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Abstract: Classical shadows herald remarkable opportunities for resource-efficient quan-
tum estimation. Although superficially disconnected from traditional inference methods,
we show how classical shadows fit under a larger umbrella of least squares regularization,
revealing tradeoffs with related methods. © 2024 The Author(s)

A fixture of quantum information science, quantum state tomography represents the archetypal approach for
recovering a density matrix ρ [1]. However, the exponential scaling in the required number of measurements and
the classical computational cost of state estimation have inspired a variety of techniques for resource-efficient to-
mography, typically based on assumptions about the structure of the underlying state [2,3]. In contrast, the method
of classical shadows (CS) [4] places no such restrictions; instead, by performing randomly chosen measurements,
calculating from each a “shadow” ρ̂m, and then averaging them for the final estimate ρ̂ = 1

M ∑m ρ̂m, quantum
observables in exceptionally large Hilbert spaces can be estimated with few measurements and no structural as-
sumptions on the ground truth ρ . The core of CS lies in its shadow calculation, which involves the inversion of a
quantum channel M defined as the average over a distribution of possible measurements, a superficially enigmatic
choice due to its violation of positive semidefiniteness (required for any physical ρ) and reliance on a fictitious
quantum channel (i.e., distinct from the actual measurements executed).

Here we summarize recent work [5] shedding light on the power of CS through formal and practical connec-
tions with traditional least squares (LS) and regularized least squares (RLS) estimation. Deriving the LS and RLS
solutions to a generic quantum measurement scenario, we find that both rely on their own “shadows”—i.e., linear
transformations of individual measurement results—with CS and RLS stabilizing the LS shadow in the underde-
termined regime by replacing the pseudoinverse with invertible and well-conditioned operators. Collectively, our
results contribute to the fundamental understanding of CS while simultaneously offering practical guidance for
quantum estimation.

Figure 1 overviews the formal shadow picture of quantum tomography. M measurements described by positive
operator-valued measures (POVMs) Am are performed L times, each with K outcomes occurring with ground
truth probabilities Am(ρ) = [tr(Am,1ρ) · · · tr(Am,Kρ)]⊤. For each POVM, one obtains the empirical frequencies
p̂m = [ fm,1 · · · fm,K ]

⊤/L (a one-hot vector for L= 1). After application of the POVM transpose, the shadow estimate
follows as ρ̂m = S(A †

m(p̂m)), and the individual shadows are averaged into the final estimate ρ̂ . This explicit
form highlights the remarkable similarities between the three highlighted methods, differing only in the shadow
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Fig. 1. Shadow picture of quantum state tomography. Empirical frequencies from quantum measure-
ments (POVMs) are converted into shadows and then averaged. Least squares (LS), regularized least
squares (RLS), and classical shadows (CS) differ only in the details of their shadow inversion.
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Fig. 2. Simulated experiments estimating observable Λ0 = |0⟩⟨0| for a five-qubit ground truth ρ =
|0⟩⟨0| as a function of measurements M. (a) LS, RLS, and CS results for 50 trials. (b) Average errors
for the observable λ0 (top) and state ρ (bottom).

operation S: LS employs the pseudoinverse of the entire set
( 1

M A †A
)+

, where A = [A1 · · ·AM]⊤; RLS ensures
invertibility through a regularization parameter µ; and CS enlists the inverse of a quantum channel defined as the
expectation over all possible measurements M (·) = E

[ 1
M A †A (·)

]
(treating A as a random variable).

As one example of how these methods handle inference, consider estimation of the observable Λ0 = |0⟩⟨0|
for a (D = 32)-dimensional five-qubit state ρ = |0⟩⟨0|—a combination chosen in [6] due to the observable’s
ground truth value λ0 = tr(Λ0ρ) = 1 representing an “uncommon” case (from the perspective of a uniform prior)
in which CS techniques particularly shine. Considering up to M = 211 Haar-random unitaries as measurements
with L = 1 shot each, the estimates λ̂0 = tr(Λ0ρ̂) for 50 simulated trials appear in Fig. 2(a). Since no methods
enforce positivity, all produce results outside of the physically allowed range λ0 ∈ [0,1], but their specific behavior
differs significantly. For LS, the estimate initially approaches the ground truth in the underdetermined regime
(M < D), but then varies wildly in the interpolating regime (M ≈ D) before converging in the overdetermined
regime (M > D). This behavior resembles the “double descent” phenomenon observed in deep neural networks,
where performance initially improves, worsens, and then improves again with increasing model or data size [7].

One method to address double descent, RLS adopts a modified shadow in which the identity I is added before
inversion; the second panel of Fig. 2(a) shows results for the same simulated data with regularization parameter
µ = 0.1. The fluctuations around the interpolating regime disappear completely, with the estimates approaching
the ground truth monotonically as M increases. Finally, CS [third panel in Fig. 2(a)] begins with large variance
that reduces steadily with M. Since the channel inverse is well conditions for any M, CS avoids double descent like
RLS; however, unlike RLS, CS is unbiased at the cost of higher variance. Figure 2(b) summarizes these features
on the mean squared error of the observable E[(λ̂0 −λ0)

2] and the mean Frobenius error of the state E [∥ρ̂ −ρ∥F ].
Compared the monotonic error reduction of CS and the interpolating spike of LS, RLS attains the advantages of
the former on the observable front and the latter in lower state error in the underdetermined regime (M < D).

Our results reveal a fundamental relationship between CS and RLS techniques as regularizers of the LS shadow:
CS with a regularizer based on the target measurement distribution, and RLS with a regularizer based on the actual
measurement set A . As detailed further in [5], such differences result in distinct tradeoffs: (i) CS is unbiased,
while RLS has lower variance; (ii) CS has a computationally simple inverse, but RLS is robust to mismatch
between the designed and actual measurement distribution (e.g., measurements not being truly random); and
(iii) CS shows similar scaling independent of shots L, while RLS is much more sensitive to L. Integration of LS,
RLS, and CS under a unifying framework advances the overall picture of CS techniques, while also illuminating
the circumstances under which either RLS or CS would be preferred in quantum tomographic contexts, such as
unverified randomness for the former or unbiased estimation for the latter.
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