Cognitive IoT and Edge Computing for Intrusion
Detection with Federated TinyML

Mingyan Li
Oak Ridge National Laboratory
lim3 @ornl.gov

Mike Huettel
Oak Ridge National Laboratory
huettelmr @ornl.gov

Sam Hollifield
Oak Ridge National Laboratory
hollifieldsc @ornl.gov

Abstract—Internet of Things (IoT) and Edge Computing (EC)
are rapidly becoming an integral part of the modern society.
By 2030, there is estimated to be over 40 billion active and
connected IoT devices [1]. This rapid progress also comes with
a significant implication on cybersecurity. Back-end infrastruc-
ture and systems have a much broader attack than they did
previously due to vulnerable IoT/EC devices being connected to
wireless networks. This expanding attack surface is a growing
concern because IoT/EC are increasingly being used in critical
systems such as power grids, health care, and smart homes.
To effectively address a problem of this scale, cognitive cyber
methods—which can autonomously detect and react to cyber
attacks as they develop—are needed. To address this, we bring
Artificial Intelligence (AI) and Machine Learning (ML) to IoT/EC
devices, using tinyML to monitor voluminous IoT data against
cyber threats, and using Federated Learning (FL) to share local
detection knowledge across the system while preserving privacy.
We propose a novel three-layer architecture: (1) an IoT layer
for tinyML-based inference, (2) an edge layer for ML model
training, and (3) a cloud layer for FL operations. Using the
publicly available 11-class N-BaloT dataset [2], we demonstrate
that this architecture mitigates resource constraints at the IoT
layer while improving detection accuracy over standard two-
layer designs. An outlier-resistant scaler, feature reduction, and
quantization enable the tinyML model to maintain detection
accuracy with a reduced model size. Additionally, federated

This manuscript has been co-authored by UT-Battelle, LLC, under contract
DEACO05-000R22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irre-
vocable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Copyright and Reprint Permission: Abstracting is permitted with credit to
the source. Libraries are permitted to photocopy beyond the limit of U.S.
copyright law for private use of patrons those articles in this volume that carry
a code at the bottom of the first page, provided the per-copy fee indicated
in the code is paid through Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923. For reprint or republication permission, email to
IEEE Copyrights Manager at pubs-permissions @ieee.org. All rights reserved.
Copyright ©2025 by IEEE.

Paul Laiu
Oak Ridge National Laboratory
liaump@ornl.gov

Isaac Sikkema
Oak Ridge National Laboratory
sikkemaic @ornl.gov

Jeff A. Nichols
Oak Ridge National Laboratory
nicholsja2 @ornl.gov

Mahim Mathur
Oak Ridge National Laboratory
mathurm@ornl.gov

Max Hankins
Oak Ridge National Laboratory
hankinswm@ornl.gov

learning that only utilizes the intersection (across heterogenous
devices) of the reduced feature set achieves superior detection
accuracy compared to locally trained models.

Index Terms—federated learning, tinyML, IoT intrusion de-
tection, cognitive cyber, IoT security architecture

I. INTRODUCTION

The ubiquity of IoT/EC devices underscores their critical
role in our computing infrastructure, fundamentally driving
unprecedented levels of connectivity and efficiency in our daily
lives. However, out of the 40 billion IoT devices expected
to be connected by 2030, over half may be vulnerable to
cyber-attacks [3]. IoT/EC vulnerabilities are being exploited
in sophisticated multi-step campaigns with devastating effects
that spread across the broader system of systems (e.g., data
centers or smart grid ecosystems). For example, the 2013
Target data breach [4] that led to large-scale cyber fraud and
compromised more than 41 million customer accounts. The
multi-step campaign leveraged a virus compromise of Point
of Sales IoT/EC devices, illustrating how IoT/EC vulnera-
bilities allow adversaries to bypass security of a large-scale
enterprise even when traditional intrusion routes are well-
defended. Another example is Mirai malware and its variants
that launched distributed denial-of-service (DDOS) attacks
from IoT almost crippling the Internet in 2016, endangering
both critical systems and human lives [5].

Detection of IoT/EC-level attacks remains a challenge since
it needs to be performed at the local device to enable low-
latency decision making and privacy of local network traffic.
For example, the N-BaloT [2] dataset contains both normal
and attack network traffic from nine commercial IoT devices
during Mirai and Bashlite family botnet attacks. Principal
Component Analysis on N-BaloT shows observable network
traffic differs from device to device [6], due to IoT device-
to-device communication patterns and intrinsic characteristics
differences (e.g., manufacturers, types, functionalities). This

visibility constraint implies detection must take place locally,
yet today’s IoT lacks intelligence to recognize threats, es-
pecially zero-day exploits. In addition to the challenge of
on-device intelligent detection, yet another challenge is to
accurately process a myriad of diverse, multi-mode data across
heterogeneous IoT [7]. This leads us to examine AI/ML
approaches to help address the issues.

The Internet of Things Cybersecurity Improvement Act of
2020 (Public Law No: 116-207, H.R. 1668) mandates National
Institute of Standards and Technology (NIST) and the Office of
Management and Budget (OMB) to enhance IoT cybersecurity.
As ToT/EC adoption expands across critical infrastructure,
including smart grids and distributed energy resources (DER),
ensuring robust security measures becomes increasingly vi-
tal. Even IoT-enabled smart homes, as extensions of larger
networked systems, introduce new attack vectors. Our goal
is to provide cognitive cyber detection and adaptive response
capabilities to address these emerging threats..

