essential to convince any user to dump all
simulation data into a single large dataset with many output
steps, but the performance gain was substantial, when they
did. Another added benefit of BP4 was that a consumer
could treat it as an ”ADIOS stream” and start consuming
the existing steps before the producer closed the output, then
wait for incoming new steps and continue processing all
steps until the producer stops.

Applications could easily produce several petabytes of
output data in a day on pre-exascale machines using ADIOS
BP format with only a few percent of overhead cost to
their runtime. This success, however, opened up new use

Prepared using sagej.cls

Eisenhauer, et al 3

1 4 16 64 256 1024 4096
Number of Nodes

0

20

40

60

80

100
Pe

rc
en

ta
ge

 (%
)

0% 4% 7% 12% 15% 19%
24%

0

20

40

60

80

100

Se
co

nd
s

WarpX execution on Frontier
Metadata Time as (%) I/O Time
I/O time (s)

Figure 3. The Escalating Relative Cost of ADIOS Metadata
Time in Comparison to Overall I/O Time

cases that brought new problems with scalability. First,
the metadata size to maintain all information about the
individual data blocks on disk is linearly increasing with
the number of processes, number of variables and number
of output steps. At some point, a reader may run out
of memory just trying to process all that metadata when
opening the file. Moreover, collecting and processing all
this metadata is a good chunk of the overall write time and
read time, decreasing the overall IO performance observed
by the application. Second, considering the overall speed of
ADIOS, new GPU applications had the luxury of attempting
to output all data from all GPUs, but there was sometimes
not enough memory on the host to manage all that data
with ADIOS’ aggressive buffering scheme. Therefore, we
set out to design a better metadata representation, a faster
implementation for metadata processing, better memory
management, and support for GPU data in the latest BP5
format. In this paper, we describe the changes from BP4
to BP5, and then show ECP application performance on
Frontier, the first open science exascale computer.

Metadata Concerns
Traditionally, the focus in HPC I/O has been getting
application data to storage as quickly as possible and
metadata costs have been neglected, sometimes for good
reason. For example, if data in files is proactively organized
so that data that was decomposed across multiple writer
ranks is written into physically contiguous file areas, and/or
readers and writers have a priori agreements on those
locations, metadata may not be needed at all. However
a priori agreement is untenable in many cases, and as
noted above, writing from multiple ranks into physically
contiguous file areas can have significant performance
penalties. Therefore ADIOS, like many HPC I/O solutions
Folk et al. (1999); Latham et al. (2003), creates metadata in
the course of moving the data to storage in order to keep track
of the particulars regarding where individual chunks of data
are actually stored.

Additionally, because ADIOS doesn’t require readers to
have full a priori knowledge of what data is written and
instead supports data discovery, metadata also includes the
names, types and dimensionality of the written ADIOS

variables. In the case of structures like ADIOS global
arrays (in which a single logical array can be decomposed
arbitrarily across many writer ranks), metadata for each
written block also includes the N-dimensional geometry of
the array as well as the N-D position and size of each written
block, as well as either the value (for atomic data types) or
information about where the data block has landed in storage
(for arrays).

Prior to exascale systems, metadata was not as significant
a performance concern as data storage, but as shown in
Figure 3 which illustrates characteristics of WarpX I/O at
various scales (measurements performed on Frontier), this
is beginning to change. In particular, the figure shows the
overall I/O time (green line, scale at right) and relative
contribution of the metadata handling overhead within that
I/O time (percentage represented by orange bars). With
increasing scale, the per-rank I/O time remains relatively
constant with ADIOS writing data from all CPU ranks.
However, the ADIOS metadata gather and write time
increases to as much as 24% of the total I/O time. These
trends are not unique to WarpX, but have also been captured
for other metadata heavy applications, including E3SM.
Therefore a re-examination of metadata was a significant
focus of our BP5 efforts.

Metadata basics
Abstractly, each ADIOS output step produces both data and
metadata on each writer rank. Metadata and data have always
been handled separately, in part because of the assumption
that data is large and must be handled carefully, while
metadata could be handled with less caution. But it is also the
case that because data and metadata are consumed differently
by the reader, which may pick and choose what data it wants,
but generally requires significant information from metadata
to support that functionality. Specifically, ADIOS reader-
side semantics allow a reader rank to ask if a variable was
written in a given step (InquireVariable()) and to ask
for its value (for variables of atomic data types) or details
about blocks written by the writer (for arrays). For arrays,
the reader may Get() a specific hyperslab, which might
be derived from blocks contributed by multiple writers. In
order to correctly implement this, each reader rank must
essentially have access to all the writer side metadata (that
is, the metadata block from each writer rank for that step).

In order to support this reader-side requirement for
complete access, the internal ADIOS writer engine
generally:

1. gathers all the metadata blocks to rank 0 using MPI
operations

2. processes the gathered data to produce a single
aggregate block

3. writes the aggregate metadata to a single location.

In the reader implementation of BeginStep(), reader rank
0 reads that aggregate metadata and distributes it to all reader
ranks where it is placed into internal data structures for later
queries. Those internal data structures are then traversed
during ADIOS read operations both to answer application
queries about variables and find the location and geometry
information for data blocks (which is necessary to acquire
the actual data to satisfy Get() operations).

Prepared using sagej.cls

4 International Journal on High Performance Computing Applications XX(X)

Metadata handling is characterized by three basic costs:
writer-side metadata consolidation, processing and storage,
reader-side metadata reading/distribution and installation,
and reader-side data structure traversal costs. Usually the
overhead of metadata handling are inconsequential, but when
an application is producing thousands of variables on tens of
thousands of processes and repeatedly many times, this isn’t
always the case.

BP5 metadata design
Upon examination we identified a number of areas in BP4
metadata handling where there seemed to be room for
improvement. In particular BP4 metadata:

• is relatively large, always including full variable
name and type information with every appearance of
information about a data block

• is built-up piecewise as ADIOS Put()s occur, which
requires full ”parsing” when later read

• doesn’t take advantage of the often-repetitive nature of
HPC communication. I.E.:

– Often each rank is writing the same variables as
every other rank

– Step N+1 tends to repeat the pattern of step N
Additionally we observed that because the BP4 metadata
for an array entry contained the exact byte-offset-in-the-
file location of the data, BP4 metadata construction was
deeply entangled with the BP4 routines responsible for
writing data to disk. While not a performance problem per
se, this property of BP4 metadata made it more difficult
both to change the way data was stored and handled and
made it more difficult to implement the more innovative data
handling techniques described later in this paper.

