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ABSTRACT

This work describes the improved workflow for evaluating open-source large language models (LLMs) for
trustworthiness. The workflow facilitates the acquisition of LLMs, the generation of LLM responses, and
the evaluation of the responses for their trustworthiness. As a use case, the workflow is employed to
evaluate dense, quantized, and pruned Meta Llama3.1 LLMs for their truthfulness. The outcome of the
project could set the stage for understanding and developing trustworthy models in the future projects.

1. INTRODUCTION

Large language models (LLMs) are revolutionizing the field of natural language processing, providing
unprecedented capabilities in text generation, comprehension, and interaction [1]. They are cutting-edge
artificial intelligence (Al) systems that can handle complex language tasks with approximate human-level
performance. Hence, LLMs have increasingly been applied in domains such as education [2], law [3], and
medicine [4]. As LLMs are deployed across increasingly diverse domains, concerns are growing about their
trustworthiness: LLMs’ emerging generative capabilities may generate inaccurate or misleading outputs [5,
6, 7], which could be exploited for propagation of false information and automated cyberattacks [8, 9, 10].
There are potential biases (e.g., gender and culture) and sensitive information in training datasets, which
could cause fairness of contents generated by LLMs and privacy breach [11, 12]. LLMs’ responses do not
necessarily align with human values [13], and such conflicts and contradictions could impact their broad
application across different domains.

Evaluating LLMs will mitigate the risks of misinformation and minimize generation of biased, harmful,
unethical, unsafe contents. It is important to identify vulnerabilities and implement safeguards against them.
Benchmarks play a critical role in evaluating LLMs’ trustworthiness. As the implementation details of a
model often govern model performance, the lack of necessary code and sufficient detail of a model makes
it difficult to evaluate the model releases objectively and effectively [14]. To address the concerns, there
are benchmarks on LLMs’ toxicity, stereotype bias, the robustness against adversarial and out-of-
distribution texts, the privacy, fairness, and machine ethics of LLMs [15, 16, 17, 18]. Existing evaluation
of trustworthiness mainly focuses on specific perspective of trustworthiness. However, one of the recent
frameworks, TrustLLM, provides a multifaceted trustworthiness evaluation, comprising truthfulness,
safety, fairness, robustness, privacy, and machine ethics [19]. The framework allows investigation of
diverse LLMs with benchmarking across various tasks and datasets. The evaluation metrics are also
established to understand the capabilities of LLMs from these tasks.

After investigating TrustLLM, we find that a streamlined workflow is needed to facilitate the generation
and evaluation of LLMs’ responses to the multifaceted trustworthiness. The proposed workflow will
improve the current approach to assessing the trustworthiness of LLMs in model selection, task
specification, choices of LLM-based evaluators, and correctness of the implementations of the evaluation
metrics.

2. BACKGROUND

2.1 Summary of the Dimensions of Trustworthy LLMs
2.1.1 Truthfulness
Truthfulness means accurate representation of facts, information, and results [19]. The assessment of the

truthfulness of LLMs consists of misinformation [20], hallucination [21], sycophancy [22], and adversarial
facts [20]. The misinformation evaluates the inclination of LLMs to generate misinformation under two



scenarios: relying solely on internal knowledge and integrating external knowledge. These two scenarios
are considered as two tasks. The hallucination task tests LLMs’ propensity to hallucinate in four categories:
multiple-choice question-answering, open-ended question-answering, knowledge-grounded dialogue, and
summarization [23, 24]. The sycophancy task assesses the extent of sycophancy in LLMSs, including
persona sycophancy and preference sycophancy. The last task examines LLLMs’ capabilities to correct
adversarial facts when inputs to LLMs contain incorrect information.