II. RELATED WORK
A. TinyML

TinyML, an approach that enables ML on ultra-low power
devices, has emerged as a highly active research area [8].
The goal of applying tinyML on IoT devices is to meet the
memory and computational limitation of IoT/MCU devices,
while maintaining models’ accuracy [9].

While tinyML has witnessed applications in diverse fields
such as healthcare, agriculture, transportation, and surveil-
lance [10], its potential in cyber threat detection and network
traffic anomaly detection has been relatively underexplored
[11], [12]. In [11], a Naive Bayes based tinyML model is
employed to predict threats from IoT log data, in conjunction
with MITRE’s published cybersecurity vulnerabilities. An-
other study [12] compares the energy consumption of various
ML models in cloud, edge, and tinyML inferences at MCUs
for IoT intrusion detection. Other works also explored com-
pressed ML models to realize on-device intrusion detection
without using the term “tinyML” [6], [13]. However, none
of these works treats the device and data heterogeneity issue
DRIFT faces. As noted in [8], it is challenging to adopt a
specific tinyML model in a heterogeneous IoT environment,
and this requires more research.

B. Federated Learning

Federated learning (FL) [14]-[16] is a machine learning
paradigm that builds a global predictive model on a central
server from data distributed on multiple local devices. On the
central server, FL iteratively aggregates local models trained
with the computation resource on the local devices to obtain
the global model, which is expected to be more generalizable
and robust than each of the local models after the aggregation.
FL differs from traditional distributed optimization in that FL
does not require sharing the local data on each device with
either the server or other local devices and that the privacy of
each local dataset should be protected. In the context of cyber-
security, keeping the data local implies the reduction of attack

surface and communication cost. Given the growing number
of IoT and edge devices, the communication cost could easily
be the computational bottleneck for training machine learning
models from data distributed on these devices, which makes
FL well-suited for realizing practical machine learning assisted
cybersecurity enhancement tools. This feature also enables FL
to perform machine learning tasks on private, sensitive data.
In fact, many recent works on FL have been focusing on the
protection of data privacy [17]-[19], including healthcare data
[20], [21], audio recording data [22], [23] and household smart
meter data [24], [25]. Applying FL to detect cybersecurity
attacks on distributed systems has recently gained attention
[26], [27]. Existing work has shown that FL is able to provide
a global model that outperforms the local models. Many of
the existing work use variants of a classical FL method,
Federated averaging (FedAvg) [28], which computes the global
model parameters as a weighted average of the local model
parameters and thus requires that the local ML models share
the same architecture. Therefore, for tinyML models that share
both model architecture and prediction tasks, standard FL
techniques are well-positioned that we expect them to give a
boost in model accuracy over each individually trained model.

C. Federated Learning with tinyML for loT

Existing works targeting resource-constrained devices, such
as IoT or edge devices, often focus on either tinyML or FL
independently, as noted in [29]. While recent research has
explored the intersection of tinyML and FL, none have directly
addressed intrusion detection in IoT or edge devices.

For example, Ren et al. leverage FL and meta-learning to
adapt an image recognition neural network (NN) for audio
keyword recognition in a tinyML setting [30]. This work
highlights the adaptability of models across domains, but does
not consider security applications in IoT. Similarly, Ficco et
al. focus on local classification and regression tasks for IoT
devices using tinyML on an ECG heartbeat dataset, with FL
facilitating privacy-preserving cloud-based training [31]. Their
work uniquely combines FL with transfer learning, to enable
the reuse of FL-enhanced models for device-specific tasks.
Kopparapu et al. focus on an open-source FL implementa-
tion designed for resource-constrained IoT devices, such as
microcontroller units (MCUs) and small CPU-based devices
and demonstrates the feasibility of FL for distributed learning
in IoT environments [32]. A gap exists applying Federated
tinyML to IoT intrusion detection, which is the focus of this

paper.
III. DRIFT ARCHITECTURE

By utilizing tinyML and the collective learning framework
FL, our research premise is that DRIFT will enhance IoT
devices’ cognitive intelligence for smart detection and adaptive
defense, thus improving overall IoT network resilience and
security against cyber-attacks. Figure 1 illustrates DRIFT
operates at three layers of infrastructure abstraction: [ocT/MCU,
edge, and cloud/enterprise. We differentiate the more powerful
edge layer (e.g., home routers, gateways) from the less capable

Cloud/Enterprise
(FL Model Enhancement)

Enhanced
Model

Federated
Learning

Edge
(TinyML Training + FL + Adaptive
Defense)

ﬂ £
| ML
‘ Models

; loTMCU TingML
TinyML P Model |

loT/MCU

(TinyML Model Inference+ @ i :_g A .
Smart Attack/Anomaly Detection) T &, S

T Erim

Fig. 1. DRIFT conceptual architecture at three layers: IoT/MCU, edge, and
cloud/Enterprise

IoT/MCU devices (e.g., smart appliances) as a majority of
today’s tinyML approaches perform computation intensive ML
training on edge devices and less demanding trained-models
inference on IoT/MCU devices. We further envision and
design DRIFT to execute adaptive knowledge-based defense
countermeasures at the edge level

o At the lowest IoT/MCU layer where cyber-attacks occur,
multiple devices run tinyML models monitoring network
traffic and neighbor activities to detect anomalies and
attacks. The data are sent to the edge layer for training.