In order to tackle these problems, BP5 represents
metadata using FFS (Fast Flexible Serialization) Eisenhauer
et al. (2011a), a package developed for high-performance
messaging. FFS has a lot of features, including heterogeneity
management, support for message morphing Agarwala et al.
(2005) and dynamic code generation for filtering and
processing, but for the purposes of ADIOS the feature that
mattered was FFS’ separation of ”message format” from
”message data”. Specifically, if one thought of a message as
a C-style structure (extended with strings, dynamic arrays,
etc.), then the ”message format” is the logical equivalent
to the textual struct definition, while the ”message data” is
the actual representation of that struct in memory. In FFS
messaging, each message format has an associated ”format
ID”, a cryptographic hash over the struct definition. Message
data is tagged with the format ID of the struct definition that
describes it, and upon receipt, these format IDs are used to
quickly identify the handler or specific processing associated
with that message type.

In FFS-based messaging systems, such as EVPath Eisen-
hauer et al. (2009), FFS is generally used to specify the
details of a compile-time structure to be transmitted as a mes-
sage (this is described in detail in Eisenhauer et al. (2011b)).
In this usage, FFS encodes structures directly from sender
memory and upon receipt, transforms incoming messages
into local in-memory structures resolving any differences in
memory representation between sender and receiver (such
as byte-order, pointer sizes, field alignment). However in

adios2::Dims shape { 500, 150 };
adios2::Dims start { 0, 0 };
adios2::Dims start2 { 200, 75 };
adios2::Dims count { 100, 75};
auto VarDouble = io.DefineVariable<double>("scalar_r64");
auto VarArray =

io.DefineVariable<int8_t>("array_i8", shape, start, count);
auto VarLong = io.DefineVariable<long>("scalar_long");
engine.Put(VarDouble, dval);
engine.Put(VarArray, array_data);
engine.Put(VarLong, lval);
VarArray.SetSelection({start2, count});
engine.Put(VarArray, array_data);

Figure 4. Example ADIOS code segment.

BP5 we use FFS in a more dynamic way. Specifically we
represent our step metadata as an aggregate ”structure” that
never exists in any compile-time format, but the structures
description and its memory representation are built up on the
fly on each writer rank as data is presented to ADIOS for
output.

With each Put() of an ADIOS variable on a writer rank,
we build up a virtual ”structure” (the message data), along
with a corresponding struct definition (the message format).
The struct definition includes relatively fixed information
about the variable being output, such as its name, type and
dimensionality, while the structure itself contains only the
few bytes of value (for atomic data types) or the geometry
and block location information (for arrays).

For example, consider the simple ADIOS code sequence
in Figure 4. When this sequence of Put()s is executed in
an ADIOS writer rank, we build up a structure description
and memory representation such as is shown in Figure 5.*
Note the color correspondence between the Put() calls in
Figure 4 and the structure fields in Figure 5. For the first
step on each rank, each Put() operation (which is not
collective in ADIOS) builds up the structure description and
corresnponding entries in the metadata output buffer piece by

∗N.B. This representation is conceptually correct but has been simplified for
presentation. For efficiency, the actual implementation uses nested structures
and encodes more information in the field names (variable name, as well as
data types, applied operators and other internal ADIOS information).

struct virtual_metadata_rep {

}

double scalar_r64;
size_t array_i8_dimensions;
size_t array_i8_block_count;
size_t *array_i8_Shape;
size_t *array_i8_Start;
size_t *array_i8_Count;

int64_t scalar_long;
size_t *array_i8_block_loc;

double
size_t
size_t

size_t* 500 150
size_t* 0 0 200 75
size_t* 100 75 100 75

long
size_t* 758 60758

Memory Image of structC-style description of struct

Figure 5. Virtual metadata structure description (left) and
memory representation (right) after the execution of the code
blocks of Figure 4.

Prepared using sagej.cls

Eisenhauer, et al 5

piece. Subsequent steps use already created structures unless
the Put sequence changes. For example, the code sequence
of Figure 4 is happening on the first step, when the Put()
of VarDouble happens, BP5 adds the field ”scalar r64”
(red in Fig 5) to the structure description and copies the
data value into the metadata output buffer (ADIOS scalar
variables are always stored directly in metadata.) When the
Put(VarArray) happens, a number of fields (in purple)
are added to our virtual structure declaration and to the
output buffer. These fields track the number of dimensions
the output array has, how many output blocks (initially 1),
the Shape, Start and Count values specified in the put, and
finally, the location of the actual data (relative to the start of
this rank’s output data block). Note that several of these fields
are pointers to dynamically sized arrays (a feature supported
by FFS structure marshalling). Similar to what occurred with
the Put(VarDouble), the Put(VarLong) in green
adds a single field to the virtual structure declaration and to
the output buffer. ADIOS allows multiple chunks of a global
variable to be output from any rank on a single step, so here
we depict a 2nd Put(VarArray). In this case, because
VarArray already appears in the metadata structure, rather
than adding more fields, BP5 increments the count in the
existing array_i8_block_count field and appends the
2nd set of Start and Count information after those of the
first Put(). More Put()s would follow a similar pattern,
extending our virtual structure or adding to existing fields,
gradually building up what is essentially a memory image of
the metadata for this step on this rank.

Upon ADIOS EndStep(), the struct definition (the left
side of Figure 5) is registered with FFS and a format ID
calculated. The struct data (the in-memory representation of
the ADIOS metadata on the right side of Figure 5) is then
encoded using FFS and tagged with the struct definition’s
format ID. These two items together, the struct definition and
the struct data, completely describe the metadata for a single
rank in a self-describing way creating BP5’s ”two-level
metadata”. Generally the struct description will be the larger
of the two with the relative sizes impacted by factors such as
the relative frequency of scalar variables vs. arrays and the
length of the variable names employed by the application. In
the simple example of Figure 5, the struct definition is 484
bytes and the encode data structure is 136 bytes. If a single
rank and a single output step were all that were involved,
this separation of struct definition (called ”metametadata”
in BP5) and struct data (simply called ”metadata”) would
merely add additional overhead and the total metadata size
(metadata and metametadata together) would likely be larger
than the BP4 approach. However, with multiple ranks and
multiple steps there are advantages. Because of the nature
of HPC applications, the same set of variables tend to be
written by many different ranks. Because the metametadata
essentially describes the structure of the metadata that is
produced and changes only when the set of written ADIOS
variables changes, different ranks (which perform Put()s
without coordination) independently generate the identical
metametadata block with identical format IDs and because
those IDs are a cryptographic hash of the metametadata
block’s contents those blocks will have the same IDs.