The evaluation metrics for these tasks are diverse. For the CODAH dataset [25] used in the internal
knowledge task, the accuracy is measured by the number of exact matches between responses generated by
LLMs and provided gold answers. For the SQuAD2.0 [26], HotpotQA [27], and AdversarialQA [28]
datasets, an LLM-based evaluator will assess whether LLMs’ responses align with gold answers [19]. For
the external knowledge task, the macro-averaged F1 score is computed to evaluate the performance of
LLMs for zero-shot fact-checking using the datasets Climate-FEVER [29], SciFact [30], COVID-Fact [31],
and HealthVer [32]. For the hallucination task, the evaluation metric is accuracy. Higher accuracy indicates
that LLMs could choose the correct answers more accurately or better differentiate between hallucinated
and non-hallucinated answers. To evaluate the persona-based sycophancy, the similarity between responses
generated by LLMs and non-sycophantic answers, as well as how distinct the responses are from
sycophantic answers are measured. A higher value indicates that non-sycophantic answer is more distinct
from sycophantic answer. To evaluate the preference-based sycophancy, the metric is the percentages of
opinion changes in responses generated by LLMs when prompted with a pair of preference pairs. A lower
value indicates reduced sycophantic behavior exhibited by LLMs. An LLM-based evaluator is used to
assess whether response pairs convey the same meanings. For the last task, an LLM-based evaluator
assesses whether responses generated by LLMs under evaluation effectively identify inaccuracies in input
prompts.

2.1.2 Safety

Safety is LLMs’ ability to avoid unsafe, illegal outputs and only engage in a safe conversation [19]. The
assessment of the safety of LLMs consists of four tasks: jailbreak [33], exaggerated safety [34], misuse
[35], and toxicity [36]. The jailbreak task assesses the resilience of LLMs against jailbreak attacks. The
exaggerated safety task assesses whether LLMs exhibit over-defensiveness given safe prompts. The toxicity
task measures toxicity in generation of contents using a score obtained from Perspective API [37]. The tool
uses machine learning to identify toxic comments. The misuse task assesses whether LLMs will refuse to
answer various types of misuse (e.g., spreading false information, launching network attacks, or providing
illegal information) given various direct prompts.

In Tasks 1-3, the evaluation metric is the percentage of “Refuse to Answer” in LLMs’ responses. This is
obtained by the Longformer model [38] that determines whether LLMs refuse to answer. Task 4 computes
a toxicity score obtained from Perspective API to measure toxicity in contents.

2.1.3 Fairness

Fairness generally means that LLMs are designed, trained, and deployed in unbiased and nondiscriminatory
ways. The assessment of the fairness of LLMs consists of three tasks: stereotypes [39], disparagement [40],
and preference bias [41]. The stereotypes task evaluates LLMs’ opinions on stereotypes from the
perspective of underlying values, whether LLMs can accurately recognize stereotypes, and stereotype risk
for user queries in potential real-world scenarios [19]. The disparagement task assesses a model’s behavior
that reinforces the notion that certain groups are less valuable than others and less deserving of respect (or
resources). The preference bias task assesses LLMs’ degree of subjectivity.



In Task 1, the evaluation metric is the percentage of instances where LLMs’ outputs agree with the
stereotype statements. A lower percentage indicates fewer stereotypes. An LLM-based evaluator is utilized
for automated answer analysis. In Task 2, the evaluation metric is the p-value for each attribute in every
model as a Chi-square test [19]. In Task 3, The evaluation metric is Refuse to Answer and the Longformer
model (classifier) determines whether LLMs respond by refusing to answer.

2.1.4 Robustness

Robustness is LLMs’ capability to handle diverse inputs including noise, interference, adversarial attacks,
and changes in data distribution, among other factors. The assessment of the robustness of LLMs consists
of four tasks [19]: input with noises, open-ended instruction, out-of-distribution (OOD) detection, and OOD
generalization. The noise task assesses LLMs’ robustness in natural language processing tasks with ground-
truth labels from the Adversarial GLUE (AdvGLUE) dataset [42]. The open-ended instruction task assesses
LLMs’ robustness in open-ended tasks without ground-truth labels using the AdVINSTRUCTION dataset
[19]. The OOD detection task assesses LLMs’ capabilities of identifying information beyond their training
distribution [43]. The OOD generalization task assesses a model’s ability to deal with new, unseen data that
may come from a different distribution [44].

Task 1 has two metrics: accuracy (Acc) and attack success rate (ASR). The “benign” accuracy (Acc(ben))
evaluates LLMs’ performance on original data and the “adversarial” accuracy (Acc(adv)) their accuracy on
perturbed data. ASR is the ratio of the number of samples correctly classified in the benign set but
misclassified in the adversarial set to the number of samples correctly classified within the benign set. It
indicates whether LLMs can adequately defend against perturbations. The overall performance of LLMs is
measured using a robustness score (RS). The evaluation metric for Task 2 is the semantic similarity between
outputs before and after perturbation. The similarity is computed using the embeddings of the outputs and
their cosine similarity. The evaluation metric for Task 3 is Refuse to Answer and the Longformer model
(classifier) determines whether LLMs respond by refusing to answer. The F1 score is the metric for Task
4.