« In the middle edge layer, tinyML models are trained and
optimized. The models are passed downward to IoT/MCU
for inference execution detecting attacks, and they are
also passed upward to FL for global model enhance-
ment and re-distribution. Edge also performs adaptive
knowledge-based responses against detected anomalies
and/or attacks.

« In the cloud/enterprise layer, FL aggregates multitude of
tinyML models, generates, and re-distributes enhanced
global models to achieve detection knowledge propaga-
tion and improve system-side detection performance.

Advantages of the DRIFT three-layer architecture: The DRIFT
architecture comprises an FL server at the cloud layer and
FL clients at the edge layer. Each edge node (i.e., an FL
client) aggregates data from IoT/MCU devices within its local
environment and trains a model on the collected data. By
offloading local training from IocT/MCU devices to resource-
rich edge nodes, the DRIFT architecture not only alleviates the
resource constraints of IoT devices but also reduces commu-
nication bandwidth with the FL server, when compared to the
standard two-layer FL architecture where IoT devices act as FL
clients [29], [31]. Additionally, this approach has the potential
to improve the detection accuracy due to the aggregated data
at the edges, as demonstrated by the experimental results in
Section V-B2.

A. TinyML

In the context of Internet of Things (IoT) and Microcon-
troller Unit (MCU) layers, there are inherent limitations in

computational resources, including processing power, memory,
and storage. IoT devices, especially those based on MCUs, of-
ten lack the processing capacity needed for complex machine
learning models, making them unsuitable for direct model
training. Consequently, model training is typically performed
at the edge layer, where devices with more computational
resources are available. This edge layer can include gateways,
servers, or even cloud platforms that aggregate and process
data from IoT devices, allowing for more computationally
intensive tasks like model training.

However, even after training at the edge, the resulting
models must be deployed back onto IoT devices for real-time
inference, and this introduces another challenge: model size.
Although the model might perform well on the edge, it must
be small and efficient enough to fit the memory and processing
limitations of the IoT device during inference.

To address this, we explore feature selection methods in
this paper for model reduction. Compared to model optimiza-
tion techniques such as quantization, pruning, and knowl-
edge distillation, proper feature selection not only can reduce
the complexity and size of the model, but can also save
computational energy in constructing and preprocessing (such
as normalization) of these features. Feature selection tech-
niques, such as those based on statistical metrics or tree-based
methods, help identify and retain only the most informative
features, leading to a smaller model that can be efficiently
deployed on resource-constrained devices. This reduction not
only optimizes the inference speed but also reduces the mem-
ory footprint, making it feasible for deployment on IoT/MCU
layers with minimal computational overhead. In our work, we
explore various feature selection strategies to enable the cre-
ation of smaller, more efficient models that can perform well
on resource-limited IoT devices without sacrificing accuracy.

B. Federated learning

In the DRIFT architecture, FL is performed between the
edge layer with the edge devices as distributed clients and the
cloud/enterprise layer with a global server which aggregates
the tinyML models trained on individual edge devices. FL is an
essential component in the DRIFT architecture because it can
propagate knowledge about malicious network traffic between
edge devices without sharing potentially private or sensitive
traffic data. This advantage becomes particularly important,
as demonstrated in the experiments in Section V-B2, when
different edge devices observe different types of attacks, which
is a common scenario in a distributed environment.

The heterogeneity of device data poses unique challenges
in FL algorithms. For example, the well-known client drift
effect shows that the deviation of the global model learned in
FL from the one learned in a centralized setting increases as
the data become more heterogeneous among the distributed
devices. In this work, we investigate the impacts on model
accuracy from scalers and feature selections in the data
preprocessing stage when the data are heterogeneous. These
factors are often overlooked in FL tests on well-established
benchmarks, such as MNIST, CIFAR10, and ImageNet, for

which proper global preprocessing steps are easily obtain-
able from prior knowledge. However, in the network traffic
data considered in this work, a unified preprocessor is often
not available apriori. With results from the study of data
preprocessing for network traffic data, we demonstrate the
effectiveness of FL on the DRIFT architecture in the numerical
experiments reported in Section V-B2.

IV. TINYML FEATURE SELECTION
A. Network traffic features

Temporal-statistical features are essential in network traffic
analysis for intrusion detection, as they help identify abnormal
patterns in traffic behavior that may signal malicious activities.
For example, attackers often exhibit distinct traffic patterns,
such as sudden spikes in packet frequency or irregular com-
munication bursts, which differ from normal behavior.

The Kitsune feature extraction [33] is an on-line, scalable
approach to calculate temporal statistics from network traffic
flows. It employs a damped window to maintain incremental
statistics over time, where older statistics are gradually phased
out and recent changes in network behavior manifest. This
method is memory-efficient as it allows outdated statistics
to be discarded once their dampening weight reaches zero,
reducing the memory footprint for high-speed data process-
ing. We employed Kisune feature extraction on raw pcap
files to generated 115 features, i.e., 23 features in each of
the five different dampening windows. The features include
multiple statistical metrics such as mean, jitter, covariance of
the arriving packet’ source MAC and IP address, source IP
address, source and destination IP address pair, and source
and destination TCP/UDP socket pair.