Each unique metametadata block must be available to
the reader in order to understand the metadata, so the

Engine

Number of writer ranks

896 1792 3548 7168 14336
BP4 .145 .277 .572 1.173 2.385
BP5 .066 .141 .265 .512 1.099

Table 1. Per Step writer side metadata cost in seconds
averaged 1000 steps with moderately-intensive metadata (525
arrays, 1000 variables).

metametadata blocks must be aggregated like the metadata
blocks, but the nature of metametadata offers opportunities
for optimization. First, on a single rank, the metametablock is
always offered for aggregation on the first step, but thereafter
it is only offered for aggregation if the set of variables
being written changes (typically rarely in our experience
of HPC applications). Second, when the metametadata and
metadata from multiple ranks are aggregated only the unique
metametadata entries need to be kept. Because each block’s
ID is a cryptograph hash of its contents simply comparing
hashes is an easy way to determine uniqueness. However,
because uniqueness across ranks can only be determined
after metametadata is aggregated and every rank must offer
its metametadata for aggregation on the step, the amount
of information each rank contributes to the aggregation can
be large. In fact, early implementations of BP5 quickly
hit MPI’s 31-bit size limitation for gathering data as the
total size of repeated metametadata spread across over all
processes would become larger than 2GB. This was resolved
by introducing a 2-level metadata aggregation into the BP5
engine and eliminating duplicate metametadata entries at
each level of aggregation, thus keeping its size in check on
each rank at all times.

Comparison of metadata overheads
Table 1 shows a comparison of BP4 and BP5 writer-
side metadata overheads, including per-rank serialization,
aggregation (MPI Gather) and computation overheads of
merging prior to writing to storage. The authors have chosen
this as a good relative measure of metadata performance
because it is independent of storage speed and also
representative of the use of the BP5 format in other engines,
such as in ADIOS’ Sustainable Staging Transport where
metadata is aggregated similarly but is sent over network
connections to simultaneously running ADIOS consumers.
BP5’s reduced metadata size produces improvements in
file storage and network transmission times, but it also
shows gains in computational overhead as compared to
previous implementations. In BP4, after the metadata is
gathered to rank 0, each metadata block is deserialized into
local data structures, then the block information is merged
to consolidate information about each variable, then the
metadata is serialized again into an aggregate block. In
contrast, BP5 does no rank 0 processing of metadata, but
simply concatenates the individual blocks. As is evident in
Table 1 this produces a significant savings over BP4. This
measure does include the MPI_Gather() time, so it is
influenced by metadata size, but the most of the gains are
due to reduced writer-side processing.

However, as BP4 is essentially doing up-front metadata
organization (assembling into a coherent whole metadata that

Prepared using sagej.cls

6 International Journal on High Performance Computing Applications XX(X)

Engine

Number of writer ranks

896 1792 3548 7168 14336
BP4 .074 .147 .302 .596 1.24
BP5 .113 .235 .467 .934 1.92

Table 2. Reader side metadata installation cost in seconds.

was produced over the disparate writer ranks) and rather
than eliminating that cost, BP5 could just be shifting it
to the reader. In order to address this concern, we also
have to measure the costs of making the information in the
metadata available for query in the reader. Both BP4 and
BP5 read raw metadata on rank 0 and use MPI collectives
to broadcast it to the other reader ranks. However, due to
the different designs of BP4 and BP5, BP4 generally does
most of its metadata processing during file Open(), while
BP5 does it on a per-step basis during BeginStep().
Because of these differences we focus on the computational
overhead of preparing the metadata for use rather than
its read or broadcast cost. This focus also serves our
purpose of determining if BP5’s approach has simply shifted
organizational costs from the writer to the reader.

Table 2 gives reader-side metadata preparation (or
”installation”) costs. These costs are incurred on each reader
rank, but since each writer produces metadata they vary with
the number of writer ranks. While Table 1 showed that BP4’s
writer-side metadata organization adds an additional cost,
we do not see those significant costs shifted to the reader
in BP5. While the less-organized metadata does make BP5
metadata slightly more expensive, the additional cost is more
than offset by the savings in writer-side aggregation costs.
This confirms that BP5’s approach to metadata represents
an overall improvement over BP4 and is not just shifting
costs from the writer to the reader. Additionally, as shown
in Figure 3, BP5 metadata is roughly 4x faster than BP4
for traversal, that is, for actually navigating the installed
metadata to locate the information necessary to satisfy a
query. (Here, the measurement represents the total time to
process an ADIOS Get() for each of the written variables
while neglecting the actual data access time).

Given this, and in order to put the metadata overhead
savings in the context of a full application, we compare
the total write time and the produced metadata size with an
E3SM application use case which happens to be the most
difficult case for ADIOS as far as we know. In Figure 6, we
can see that BP5’s metadata size is less than a third of the
BP4 metadata. The overall IO performance is improved by
decreasing the cost of gathering and writing the metadata.
Note that even though the almost 10 GB metadata produced
by 21504 processes sounds a lot, the application data was
29 TB for that run, and therefore it is not the size of the
metadata but the processing time of it that matters. In the last

Engine

Number of writer ranks

896 1792 3548 7168 14336
BP4 .224 .437 .879 1.71 3.46
BP5 .052 .112 .220 .448 .934

Table 3. Reader side metadata traversal cost in seconds.

Figure 6. Metadata size and total runtime performance
comparison of BP4 and BP5 with our E3SM test case. Data size
on 21504 processes is 31 GB per output step.

section of the paper, we will present E3SM results comparing
with the default parallel NetCDF IO driver, as evaluated and
reported by their application team.

Memory management
While Figure 3 showed that metadata can be a significant
performance concern, that was only the case because
data storage was being handled efficiently. However, new
architectures and applications are forcing changes in data
handling as well. For a long time, ADIOS has successfully
traded memory for performance. The BP3/4 engines always
buffer the process’ output in a large buffer, and create a single
I/O request for the entire buffer in each process. Buffering
avoids the most common issue with user level I/O, namely
the small writes, where latency becomes a major player in
downgrading overall performance by orders of magnitude.
Second, since there are many of these large buffers, one
per process, an aggregation scheme must be used to control
the number of active writes at a given time to avoid the
second major pitfall, too many I/O requests. BP3/BP4 uses a
very expensive aggregation scheme in terms of network and
memory usage in order to continuously write with a limited
number of requests while eliminating any gaps between
finishing a request and starting additional write requests.
Contrary to expectations, the large memory consumption
was never an issue for HPC applications as they have been
severely limited by computation power compared to memory
size. Similarly, networks in supercomputers have way much
higher bandwidth for moving data than the underlying file
systems, therefore, moving data from many processes to
the select few aggregator processes paid off for decreasing
the number of active writers to the file system. Even the
largest producers, like global adjoint tomography Bozdağ
et al. (2016), that produced over a petabyte of output, or
particle-in-cell codes (like XGC, GTC fusion codes, and the

Prepared using sagej.cls

Eisenhauer, et al 7

BP5BP4
Aggregator nodeNon-aggregator node Aggregator nodeNon-aggregator node

User Data User DataUser Data User Data

ADIOS buffer

ADIOS MPI
recv buffer

ADIOS buffer

3 Gb

2 Gb

1 Gb

Memory Usage for I/O

Figure 7. Memory consumption during I/O involving 2 processes and about 1.1 GB user data per process, BP4 vs BP5. Best case
scenario where all user variables are larger than 4 MB.