2.1.5 Privacy

Privacy is an LLM’s capability to safeguard private and sensitive information [45]. The assessment of the
privacy of LLMs consists of three tasks: privacy confidence, privacy awareness, and privacy leakage. The
first task assesses whether LLMs agree or disagree with the appropriate usage of privacy information. The
awareness task assesses LLMs’ ability to identify and manage requests that may implicate privacy concerns.
The privacy leakage task assesses whether LLMs disclose private information in the training datasets.

The evaluation metric for Task 1 is Pearson’s correlation coefficient. “Refuse to Answer” (RtA), the
proportion of instances where an LLM refuses to answer, is the metric for evaluating privacy awareness.
Three metrics are used for evaluating the privacy leakage of LLMs: Refuse to Answer, Total Disclosure,
and Conditional Disclosure [19].

2.1.6 Machine Ethics

Machine ethics refers to LLMs’ ethical behaviors when they serve as intelligent agents [46]. The assessment
of the privacy of LLMs consists of two tasks: implicit ethics and explicit ethics. The implicit ethics task
evaluates whether ethical values embedded in LLMs align with human ethical standards using the ETHICS
and SOCIAL CHEMISTRY 101 datasets [47, 48]. The explicit ethics task assesses LLMs’ ability of
processing scenarios and acting on ethical decisions using the MoralChoice dataset [49]. The evaluation
metric for all the tasks is accuracy.



2.2 External Framework Dependencies of the Workflow
2.2.1 PyTorch

PyTorch is an open-source machine learning library for applications such as computer vision and natural
language processing [50]. It was designed to support an imperative and Pythonic programming style and is
consistent with other popular scientific computing libraries. It provides tensor computing with strong
acceleration via graphics processing units (GPUs) [51]. It offers a comprehensive collection of building
blocks for developing neural networks with productivity and performance.

2.2.2 Transformers

Transformers is a machine learning library that provides application-programming interfaces (APIs) and
tools to download and operate on pretrained machine learning models [52]. These pretrained models are
available in the Hugging Face Hub [53] where users could find not only models but also datasets and
applications. The Hub promotes collaboration and learning among machine learning practitioners.

2.2.3 FastChat

FastChat is an open platform for training, serving, and evaluating LLMs [54]. Users could rapidly deploy
LLMs via the platform and access the service via compatible APIs. To support a model, FastChat
implements a conversation template and a model adapter for the model.

3. PROPOSED WORKFLOW

The workflow of TrustLLM has been improved to automate access to LLMs for conducting a comparative
analysis of growing LLMs, assess the trustworthiness of LLMs, understand the capabilities and limitations
of the LLMs in various trustworthiness aspects, and maintain the integrity of the testing process with a
robust dataset for analysis.

3.1 Support of More LLMs

More open-source LLMs have been added to the workflow since the release of TrustLLM. The list of open-
source model families includes Baize [55], Baichuan [56], Yi [57], ChatGLM2 and GLM4 [58], Vicuna
[59], Llama2, Llama3 and Llama3.1 [60], MPT [61], Guannaco [62], Oasst [63], Lemur [64], Qwen2 [65],
StableLM [66], WizardLM [67], Mixtral and Mistral [68], and Dolly [69]. The proposed workflow also
supports loading quantized models. The quantization methods of the models are GPTQ [70], AWQ [71],
BNB [72] and HQQ [73]. Model quantization allows deployment of LLMs with limited resources.

3.2 Generation and Evaluation of LLMs in Each Dimension

The workflow has added the generation and evaluation options to make generation and evaluation of LLM
responses flexible. The options along with the generation and evaluation dimensions allow users to select
which dimension(s) to generate and evaluate. Without the option, all dimensions will be generated or
evaluated against the datasets, and this process is typically very time-consuming. It may be common that
users are interested in evaluating a specific dimension of trustworthy LLMs.

3.3 Generation and Evaluation of LLMs for Tasks in Each Dimension

The workflow has added the task option to make the generation and evaluation of LLM responses even
flexible. The option along with the generation and evaluation dimensions allow users to select which task(s)



in a dimension to generate and evaluate. Without the option, all tasks in a dimension will be generated or
evaluated. The option is useful when a specific task in a dimension needs to be tested or evaluated.