B. Feature selection algorithms

In this study, we use four different feature selection methods
to identify the most relevant features for intrusion detection in
IoT networks as follows.

1) Mutual Information: Mutual information (1) measures
the amount of information shared between two variables, quan-
tifying how much knowing one reduces variable uncertainty
about the other. It is especially useful for detecting non-
linear relationships between features and the target. The higher
mutual information between a feature and the target, the more
important a feature to predict the target.

MI(X,Y)=H(X)+ H(Y) - H(X,Y) (1)

where H(X), H(Y) are the marginal entropy of X (features)
and Y (target) and H(X,Y") si the joint entropy.

2) Analysis of Variance (ANOVA) F-statistics: The ANOVA
F-statistic tests whether the means of multiple groups are
significantly different. The method compares the variance
between the different class groups to the variance within each

group.
Between-group variance

Within-group variance

The between-group variance captures the variance of the class
means relative to the overall mean, while the within-group

variance measures the compactness within each class. A higher
F-statistic with a feature indicates a a larger distance between
the classes with a smaller variance within a class. Therefore,
the higher the F statistics, the better thetter the discriminative
power the feature has between classes.

3) Tree-based feature importance: Tree-based models like
Random Forest or Gradient Boosting Machines assign feature
importance by measuring how much each feature reduces the
model’s impurity or error during the splitting process. Impurity
refers to a measure of data heterogeneity, the lower impurity
indicates more homogeneity, i.e., more data points belong to
the same set. For example, Gini impurity at a splitting node is
defined as 1 — 210:1 p;2 where p; is the proportion of samples
of class ¢ in the node and C' is the number of classes. Each
tree in the ensemble splits the data using features that reduce
impurity, and the importance of a feature is calculated based
on the average reduction in impurity across all trees.

4) Shapley Values: Shapley values, derived from coop-
erative game theory, provide a fair method to allocate the
contribution of each characteristic to the prediction of the
model of the model [34]. The values consider all possible
subsets of features and compute the marginal contribution of
each feature to the prediction.

sw=1 5 ("g!) wEuEn -

SCN\{i}

where ¢;(v) is the Shapley value for feature 4, v(s) is the
model’s prediction for a subset of feature S, N denotes the
set of all features.

The Shapley value computes the average contribution of
each feature over all possible combinations, accounting for
interactions between features. This makes it a comprehensive
and interpretable method for the importance of features.

V. NUMERICAL/EXPERIMENTAL RESULTS
A. Problem setting

1) Dataset: In this paper, we demonstrate the performance
of the DRIFT architecture on network attack classification
tasks from network traffics. We consider the N-BaloT dataset
[2], which contains network traffic data from nine different
IoT devices, including doorbells, baby monitors, and security
cameras with ten different types of network attacks labeled to-
gether with the regular benign traffic. The ten types of attacks
are from two IoT malware families: Mirai and BASHLITE
(Gafgyt), each of which is further categorized into five variants
based on their attack methods. For Mirai, there are Scan
(botnet robes during the reconnaissance), ACK (ACK flood),
Syn (Syn flood), UDP (UDP flood) and UDPplain (UDP flood
without payload) attacks data, while BASHLITE attack data
include Scan, Combo (hybrid TCP/ACK/PSH flood), Junk
(floods with random service), UDP, and TCP flood data. The
N-BaloT dataset comprises 115 statistical features constructed
from raw network traffic using Kitsune feature extraction
method [33] as described in Section IV-A. The N-BaloT
dataset is widely used to train ML models to detect IoT

botnet attacks and serves as a benchmark to evaluate intrusion
detection systems targeting such threats [6], [35].

2) Model and training configuration: To ensure that the
learned classifier can be trained and deployed on the edge
devices, we use a small multilayer perceptron (MLP) with only
one hidden layer of width 100 as the classifier. This results
in 12,711 parameters (~60 KB) when all 115 features are
used. In the feature selection experiments in Section V-B1, the
Multi-Layer Perceptron (MLP) classifier is implemented and
trained using the scikit-learn package [36] in Python,
whereas in the FL experiments in Section V-B2, the MLP
is implemented in TensorFlow [37], the federated environ-
ment is simulated using the Flower framework [38], and
the model quantization is performed under the TensorFlow
Lite framework. In all tests, the MLPs are trained with
the Adam optimizer with a constant learning rate 0.001. The
categorical cross-entropy loss function is used in the training,
where as the MLP performance metric is the categorical
classification accuracy.

B. Numerical experiments

1) Preprocessing and feature selection: This section inves-
tigates the features in the N-BaloT dataset to improve the
accuracy and reduce the size of MLP classification models,
which builds the foundation of the FL study in the next section.

In all tests considered in this work, the data
are preprocessed by applying a quantile transformer
(QuentileTransformer () in scikit-learn) with
a standard normal (Gaussian) distribution to each feature.
This choice is motivated from the fact that the outliers in
the N-BaloT dataset can severely skew the commonly used
standard scaler (StandardScaler () in scikit-learn),
resulting in inaccurate classification for MLP models. Figure 2
illustrates the confusion matrices from MLP models trained
on data preprocessed with the standard scaler (left) and the
quantile transformer (right).