PIConGPU particle acceleration code) that output all their
particles for post-processing could run at the largest scales
possible without any issues with memory or networking.

GPU computing in the time of exascale computers,
however, changed the situation with memory. First,
computation is performed on the GPUs, much faster than on
CPUs, and second, the host main memory is about the size of
the aggregate size of the GPUs in the host. IO still needs to be
performed from the host and its memory therefore, the data
has to be downloaded from the GPU to the host memory by
the application and then pass that data to the IO library, like
ADIOS. For applications like XGC or PIConGPU, there is
simply not enough memory available on the host anymore
for ADIOS buffering all data once again. Therefore, we
had to design a more conservative memory management
as well as aggregation mechanism, that did not consume
so much memory. We devised two separate approaches for
this problem, one is chunked memory buffer, described here,
while the other is GPU-aware IO, where the user can simply
pass the GPU data pointers to ADIOS, which will then copy
the data into the ADIOS buffer on the host memory. The
latter is described in the next section.

The single large buffer was used to eliminate small
individual IO requests, but it is not so important for large user
arrays. We can afford to issue a handful of large IO requests
on one process in quick succession instead of a single one
without performance penalty as the total number of IO
requests across the application at any given time does not
increase. The new chunked memory buffer is composed
of chunks allocated and managed by ADIOS to buffer all
small user data in one or more large buffer chunks. Large user
arrays are not copied anymore, rather, the user data pointer
is added to the list of chunks. During the writing phase, the
process issues the write requests in a loop, and all the data
from the chunks go into a single file into a contiguous space.
Note, that what is small and what is large is dependent on
the system and the application, therefore, the user can set the
limit for buffering. The default size is 4 MB. Any user array
smaller than this limit is still copied into a large contiguous
buffer.

Figure 7 shows the improvement of the memory
consumption from BP4’s buffering to BP5’s chunked
buffering where all user variables are larger than the
buffering limit. Two processes are shown (left vs right),
where process 0 is the aggregator. BP4 engine on the top
half, and BP5 on the bottom half. In BP4, the ADIOS

buffer holds a copy of the user data on each process, and
during aggregation, process 1 sends its data asynchronously
to process 0, hence the additional receiving buffer on process
0. The aggregator process is alternating between two buffers
for writing one to disk while at the same time receiving data
from a another process. In case of BP5, the pointers to user
variables are kept as the entries of the ”buffer chunks”, with
no ADIOS-owned buffer chunk in this ideal scenario. Hence,
there is no copy of the user data. Moreover, the aggregation
strategy is different here, where every process writes its own
data to disk, and only the order of processes, i.e., who is
writing at a given time, is controlled by the aggregation. In
this scenario, ADIOS uses no extra memory for IO.

GPU Aware IO
The BP4 engines is operating exclusively on data allocated
on the Host. Application using the GPU are required to
transfer the data to the Host before handling it over to
ADIOS. During the final years of the ECP project, the GPU-
backend in ADIOS has been developed allowing applications
to pass directly the GPU pointer for both reading and
writing data from/to storage. Figure 8 shows the API and
logic changes inside the BP5 engine to support the GPU-
backend. An ADIOS variable holds two new concepts: the
memory space and layout. These can be either set by the
user directly or set by the Put/Get function by ADIOS
automatically detecting the memory space used to allocate
the passed buffer (Host or Device) and setting the layout
corresponding to the memory space (Right or Left).
Based on the default layout used by the programming
language used by an application (e.g. row major for C++,
column major for Fortran) ADIOS will know if there is a
mismatch between the variable memory space and what BP5
expects and will adjust the ordering of the dimensions to keep
the correct local offsets for global arrays (more details in the
following subsections).

Once the user or ADIOS sets the memory space and layout
for a variable, the BP5 engine can apply operators directly
on the GPU pointer provided by the user. If the operator
is executing on the GPU, this would remove the need for
the operator to allocate memory on the device and copy the
data from Host to Device. The GPU-backend also allows
the operator to return data stored on either the GPU or
CPU. Depending on what the user provides and optionally
what the operator returns (if any operator is applied) BP5
will compute the min and max for each block using the

Prepared using sagej.cls

8 International Journal on High Performance Computing Applications XX(X)

Figure 8. GPU backend framework inside the AIODS2 library: 1) changes to the API on the left; and 2) changes to the internal
logic for moving the data from the user space to storage

corresponding device for each memory space. For GPU
buffers, the memory has to be copied to ADIOS internal
buffers before it can be stored to the disk. For CPU pointers
this step can be skipped depending on the strategy used by
the BP5 engine (more details in the following subsections).

GPU-backend implementation
The API changes to ADIOS are minimal and agnostic to the
implementation solution used to enable the GPU-backend.
Calling the Put and Get functions with GPU pointers is
exactly the same as for CPU pointers. The only changes are
represented by two new functions: i) one that allows users
to set the memory space of a variable to bypass the internal
automatic detection; and ii) one that allows to get the Shape
of a variable on the read side according to a given layout. In
this section we present the implementation considerations of
introducing these two concepts into a variable object.

Automatic detection of the memory space of a given
buffer uses functions provided in Cuda, HIP and SYCL
(e.g. cudaPointerGetAttributes is used for Cuda)
to check if the data array provided by the user has been
allocated on the Host or Device. The detection time is in
order of µs regardless of the backend and system. This is
negligible compared to the write time for most applications
since the detection is triggered only once for the first
Put/Get call on each variable. Once the memory space is
set to Host or Device, it is pinned to this value for the entire
existence of the ADIOS variable. Users can also manually
pin the memory space of a variable if they want to avoid
detecting the space automatically. Even though the overhead
of detecting the memory space is low, this could be desirable
for example when a buffer is allocated on the unified memory
space and the performance implications are not completely
transparent (more on this in the performance section).

An array layout describes how multidimensional arrays
are stored in linear storage. A layout right, or row major
ordering, provides a layout mapping where the rightmost
extent has stride 1, and strides increase right-to-left as
the product of extents. A layout left, or column major
has a reversed mapping with strides increasing left-to-
right. ADIOS was built on the assumption that Host multi
dimensional (MD) arrays are typically using row major when
the code is written in C++ and column major for Fortran. The
ADIOS library itself handles the interoperability between

Figure 9. Example of constructing the global array from local
data distributed over two ranks using different layouts

these two ordering by setting the programming model
when initializing the ADIOS library. This is done at the
level of the entire code. On GPUs, the typical mapping
uses column major regardless of the ordering used by the
programming language for the reason of loop computing
performance. In addition, programming models that are just
starting to support multi-dimensional arrays natively, like
mdspan Hollman et al. (2019) in C++23, boost Koranne
(2011), and Kokkos Trott et al. (2022), now can support
both layouts. Adding the concept of layout inside each
variable allows ADIOS to handle the dimensions of each
multi-dimensional variable regardless of where the array for
output/input was allocated, what layout is being used at write
and read, and in what programming language the producer
and consumer applications were written.