3.4 Support of Open Source LLM-based Evaluators

OpenAl’s ChatGPT is employed as an evaluator in TrustLLM for evaluating LLMs’ responses. However,
ChatGPT is built on proprietary series of generative pre-trained transformer (GPT) models and is fine-tuned
for conversational applications [74]. To overcome the limited access to any proprietary models, the
proposed workflow has added alternative LLM-based evaluators. Most evaluators are based on open-source
LLMs including the GLM [58] and Llama [60] families.

3.5 Support of Open Source Embedding Model

In TrustLLM, OpenAl’s embedding model is utilized to obtain embeddings of the output [75]. To overcome
the limited access to proprietary embedding models, the proposed workflow has added an open source
embedding model [76]. Users can choose the embedding model as an alternative to the proprietary model
or add more models.

3.6 Specification of API Keys

Perspective analyzes a string of text for its toxicity and predicts the perceived impact that it might have on
a conversation [37]. To enable access to the Perspective API, a key is required to authenticate the request.
Similarly, a key is required to access proprietary LLMs. In TrustLLM, an API key is specified in the source
code. The proposed workflow requests a user to specify a required key as a command-line option or set it
as an environment variable, which makes the key specification more efficient and manageable.

3.7 Collection of Results for Postprocessing

In TrustLLM, results from a model evaluation are directly printed to a terminal as numerical values. To
ensure that results are stored for further analysis and organized efficiently, the proposed workflow allows
a user to specify a file path to evaluation results. As JSON is a widely used data interchange format [77],
the evaluation results will be saved as JSON files for different models. Furthermore, the workflow
associates a result with its corresponding metric’s name for better interpreting the meanings of the results.

3.8 Improvement of Accuracy of Results

We find that certain evaluation results differ from the published results significantly. An analysis of the
results indicates that there are several potential causes. 1) There exist errors in the dataset. For example, the
CODAH dataset is an evaluation set for commonsense question-answering. Because it is a multiple-choice
question-answering task, the accuracy is measured by the exact match between the responses generated by
LLMs and the provided gold answers. However, the index of a gold answer is not supposed to be 0; it
should start from 1. The issue was promptly addressed after it was raised. 2) LLMs’ responses were
completely nonsensical to the corresponding prompts. The cause is that the order of the parameters in a
function call does not match the order of the arguments in the function definition. 3) For certain evaluation
metric, a regular expression pattern is applied to the LLM responses to extract the matches. However, the
pattern may fail to extract them properly when the responses of a LLM do not follow the instructions. 4)
While each evaluation metric is described in the paper, the implementation of certain metric may be
incorrect in the source code. 5) TrustLLM used OpenAl’s proprietary models to automate the evaluation of
LLM responses for certain tasks. These models often achieve the best performance in natural language
processing. When the evaluators are replaced with open-source models, the evaluation results will differ.



4. ASSESS THE TRUTHFULNESS OF LLMS AS A USE CASE

To demonstrate the proposed workflow, this section presents an evaluation of dense, quantized, and pruned
LLMs for their truthfulness in the multi-dimensional trustworthiness as a use case.

4.1 Models

This study chooses the Meta Llama 3.1 8B and 70B instruction tuned (Instruct) generative models for
evaluation. The numbers of parameters in the models are 8 billion and 70 billion, respectively. The Llama
3.1 models were pretrained on approximately 15 trillion tokens of data from publicly available sources.
Due to the resource constraints, the largest 405B model in the Llama family will be evaluated in future
work. The fine-tuning data includes publicly available instruction datasets, as well as over 25 million
synthetically generated examples. The tuned models are upgraded versions of the Llama 3 8B and 70B
models in terms of model capabilities and performance. Compared to the 8B model, the 70B model can
reach higher performance across a set of standard benchmarks [78].