Contusion Matrix using Standard scaler Confusion Matrix using QuantileTransformer scaler

108303 0 o0 269 0 121 1953 0 0 539 2

10115 % 7 360 4 88 224 39 1 150 109

11 (98236 4596 60 165 2 o o _ 52 10096 1776 180 o0 o0 23

2 8 o

4
55 3185 48949 49 0 2 48 - 50 2600 49592 60 0 2 2
0

0 1
0 o
a0 o o s070 61 61 9 o 25 25 “ess o0 77 50133 o % 3w o
0 3
o B

o 2 71818 i g ® © -8 0 4 14 BCEVEE 8074 | &
2 Ly | 77 o o o -8 o 3 25 | o NEEl 6

]
3 EEL 2 0 2848 1063 -6 s 1 2 3 26500

9 & ° ©° w0 5
4 14 1074% o o o0 S8 1 1 125 1

o 107243 17 o o

o 4 WEEEE 10 7
54 o o ZEB® 60

6 0 0 122 104394

5 23 55 g ° 0 - 47 4 15 1S 2

o
o
4
4

[
o 1B 629 0 27 5092 -5 78 19 95 18
o

k- o o o o o o

5
p-o o o o o

322 0 0 844 103453 S o 10 8 2

k.
p
k
n
»
@fgytudp- o o w o o
k

2

‘mirai_udpplain -

gafgyt ¢

Fig. 2. Confusion matrices of MLP models with a standard scaler (left) and a
quantile transformer (right). By using an outlier-resistant quantile transformer,
the MLP is able to differentiates between gafgyt_tcp and gafgyt_udp attacks
when a standard scaler fails.

As shown in Figure 3, among the four evaluated feature
selection methods, the Random Forest (RF) importance-based
method performed the best, achieving 95% accuracy with only
five features. In contrast, ANOVA yielded the poorest results.
Although Shapley value-based feature selection (FS) achieved

an accuracy comparable to mutual information-based FS, it
requires a preliminary model (similar to tree-based importance
FS) and involves costly Shapley value computations. There-
fore, for our FL experiments, we selected the tree-based impor-
tance method (highest accuracy) and mutual information-based
FS (second-best accuracy with lower computational overhead).

Accuracy scores based on difference features selection methods
10 . Mutual Info

B ANOVA-F
BN SHAP values
WM RF importance

Accuracy

10
Number of Features

Fig. 3. Comparison of accuracy using four feature selection methods.

In the FL tests in Section V-B2, we consider both the
mutual information-based FS and the RF importance-based
FS methods to reduce the number of features used in FL. The
details of FS in the FL setting are discussed in the next section.

2) Federated learning: In this section, we demonstrate the
advantage of the DRIFT architecture by performing FL on the
N-BaloT dataset for network attack classification. We consider
the scenario that the nine IoT devices in the N-BaloT dataset
are partitioned into three groups, each connects to an EC
device. FL is then performed among the three EC devices
(EC1, EC2, and EC3) and a server to learn a global classifier
for network attack classification. The connection between the
EC devices and the IoT devices in the N-BaloT dataset is given
in Table I, where we numbered the IoT devices considered

in the N-BaloT dataset as IoTl1, ..., I0T9, to simplify the
presentation.
IoT1 | Danmini_Doorbell
EC1 IoT2 | Philips_B120N10_Baby_Monitor
IoT3 | SimpleHome_XCS7_1002_WHT_Security_Camera
IoT4 | SimpleHome_XCS7_1003_WHT_Security_Camera
EC2 ToT5 | Ennio_Doorbell
IoT6 | Samsung_SNH_1011_N_Webcam
IoT7 | Ecobee_Thermostat
EC3 | IoT8 | Provision_PT_737E_Security_Camera
IoT9 | Provision_PT_838_Security_Camera

TABLE I
APPLICATION OF DRIFT ARCHITECTURE TO THE IOT DEVICES
CONSIDERED IN THE N-BAIOT DATASET — THREE EDGE DEVICES ARE
CONNECTED TO FOUR, TWO, AND THREE IOT DEVICES, RESPECTIVELY.

This choice of EC-IoT connection is to promote the hetero-
geneity of local data on each EC. Specifically, both IoT5 and
I0T6 connected to EC2 only see the benign and Gafgyt types
of traffics while missing Mirai types of attacks as shown in
Table II, where the total number of local data collected from
each IoT device and the ratio of traffic classes are reported.