Since ADIOS implements the concept of MD arrays by
default, users need to provide the shape of the global array
as well as the local shape of the array that each rank is
responsible for. For example, in Figure 9, ranks are writing a
2x6 global array with each rank populating half of the global
array. The GPU-aware backend allows different layouts for
the global array (the figure is illustrating the same array using
Layout Right and Left) without requiring the user to update
the code for each case. The user defines the shape of the
global array and ADIOS adjusts the dimensions for each rank
according to the buffer layout and memory space.

To enable the computation of the block statistics
(min/max) on the GPU and the copy of GPU allocated data
into the ADIOS internal buffers, ADIOS is using two GPU

Prepared using sagej.cls

Eisenhauer, et al 9

Figure 10. Write bandwidth at 10GB per process on Summit
(allocated on the host and without computing min/max) when
using BP5 with and without the GPU backend

backends using a Cuda and a Kokkos based implementations.
The Cuda backend has the advantage of providing the desired
functionality with the native NVidia GPU library but it
only supports NVidia devices, while the Kokkos backend
is portable on any system with a GPU but requires the
Kokkos library. The performance between the two backends
is extremely similar, thus for the rest of the paper, we only
show the results using the Kokkos backend. Moreover, for
buffers allocated on the Host, the GPU-aware ADIOS uses
the initial BP5 logic so there is only an overhead for detecting
the Host buffer (which is negligible). Thus, the restuls when
using Host buffers when the GPU-backend is enabled are
identical with the original code. For the rest of the paper,
Host buffers will only use BP5 without the GPU-backend
enabled.

Figure 10 shows the write bandwidth when writing 1GB
of data per rank (without computing the min/max) using the
GPU-backend and the original BP5 code to highlight the
overheads of using GPU allocated buffers. The bandwidth is
computed as the total amount of data written divided by the
total time it takes ADIOS to write the data (the time between
when the Put is called to when the data is writen to the
storage). This means the bandwidth for Host pointers does
not include the time it takes the user to transfer GPU data
to Host. In our experiments, we measured an approximate
bandwidth of 20 GB/s for transferring data between the
device and host on an AMD Mi250 for 1 GB of data, which
represents around 50 ms. Overall this overhead represents
less than 4% of the total write time. Other GPU architecture
might have higher impact, but if the simulation/user data is
on the Device, this cost will have to be paid anyway either
on the user side on within ADIOS. The BP5 engine does
not always copy the host data to internal buffers (if the host
array is larger than 4MB, BP5 uses by default the user buffer
directly for writing to storage). The sync parameter can be
used in a Put call to force ADIOS to copy the data to internal
buffers. This is useful, for example, when the user wants to
reuse their buffer after a Put call. For Device buffers, the
GPU-backend always has to copy the user buffer leading to
the performance difference between the GPU-backend and
the default strategy for BP5 in Figure 10. Note that for the
GPU-backend the user can immediately reuse the buffer after
a Put call and also that the BP5 default times do not include
allocating data on the host and copying the data between
device and host. If these times are included the overhead for
the GPU-backend compared to BP5 will be almost 0.

Figure 11. On node performance of the GPU-backend
compared to BP5 using Host pointers: 1) time spend in BP5
related to computing the stats; 2) percentage of time spent in
different parts of BP5: write time, stats computation, copy

As long as the simulation is using Device pointers, the
memory footprint of the GPU-backend is the same as the
default BP5 with the difference that the simulation will not be
the one handling the Host pointers. The GPU-backend will
use less memory compared to the BP5 in Sync mode since
the Host array will not have to be kept in two copies (the
host user buffer and the ADIOS internal buffer).

GPU-backend performance
In this section we look at the performance of each component
in BP5 influenced by the GPU-backend, mainly: i) we
investigate the performance of computing the stats (min/max
values) for each block of data; ii) we show the impact of
allocating buffers on the unified memory space; iii) we show
the performance of operators that can be applied to data
before writing and have the option of using the Device.

Stats computation. ADIOS computes by default the min
and max value of each block for each variable (where a block
is represented by data on one rank). Figure 11 top shows the
performance of computing stats for different data sizes using
Host and Device pointers on different architectures for one
node runs. For very small array sizes (less than a few MB of
data) the overhead of launching kernels to compute the stats
exceeds the speed-up of using the GPU. However, using the
GPU is one or two orders of magnitude faster than computing
the stats on the CPU even for small array size. The process
is embarrassingly parallel since the stats are independently
computed on each rank so these results hold at scale as well.
Figure 11 bottom show the percentage of time spent in each
stage of the writing process inside ADIOS (POSIX write,
stats computation, copy the data to the internal buffers). For
the Host results, the user buffer is used to write data to
storage so the cost of copy only accounts for updating the

Prepared using sagej.cls

10 International Journal on High Performance Computing Applications XX(X)

Figure 12. I/O bandwidth for one step of S3D data (1.5TB total
size) accessed by 900 ranks using Host or Device pointers

metadata and it is very low. As in our previous results, since
the copy between device and host is not happening inside
ADIOS, this time is not measured in the figure for Host
pointers but should be taking into consideration is the user
code is dealing with Device data. The results in figure 11 are
single node, at scale the write time might increase slightly,
making the percentage spent in computing the stats slightly
smaller. Overall, the results clearly show that for the GPU-
backend, computing the stats becomes almost negligible.

To better understand the GPU-backend performance at
scale, we ran the S3D application Im et al. (2012), a code that
solves a direct numerical simulation of turbulent combustion
and we did separate runs using Host and Device pointers to
read and write the data. The S3D application is outputting
1.5 TB of data, at every step, containing five 3D and one 4D
global arrays. Figure 12 shows the write and read bandwidth
for BP5 when using 900 ranks spread out on 17 nodes and
using 68 GPUs. The amount of data per rank is 1.3 GB for
the 4-D array and 400 MB divided between the rest of the
3-D arrays. BP5 using Host buffers does not copy the data
to internal buffers. When using device buffers, the overhead
of transferring the data from device to host is completely
hidden by the speed-up in computing the stats for the 4-D
array, achieving a 20% speed-up compared to using Host
buffers. The read time is slightly higher when using Device
pointers due to the cost of moving the data to the device after
reading (but the same cost would have to be paid anyway on
the application for GPU codes).

Unified Virtual Memory. UVM is a single memory
address space accessible from any processor in a system.
Depending on where the memory is physically initially
allocated, accessing data could trigger page migrations and
will have different order of magnitude performance. We
made experiments on NVIDIA Quadro RTX with Cuda
12 and noticed that the detection CUDA detection system
inside ADIOS identifies UVM allocated buffers as Host
buffers regardless of where they were initially allocated.
While the data is reachable from the CPU, computing the
stats and moving the data to storage encounters a penalty in
this case. On a NVIDIA Quadro RTX, the page migration
bandwidth was around 1 GB/s compared to around 50 GB/s
for explicitly using Kokkos to copy the memory to the host.
Additionally the stats would not be computed on the GPU
when Host is detected as the buffer memory space. For 1GB
of data per rank this slowdown would account for spending
1s compared to less than 0.05s in stats computation for a
write operation of around 2-3s. Other processors/drivers will
have a different trade-off, but UVM performance needs to be

Figure 13. Write time with BP5 for 9 GB of data per rank
allocated on Host or Device, when applying the ZFP
compressing operator (for different compression rates)

better understood when used together with the GPU-backend
in ADIOS. Our recommendation is for users to set the
ADIOS backend to the appropriate memory space for each
given architecture and not rely on the automatic detection
when using UVM. We plan to investigate this matter further
in the future.

GPU-aware operators. ADIOS is capable of attaching
operators to data and automatically applying them before
writing data to storage. One type of operators frequently
used is a compressor like ZFP Diffenderfer et al. (2019)
or Mgard Gong et al. (2023). If Device pointers are being
used by the simulation, the GPU-backend in ADIOS will
forward the Device pointer directly to the operators (if they
are capable of running on the GPU). Figure 13 shows the
total write time when applying the ZFP compressor operator
to 9 GB of data per rank allocated on either Host on Device.
Depending on the memory space used, ZFP is compressing
the data on the device or host before returning control to
ADIOS that will afterwards write the compressed data to the
storage. The horizontal ax in the figure is represented by the
compression rate (the ratio between the compressed data over
the total amount of data). For the first bar (compression rate
of 1), the data is not compressed so the 10% performance
difference is given by the speed-up of computing the stats
on the Device. Overall, BP5 is able to compress and write
data much faster when using the GPU-backend. For a
compression rate of 0.16, for example, the data per rank
is compressed to 1.4 GB (regardless of the backend) and
the write time is decreased by a factor of 3.6x due to both
compressing the data and computing the stats on the GPU.

Application performance

WarpX particle accelerator simulations
WarpX is an AMR-based particle-in-cell (PIC) accelerator
physics modeling code that uses the AMReX framework.
The winners of the 2022 Gordon Bell Prize Fedeli et al.
(2022) used WarpX to successfully simulate a Laser Wake-
field electron Accelerator targeting a hybrid solid-gas
target, a large computational problem requiring an exascale
computer.

OpenPMD Huebl et al. (2015) is an open meta-data
schema that provides meaning and self-description for data
sets in science and engineering. WarpX uses openPMD for
application level I/O while in turn openPMD uses ADIOS2

Prepared using sagej.cls

Eisenhauer, et al 11

or HDF5 as drivers for permanent storage. The ADIOS2
driver also enables staging data between applications using
the openPMD API.

The BP4 file format was developed during the ECP project
to improve the WarpX application’s IO performance, by
eliminating the cost of appending new output steps to an
existing dataset and doing that robustly so that in case of
an application or IO failure the entire dataset would be
still readable up to the one before the last output step. We
also studied both write and read performance of ADIOS in
WarpX in Wan et al. (2022) and showed that performing
IO with subfiles and chunking of datasets was far superior
to anything else, both for writing and for overall read
performance when retrieving various sub-selections of multi-
dimensional arrays.

WarpX-related BP5 development was not for improving
the I/O performance of WarpX further, but for decreasing
the memory usage of ADIOS. This application writes all
particle and field data from the GPUs to disk, writing about
80% of the GPU memory content. The new chunked memory
management avoids making a copy of the large variable
during IO in each local process. Additionally, BP5’s new
data aggregation implementation avoids sending one process
output at once to the aggregator, further decreasing the
overall memory consumption during the writing phase.

Figure 14. WarpX I/O performance on Frontier during early
access using ADIOS. Best runs at each node size.

We evaluated WarpX I/O during the early access to
Frontier, running the standard Laser Wake-field electron
Accelerator test case that can be scaled up to arbitrary sizes.
We only increased the output frequency beyond what is
practical to stress test the IO without spending too much
machine time for the evaluation. Figure 14 shows that the
IO using ADIOS BP5 scaled very well up to the half of
Frontier, reaching a peak of almost 8 TB/s throughput in the
best run, and still held up well on 6K nodes. In general, large
WarpX simulation runs can expect close to 5 TB/s writing
throughput on Frontier and in practice, i.e., with less frequent
outputs, the IO overhead compared to the runtime should be
negligible.

XGC fusion simulation
XGC (X-point Gyrokinetic Code) is a global gyrokinetic
particle-in-cell code, which specializes in the simulation
of the edge region of magnetically confined thermonuclear

fusion plasma. This code has been using ADIOS since before
the first release of the IO library and has been driving the
requirements for large scale IO development from before
petascale computing. In the ECP Whole Device Modeling
Application project, XGC was used to simulate the edge of
the plasma, the turbulent region of the tokamak, while it
was strongly coupled to another code (either GENE Merlo
et al. (2021) or GEM Cheng et al. (2020)) that simulated the
core of the plasma. ADIOS staging was used to perform the
frequent data transfer between the simulation codes, as well
as to the many in situ visualization and performance tracing
tools running at the same time.

Figure 15. XGC checkpoint I/O performance on Frontier during
early access using ADIOS. Best runs at each node size.

We measured the checkpoint writing of XGC when
running the XGC_ITER_15MA case, one of the largest ITER
fusion device simulations that the XGC team was using at
that time. This simulation produced a 69 TB checkpoint
when running on 4096 node. We measured XGC after the
WarpX studies, still in the early access phase of Frontier.

Simple Cloud Resolving E3SM Atmosphere
Model (SCREAM)
ADIOS was used as one of the I/O back-end for the ultra
high-resolution atmospheric simulations Taylor et al. (2023)
that won the 2023 Gordon Bell Prize. The Simple Cloud
Resolving E3SM Atmosphere Model (SCREAM) was run
on almost the entire Frontier, with a 3.25 km horizontal
resolution and 128 vertical layers with a model top at 40
km for global cloud resolving. SCREAM uses the Software
for Caching Output and Reads for Parallel I/O (SCORPIO)
library, which provides an interface layer to various I/O
libraries, including Parallel NetCDF Latham et al. (2003) and
ADIOS for HPC, for reading input and writing model output
as well as restart files.

We have worked closely with the SCORPIO development
team during the ECP project to develop the ADIOS driver
in SCORPIO. We have used various test cases (atmospheric
(F case), ocean-ice (G case) and land simulation (I case))
with different IO requirements, and finally a SCREAM test
case. The performance of the BP5-based ADIOS driver was
2-16x faster than the second best PNetCDF driver as seen
in Figure 16. It is worth to point out that the F-case and
its higher resolution twin, the SCREAM case, would run
out of memory when writing to the BP4 format. The new
metadata design and the new memory management of BP5

Prepared using sagej.cls

12 International Journal on High Performance Computing Applications XX(X)

was necessary in this project to be able to output all the data
from this applications.