traffic class IoTl 10T2 10T3 I[0oT4 IoT5 IoT6 IoT7 IoT8 IoT9
benign 49% 16.0% 54% 2.3% 11.0% 13.9% 1.6% 7.5% 11.8%
gafgyt_scan | 29% 25% 32% 34% T9% 74% 33% 3.5% 34%
gafgyt_tcp 9.0% 84% 103% 11.5% 28.6% 26.1% 11.4% 12.6% 10.7%
gafgyt udp |104% 9.6% 12.0% 12.1% 29.2% 29.5% 12.5% 12.6% 12.5%
gafgyt_junk | 29% 2.6% 33% 32% 84% 15% 3.6% 37% 3.5%
gafgyt_combo | 5.9% 53% 63% 7.0% 149% 15.6% 63% 74% 6.9%
mirai_syn |12.0% 10.8% 14.6% 144% 0.0% 0.0% 14.0% 79% 7.4%
mirai_scan [10.6% 9.4% 53% 51% 0.0% 0.0% 52% 11.7% 11.6%
mirai_udpplain| 8.1% 7.4% 9.1% 99% 0.0% 0.0% 105% 6.8% 6.4%
mirai_ack [10.0% 8.3% 12.9% 12.6% 0.0% 0.0% 13.6% 7.3% 6.9%
mirai_udp |23.3% 19.8% 17.6% 18.5% 0.0% 0.0% 18.1% 18.9% 19.0%
of data 1.02M 1.10M 0.86M 0.85M 0.36M 0.38M 0.84M 0.83M 0.84M
TABLE II

LocAL IOT TRAFFIC DATA AMOUNT AND TRAFFIC-CLASS-DISTRIBUTION

IN THE N-BAIOT DATASET — MOST DEVICES OBSERVE ALL 11 CLASSES

OF NETWORK TRAFFIC, WITH THE EXCEPTION OF IOT5 AND I0T6, WHICH
DO NOT OBSERVE ANY MIRAI-TYPE TRAFFICS.

Feature Local trainin;
selection Accuracy ECl1 EC2 y EC3 FL
all local val. | 99.54% 99.85% 99.66% | 99.87%
features global test | 96.51% 4533% 96.79% | 99.75%
mutual local val. | 99.62% 99.38% 99.55% | 98.45%
information | global test | 92.45% 44.03% 96.73% | 97.35%
RF local val. | 99.54% 98.92% 99.44% | 97.42%
importance | global test | 91.82% 45.71% 96.49% | 96.06%
TABLE III

TINYML MODEL ACCURACY COMPARISON IN DRIFT ARCHITECTURE —
CLASSIFICATION ACCURACY OF LOCALLY TRAINED MLP MODELS AND
FL MLP MODELS ON BOTH THE LOCAL VALIDATION AND THE GLOBAL

TEST DATASETS ARE REPORTED.

We compare the accuracy of MLP classifiers trained on
each EC devices with only the local data to the ones of MLP
classifiers learned by applying FL to the three EC devices. In
these tests, the local data on each device are split into disjoint
training, validation, and test datasets via stratified uniformly
random sampling based on the traffic class label. The sizes
of the validation and test datasets are 20% and 10% of the
corresponding local datasets, respectively. As for the training
datasets, instead of using the remaining 70% of the data, we
only use 0.1% of the local data in the training. This choice
is justified by the nearly perfect classification results on the
validation and test datasets reported in this section.! A global
test dataset is then constructed by jointing the testing datasets
from all nine IoT devices. The global test dataset includes
network traffic data for all 11 classes and is of size 10% of
the entire N-BaloT dataset. We use the classification accuracy
on this global test set as the primary metric of the model
performance.

In these tests, all feature are preprocessed with a quantile
transformer with standard normal (Gaussian) distribution as
described in Section V-B1 to mitigate the impact of outliers.
To avoid leakage of global information, we apply the quantile
transformer fit for the training dataset on EC1 to process the
data on each EC device. We also consider three FS approaches
— (i) selecting all features, (ii) mutual information-based FS,
and (iii) RF importance-based FS — in the tests. For (ii) and
(iii), FS is performed on each of the IoT devices and select

I'The fact that all 11 classes can be well-classified by using only 0.1% of
the data indicates potential data redundancy in the N-BaloT dataset, which
warrants further investigation but is beyond the scope of the current work.

40 features. To ensure the features on each FL client are
consistent, we take the intersection of the 40 features selected
on each of the IoT devices as the final selected feature set.
This process results in 26 and 24 (out of 115) features for
the mutual information-based and RF importance-based FS
methods, respectively.

The classification accuracy of the MLP models trained
locally or via FL are given in Table III, where both the
accuracies on the associated local validation dataset and on
the global test dataset are reported. The local MLP models
(columns EC1, EC2, and EC3 in Table III) are trained with 50
epochs under configurations described in Section V-A2. In the
FL setting (column FL in Table III), the global MLP models
are trained via FL with 50 communication/aggregation rounds.
Each communication round includes the local update stage, in
which the three EC devices take one local epoch to optimize
the local MLP model based on local training data, and the
aggregation stage, in which the EC devices communicate the
updated local model parameters to the server for aggregation.
In this work, we use the FedAvg algorithm proposed in [28] as
the FL algorithm, where the aggregation is a simple weighted
averaging of the local model weights.

The results in Table III show that, even with nearly perfect
local validation accuracies, the local MLP models trained on
EC2 has significantly lower global test accuracy, due to the
missing Mirai attack classes on the local EC2 dataset. The FL
results demonstrate that FL can aggregate local information
and leads to superior global test accuracy than models trained
locally. This conclusion holds for all three feature selection
approaches considered in this work.