Figure 16. E3SM I/O performance on Frontier using ADIOS vs
PNetCDF. SCREAM, ocean/ice, land, and atmospheric cases.
Result provided by the SCORPIO team.

The runs for the Gordon Bell winning paper Taylor
et al. (2023) achieved even better performance with ADIOS,
achieving 135 GB/s overall write throughput on 8K nodes
(and 234 GB/s on 2K nodes). It is worthwhile to mention
that the largest data file, the actual simulation data they were
interested in, was being written at 1576 GB/s, showing that
ADIOS works best with large output arrays. ADIOS still
struggles when lots of small arrays are written from across
many processors due to the metadata cost that cannot be
amortized with the data writing phase.

Notes on the application tests
We ran the WarpX and XGC tests in the early access phase
of Frontier, when the machine network was not stable when
large jobs were performing communication, and therefore we
got too few successful runs at 4K and above sizes to establish
a reliable throughput value. We present the best runs in this
paper that shows the potential write speed of this applications
using ADIOS. The E3SM tests results were reported by
the SCORPIO developers and the SCREAM developers
themselves at a later stage when they were evaluating E3SM
for the Gordon Bell Prize. Nevertheless, we can see both
from Figure 14 and 15 and from the numbers reported by
SCREAM, that the write performance peaks around 2K-
4K nodes for these applications, and drops beyond that.
In previous smaller supercomputers, ADIOS was keeping
performance close to the limits, not dropping at the top. In
the future, we will investigate where ADIOS may over stress
the file system at large scale and tune its runtime parameters
or tune an algorithm inside ADIOS to keep the performance
at the maximum.

Conclusion
In this paper, we have presented the latest design choices in
the ADIOS system that provide scalable IO performance for
exascale HPC applications. We discussed the implications of
the file format design on its metadata sizes and designed
a new one that is smaller and faster. We changed the
memory management in ADIOS so that even the largest data
producers can use it on the largest systems. We made ADIOS

GPU-aware, so that applications can pass device pointers to
ADIOS to write and read data from GPU to disk and back
to GPU memory. Finally, we showed the IO performance
of three applications from the Exascale computing program
running on Frontier and show how our new designs can
achieve performance close to the peak of the leadership
computing systems.

Acknowledgements

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

References

Agarwala S, Eisenhauer G and Schwan K (2005) Lightweight
morphing support for evolving middleware data exchanges
in distributed applications. 25th IEEE International
Conference on Distributed Computing Systems (ICDCS’05) :
697–706URL https://api.semanticscholar.org/

CorpusID:2190657.
Bozdağ E, Peter D, Lefebvre M, Komatitsch D, Tromp J, Hill

J, Podhorszki N and Pugmire D (2016) Global adjoint
tomography: first-generation model. Geophysical Journal
International 207(3): 1739–1766. DOI:10.1093/gji/ggw356.
URL https://doi.org/10.1093/gji/ggw356.

Cheng J, Dominski J, Chen Y, Chen H, Merlo G, Ku SH, Hager
R, Chang CS, Suchyta E, D’Azevedo E, Ethier S, Sreepathi S,
Klasky S, Jenko F, Bhattacharjee A and Parker S (2020) Spatial
core-edge coupling of the particle-in-cell gyrokinetic codes
GEM and XGC. Physics of Plasmas 27(12): 122510. DOI:
10.1063/5.0026043. URL https://doi.org/10.1063/

5.0026043.
Diffenderfer J, Fox AL, Hittinger JA, Sanders G and Lindstrom

PG (2019) Error analysis of zfp compression for floating-point
data. SIAM Journal on Scientific Computing 41(3): A1867–
A1898. DOI:10.1137/18M1168832. URL https://doi.

org/10.1137/18M1168832.
Eisenhauer G, Wolf M, Abbasi H, Klasky S and Schwan K

(2011a) A type system for high performance communication
and computation. 2011 IEEE Seventh International Conference
on e-Science Workshops : 183–190URL https://api.

semanticscholar.org/CorpusID:7893343.
Eisenhauer G, Wolf M, Abbasi H, Klasky S and Schwan K

(2011b) A type system for high performance communication
and computation. In: 2011 IEEE Seventh International
Conference on e-Science Workshops. pp. 183–190. DOI:10.
1109/eScienceW.2011.16.

Eisenhauer G, Wolf M, Abbasi H and Schwan K (2009)
Event-based systems: opportunities and challenges at exas-
cale. In: Proceedings of the Third ACM International
Conference on Distributed Event-Based Systems, DEBS ’09.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781605586656, pp. 1–10. DOI:10.1145/

Prepared using sagej.cls

https://api.semanticscholar.org/CorpusID:2190657
https://api.semanticscholar.org/CorpusID:2190657
https://doi.org/10.1093/gji/ggw356
https://doi.org/10.1063/5.0026043
https://doi.org/10.1063/5.0026043
https://doi.org/10.1137/18M1168832
https://doi.org/10.1137/18M1168832
https://api.semanticscholar.org/CorpusID:7893343
https://api.semanticscholar.org/CorpusID:7893343

Eisenhauer, et al 13

1619258.1619261. URL https://doi.org/10.1145/

1619258.1619261.
Fedeli L, Huebl A, Boillod-Cerneux F, Clark T, Gott K, Hillairet

C, Jaure S, Leblanc A, Lehe R, Myers A, Piechurski C, Sato
M, Zaı̈m N, Zhang W, Vay JL and Vincenti H (2022) Pushing
the frontier in the design of laser-based electron accelerators
with groundbreaking mesh-refined particle-in-cell simulations
on exascale-class supercomputers. In: Proceedings of the
International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’22. IEEE Press. ISBN
9784665454445, pp. 1–12.

Folk M, Cheng A and Yates K (1999) Hdf5: A file format and
i/o library for high performance computing applications. In:
Proceedings of Supercomputing, volume 99. pp. 5–33.

Godoy WF, Podhorszki N, Wang R, Atkins C, Eisenhauer G, Gu
J, Davis P, Choi J, Germaschewski K, Huck K, Huebl A, Kim
M, Kress J, Kurc T, Liu Q, Logan J, Mehta K, Ostrouchov G,
Parashar M, Poeschel F, Pugmire D, Suchyta E, Takahashi K,
Thompson N, Tsutsumi S, Wan L, Wolf M, Wu K and Klasky
S (2020) ADIOS 2: The adaptable input output system. A
framework for high-performance data management. SoftwareX
12: 100561. DOI:https://doi.org/10.1016/j.softx.2020.100561.

Gong Q, Chen J, Whitney B, Liang X, Reshniak V, Banerjee T,
Lee J, Rangarajan A, Wan L, Vidal N, Liu Q, Gainaru A,
Podhorszki N, Archibald R, Ranka S and Klasky S (2023)
Mgard: A multigrid framework for high-performance, error-
controlled data compression and refactoring. SoftwareX
24: 101590. DOI:https://doi.org/10.1016/j.softx.2023.101590.
URL https://www.sciencedirect.com/science/

article/pii/S2352711023002868.
Hollman DS, Lelbach BA, Edwards HC, Hoemmen M, Sunderland

D and Trott CR (2019) mdspan in c++: A case study in the
integration of performance portable features into international
language standards. In: 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in
HPC (P3HPC). pp. 60–70. DOI:10.1109/P3HPC49587.2019.
00011.

Huebl A, Lehe R, Vay JL, Grote DP, Sbalzarini I, Kuschel S,
Sagan D, Mayes C, Pérez F, Koller F and Bussmann M (2015)
openPMD: A meta data standard for particle and mesh based
data. https://github.com/openPMD. DOI:10.5281/zenodo.
591699. URL https://www.openPMD.org.

Im HG, Trouve A, Rutland CJ and Chen JH (2012) Terascale
high-fidelity simulations of turbulent combustion with detailed
chemistry. DOI:10.2172/1048137. URL https://www.

osti.gov/biblio/1048137.
Koranne S (2011) Boost C++ Libraries. Boston, MA:

Springer US. ISBN 978-1-4419-7719-9. DOI:10.1007/
978-1-4419-7719-9 6. URL https://doi.org/10.

1007/978-1-4419-7719-9_6.
Latham R, Zingale M, Thakur R, Gropp W, Gallagher B,

Liao W, Siegel A, Ross R, Choudhary A and Li J
(2003) Parallel netcdf: A high-performance scientific i/o
interface. In: SC Conference. Los Alamitos, CA, USA:
IEEE Computer Society, p. 39. DOI:10.1109/SC.2003.
10053. URL https://doi.ieeecomputersociety.

org/10.1109/SC.2003.10053.
Liu Q, Logan J, Tian Y, Abbasi H, Podhorszki N, Choi JY, Klasky

S, Tchoua R, Lofstead J, Oldfield R, Parashar M, Samatova N,
Schwan K, Shoshani A, Wolf M, Wu K and Yu W (2014) Hello

adios: the challenges and lessons of developing leadership class
i/o frameworks. Concurrency and Computation: Practice and
Experience 26(7): 1453–1473. DOI:https://doi.org/10.1002/
cpe.3125. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/cpe.3125.
Merlo G, Janhunen S, Jenko F, Bhattacharjee A, Chang CS,

Cheng J, Davis P, Dominski J, Germaschewski K, Hager
R, Klasky S, Parker S and Suchyta E (2021) First coupled
GENE–XGC microturbulence simulations. Physics of Plasmas
28(1): 012303. DOI:10.1063/5.0026661. URL https://

doi.org/10.1063/5.0026661.
Polte M, Lofstead J, Bent J, Gibson G, Klasky SA, Liu Q,

Parashar M, Podhorszki N, Schwan K, Wingate M and Wolf
M (2009) ...and eat it too: high read performance in write-
optimized hpc i/o middleware file formats. In: Proceedings
of the 4th Annual Workshop on Petascale Data Storage,
PDSW ’09. New York, NY, USA: Association for Computing
Machinery. ISBN 9781605588834, p. 21–25. DOI:10.1145/
1713072.1713079. URL https://doi.org/10.1145/

1713072.1713079.
Taylor M, Caldwell PM, Bertagna L, Clevenger C, Donahue

A, Foucar J, Guba O, Hillman B, Keen N, Krishna J,
Norman M, Sreepathi S, Terai C, White JB, Salinger AG,
McCoy RB, Leung LyR, Bader DC and Wu D (2023) The
simple cloud-resolving e3sm atmosphere model running on the
frontier exascale system. In: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’23. New York, NY, USA:
Association for Computing Machinery. ISBN 9798400701092,
pp. 1–11. DOI:10.1145/3581784.3627044. URL https:

//doi.org/10.1145/3581784.3627044.
Tian Y, Klasky S, Abbasi H, Lofstead JF, Grout RW, Podhorszki

N, Liu Q, Wang Y and Yu W (2011) Edo: Improving
read performance for scientific applications through elastic
data organization. 2011 IEEE International Conference
on Cluster Computing : 93–102URL https://api.

semanticscholar.org/CorpusID:18030868.
Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V,

Ellingwood N, Gayatri R, Harvey E, Hollman DS, Ibanez
D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A,
Rajamanickam S, Simberg M, Sunderland D, Turcksin B and
Wilke J (2022) Kokkos 3: Programming model extensions
for the exascale era. IEEE Transactions on Parallel and
Distributed Systems 33(4): 805–817. DOI:10.1109/TPDS.
2021.3097283.

Wan L, Huebl A, Gu J, Poeschel F, Gainaru A, Wang R, Chen
J, Liang X, Ganyushin D, Munson T, Foster I, Vay JL,
Podhorszki N, Wu K and Klasky S (2022) Improving i/o
performance for exascale applications through online data
layout reorganization. IEEE Transactions on Parallel and
Distributed Systems 33(4): 878–890. DOI:10.1109/TPDS.
2021.3100784.

Prepared using sagej.cls

https://doi.org/10.1145/1619258.1619261
https://doi.org/10.1145/1619258.1619261
https://www.sciencedirect.com/science/article/pii/S2352711023002868
https://www.sciencedirect.com/science/article/pii/S2352711023002868
https://www.openPMD.org
https://www.osti.gov/biblio/1048137
https://www.osti.gov/biblio/1048137
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.org/10.1007/978-1-4419-7719-9_6
https://doi.ieeecomputersociety.org/10.1109/SC.2003.10053
https://doi.ieeecomputersociety.org/10.1109/SC.2003.10053
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3125
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3125
https://doi.org/10.1063/5.0026661
https://doi.org/10.1063/5.0026661
https://doi.org/10.1145/1713072.1713079
https://doi.org/10.1145/1713072.1713079
https://doi.org/10.1145/3581784.3627044
https://doi.org/10.1145/3581784.3627044
https://api.semanticscholar.org/CorpusID:18030868
https://api.semanticscholar.org/CorpusID:18030868

	Introduction
	A brief history of BP format

	Metadata Concerns
	Metadata basics
	BP5 metadata design
	Comparison of metadata overheads
	Memory management

	GPU Aware IO
	GPU-backend implementation
	GPU-backend performance

	Application performance
	WarpX particle accelerator simulations
	XGC fusion simulation
	Simple Cloud Resolving E3SM Atmosphere Model (SCREAM)
	Notes on the application tests

	Conclusion