We further investigate the scenario that when each of the
IoT devices is directly connected to the server, i.e., when
there is no EC layer. In this case, FL is performed across the
nine IoT devices directly without passing through EC devices.
The MLP classifiers are trained both locally and via FL in
this standard two-layer architecture under the same training
configuration as the tests on the DRIFT architecture reported
in Table III. The resulting model accuracy are reported in Ta-
ble IV. Observations from Table IV include (i) IoT5 and IoT6
still have much lower global test accuracy than local validation
accuracy, due to the lack of Mirai related traffic data, (ii) all
IoT devices show global test accuracy than local validation
accuracy indicating an increase of data heterogeneity in this
scenario, (iii) the FL. MLP model accuracy is noticeably higher
than the ones from local training, and (iv) the resulting FL
models are not as accurate as their counterparts trained under
the DRIFT architecture in Table III, especially when feature
selection is incorporated.

Finally, we perform quantization of the learned FL models
to further compress the model size of deployments on MCUs.
The quantization process converts MLP parameters from 32
bit floats to 8 bit integers via converters provided in the
TensorFlow Lite package. The resulting model size and
performance are reported in Table V, which shows that model
quantization results in around 4x compression as expected
with minimal impact to the global test accuracy. This result

Feature Accuracy Local training FL
selection IoT1 IoT2 IoT3 IoT4 I0T5 10T6 10T7 IoT8 10T9
all local val. | 99.16% 100.0% 98.48% 98.48% 99.07% 9691% 98.32% 98.15% 99.49% | 97.70%
features global test | 77.43% 86.03% 82.16% 73.97% 42.21% 36.14% 81.35% 78.27% 83.54% | 97.52%
mutual local val. | 98.48% 98.65% 96.46% 96.80% 98.46% 97.53% 97.64% 97.81% 97.14% | 91.19%
information | global test | 77.65% 79.23% 77.83% 81.79% 46.10% 42.02% 80.27% 82.70% 80.41% | 89.37%
RF local val. | 98.32% 99.33% 97.64% 9731% 98.77% 98.77% 98.15% 98.82% 98.82% | 89.84%
importance | global test | 78.30% 78.00% 80.79% 82.60% 45.59% 42.59% 81.06% 77.56% 78.96% | 86.81%
TABLE IV

TINYML MODEL ACCURACY COMPARISON IN STANDARD TWO-LAYER ARCHITECTURE.

indicates that model quantization is an effective approach to
compress the model size when the memory on MCU is limited.

mutual information RF importance

‘ all features ‘
model X X R
acc. size acc. size acc. size
original 99.75% 62KB | 97.35% 27KB 96.06% 26KB
quantized | 99.38% 15KB | 97.32% 6KB 95.82% 6KB
'ABLE V

MODEL QUANTIZATION RESULTS IN 4X COMPRESSION OF MODEL SIZE
WITH MINIMAL IMPACTS ON THE GLOBAL TEST ACCURACY.

VI. CONCLUSION AND DISCUSSION

To integrate AI/ML into IoT/EC for effective cybersecurity
intrusion detection, we presented and validated a three-layer
(tinyML + FL) architecture that achieves higher botnet de-
tection accuracy than local models alone, using the 11-class
N-BaloT dataset. Our approach demonstrated that a quantized,
feature-reduced tinyML model on IoT devices preserves detec-
tion accuracy, while FL leveraging the intersection of reduced
feature sets maintains detection accuracy. The IoT network
attack classification performance was enhanced utilizing an
outlier resistant scaler. While our paper validated this three-
layer intelligent IoT/EC approach over cybersecurity intrusion
detection, we also foresee the applicability of such multi-layer
(tinyML+FL) framework effective over additional application
domains such as smart grid, smart factory monitoring, and
systematic sensing. Future research will assess real-time de-
ployment factors such as latency and energy use, along with
the model’s robustness to varying conditions and its scalability
in complex environments.

REFERENCES

[1] N. Kumar, “How Many IoT Devices Are There (2025-2030 Data),” Dec.
2024.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breit-
enbacher, and Y. Elovici, “N-BaloT—Network-Based Detection of IoT
Botnet Attacks Using Deep Autoencoders,” IEEE Pervasive Computing,
vol. 17, no. 3, pp. 12-22, Jul. 2018.

“More Than Half of IoT Devices Vulnerable to Severe
Attacks,” https://threatpost.com/half-iot-devices-vulnerable-severe-
attacks/153609/, Mar. 2020.

“What We Learned from Target’s Data Breach 2013 | CardConnect,”
https://www.cardconnect.com/launchpointe/payment-trends/target-data-
breach/.

“The 5 Worst Examples of IoT Hacking and Vulnerabilities in Recorded
History,” https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities.
B. Sudharsan, D. Sundaram, P. Patel, J. G. Breslin, and M. 1. Ali,
“Edge2Guard: Botnet Attacks Detecting Offline Models for Resource-
Constrained IoT Devices,” in 2021 IEEE International Conference
on Pervasive Computing and Communications Workshops and Other
Affiliated Events (PerCom Workshops), Mar. 2021, pp. 680-685.

[2]

[3]

[4]

[5]
[6]

[71 C. R. Banbury, V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov, D. Patterson, D. Pau,
J.-s. Seo, J. Sieracki, U. Thakker, M. Verhelst, and P. Yadav, “Bench-
marking TinyML Systems: Challenges and Direction,” Jan. 2021.

R. Kallimani, K. Pai, P. Raghuwanshi, S. Iyer, and O. L. A. Lépez,
“TinyML: Tools, applications, challenges, and future research direc-
tions,” Multimedia Tools and Applications, vol. 83, no. 10, pp. 29015-
29045, Mar. 2024.

D. L. Dutta and S. Bharali, “TinyML Meets IoT: A Comprehensive
Survey,” Internet of Things, vol. 16, p. 100461, Dec. 2021.

M. Shafique, T. Theocharides, V. J. Reddy, and B. Murmann, “TinyML:
Current Progress, Research Challenges, and Future Roadmap,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), Dec. 2021, pp.
1303-1306.

A. Dutta and S. Kant, “Implementation of Cyber Threat Intelligence
Platform on Internet of Things (IoT) using TinyML Approach for
Deceiving Cyber Invasion,” in 2021 International Conference on Electri-
cal, Computer, Communications and Mechatronics Engineering (ICEC-
CME), Oct. 2021, pp. 1-6.

N. Tekin, A. Acar, A. Aris, A. S. Uluagac, and V. C. Gungor, “Energy
consumption of on-device machine learning models for IoT intrusion
detection,” Internet of Things, vol. 21, p. 100670, Apr. 2023.

R. Bekkouche, M. Omar, R. Langar, and B. Hamdaoui, “Ultra-
Lightweight and Secure Intrusion Detection System for Massive-IoT
Networks,” in ICC 2022 - IEEE International Conference on Commu-
nications, May 2022, pp. 5719-5724.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1-2, pp. 1-210, 2021.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate newton-type method,” in
International conference on machine learning. PMLR, 2014, pp. 1000—
1008.

Z. Li, J. Zhang, L. Liu, and J. Liu, “Auditing privacy defenses in
federated learning via generative gradient leakage,” arXiv preprint
arXiv:2203.15696, 2022.

J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Ad-
vances in Neural Information Processing Systems, vol. 33, pp. 16937
16947, 2020.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

O. Choudhury, Y. Park, T. Salonidis, A. Gkoulalas-Divanis, 1. Sylla
et al., “Predicting adverse drug reactions on distributed health data using
federated learning,” in AMIA Annual symposium proceedings, vol. 2019.
American Medical Informatics Association, 2019, p. 313.

T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis,
and W. Shi, “Federated learning of predictive models from federated
electronic health records,” International journal of medical informatics,
vol. 112, pp. 59-67, 2018.

F. Granqvist, M. Seigel, R. van Dalen, A. Cahill, S. Shum, and M. Paulik,
“Improving on-device speaker verification using federated learning with
privacy,” arXiv preprint arXiv:2008.02651, 2020.

D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Fed-
erated learning for keyword spotting,” in ICASSP 2019-2019 IEEE

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[35]

[36]

[37]

[38]

International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1IEEE, 2019, pp. 6341-6345.

Y. Wang, 1. L. Bennani, X. Liu, M. Sun, and Y. Zhou, “Electricity
consumer characteristics identification: A federated learning approach,”
IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3637-3647, 2021.
A. Taik and S. Cherkaoui, “Electrical load forecasting using edge com-
puting and federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). 1EEE, 2020, pp. 1-6.

S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, S. Bhat-
tacharya, P. K. R. Maddikunta, and T. R. Gadekallu, “Federated Learn-
ing for Intrusion Detection System: Concepts, Challenges and Future
Directions,” Jun. 2021, comment: Submitted to JNCA, Elsevier.

X. Saez-de-Camara, J. L. Flores, C. Arellano, A. Urbieta, and U. Zuru-
tuza, “Clustered Federated Learning Architecture for Network Anomaly
Detection in Large Scale Heterogeneous IoT Networks,” Mar. 2023.
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273—
1282.

P. Qi, D. Chiaro, and F. Piccialli, “Small models, big impact: A review
on the power of lightweight Federated Learning,” Future Generation
Computer Systems, vol. 162, p. 107484, Jan. 2025.

H. Ren, D. Anicic, and T. A. Runkler, “TinyReptile: TinyML with
Federated Meta-Learning,” in 2023 International Joint Conference on
Neural Networks (IJCNN), Jun. 2023, pp. 1-9.

M. Ficco, A. Guerriero, E. Milite, F. Palmieri, R. Pietrantuono, and
S. Russo, “Federated learning for IoT devices: Enhancing TinyML with
on-board training,” Information Fusion, vol. 104, p. 102189, Apr. 2024.
K. Kopparapu, E. Lin, J. G. Breslin, and B. Sudharsan, “TinyFedTL:
Federated Transfer Learning on Ubiquitous Tiny IoT Devices,” in 2022
IEEE International Conference on Pervasive Computing and Commu-
nications Workshops and Other Affiliated Events (PerCom Workshops),
Mar. 2022, pp. 79-81.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection,” in
Proceedings 2018 Network and Distributed System Security Symposium.
San Diego, CA: Internet Society, 2018.

H. Wang, Q. Liang, J. T. Hancock, and T. M. Khoshgoftaar, “Fea-
ture selection strategies: A comparative analysis of SHAP-value and
importance-based methods,” Journal of Big Data, vol. 11, no. 1, p. 44,
Mar. 2024.

M. S. Ahmad and S. M. Shah, “A lightweight mini-batch federated
learning approach for attack detection in IoT,” Internet of Things,
vol. 25, p. 101088, Apr. 2024.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmao et al.,
“Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