Table 1. List of LLMs evaluated in the experiments

Name Description

Llama3.1-8B-Instruct-AWQ-INT4 Llama 3.1 8B model quantized with AWQ from 16-bit precision to 4-bit precision

Llama3.1-8B-Instruct-GPTQ-INT4 Llama 3.1 8B model quantized with GPTQ from 16-bit precision to 4-bit precision

Llama3.1-8B-Instruct-BNB-INT4 Llama 3.1 8B model quantized with BNB from 16-bit precision to 4-bit precision

Llama3.1-8B-Instruct-HQQ-INT4 Llama 3.1 8B model quantized with HQQ from 16-bit precision to 4-bit precision

Llama3.1-8B-Instruct Llama 3.1 8B instruction tuned model

Llama3.1-70B-Instruct-AWQ-INT4 | Llama 3.1 70B model quantized with AWQ from 16-bit precision to 4-bit precision

Llama3.1-70B-Instruct-GPTQ-INT4 | Llama 3.1 70B model quantized with GPTQ from 16-bit precision to 4-bit precision

Llama3.1-70B-Instruct-BNB-INT4 Llama 3.1 70B model quantized with BNB from 16-bit precision to 4-bit precision

Llama3.1-70B-Instruct-HQQ-INT4 Llama 3.1 70B model quantized with HQQ from 16-bit precision to 4-bit precision

Llama3.1-70B-Instruct Llama 3.1 70B instruction tuned model

Llama3.1-8B-Instruct-mag-24 Llama 3.1 8B model pruned with Magnitude and 2:4 pattern

Llama3.1-8B-Instruct-sparsegpt-24 Llama 3.1 8B model pruned with SparseGPT and 2:4 pattern

Llama3.1-8B-Instruct-wanda-24 Llama 3.1 8B model pruned with Wanda and 2:4 pattern

Llama3.1-8B-Instruct-mag-48 Llama 3.1 8B model pruned with Magnitude and 4:8 pattern

Llama3.1-8B-Instruct-sparsegpt-48 Llama 3.1 8B model pruned with SparseGPT and 4:8 pattern

Llama3.1-8B-Instruct-wanda-48 Llama 3.1 8B model pruned with Wanda and 4:8 pattern




4.2 Compression Methods

Compression 1is critical for deploying large models with limited resources, which reduces memory
consumption for inference and training. This work focuses on pruning (removing parameters) and
quantization (reducing precision) for compressing dense LLMs. The common pruning techniques are
Magnitude, SparseGPT, and Wanda. Magnitude pruning removes individual weights based on their
magnitudes [79]. SparseGPT prunes LLMs by solving a local layer-wise reconstruction problem [80].
Wanda considers the impacts of input activations and prunes weights on a per-output basis [81]. The
sparsity pattern is structured N:M in which at most N weights are non-zero for every continuous M weights
[82]. The quantization methods are GPTQ, AWQ, BNB, and HQQ. GPTQ is a weight quantization method
based on approximate second-order information. AWQ leverages the activation-aware quantization to
adaptively scale weights. BNB applies k-bit quantization of large language models. HQQ is a fast quantizer
using a half-quadratic solver to find the quantization parameters. GPTQ and AWQ are calibration-based
methods while BNB and HQQ do not rely on an external dataset. Hence, there are tradeoffs in quantization
quality and time among these methods [70-73].

4.3 Experimental Setup

The evaluation is conducted on a compute node with NVIDIA H100 GPUs in the Experimental Computing
Laboratory at Oak Ridge National Laboratory. The versions of Python, PyTorch, and Transformers are
3.9.19, 2.4.0+cul2.1, and 4.45.0, respectively. FastChat is cloned from the GitHub repository as the
repository has been supporting more LLMs since the latest release in February 2024. Without access to a
proprietary model (e.g., ChatGPT) as an LLM-based evaluator, the quantized Llama3.1 70B model (i.e.,
Llama3.1-70B-AWQ-INT4) is used as the evaluator. All dense and quantized models, listed in Table 1, are
publicly available in the Hugging Face Hub [83, 84]. The Llama 3.1 8B model is pruned using the script
[85].
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Figure 1. Evaluation of the LLMs’ performance relying on internal knowledge in the misinformation task



4.4 Experimental Results

Figure 1 shows the results of evaluating the LLMs’ inclination to generate misinformation when they rely
solely on their internal knowledge. The 70B dense model achieves higher performance than the 8B dense
model for all datasets except AdversarialQA. Among the four datasets, both models deliver the lowest
performance in SQuAD2.0. Comparing the performance of pruned and quantized models indicates that all
pruning methods appear ineffective in obtaining reasonable performance. On the other hand, model
quantization does not necessarily degrade those models’ performance for certain datasets. Llama3.1-8B-
Instruct-BNB-Int4 achieves the highest performance in CODAH, Llama3.1-70B-AWQ-INT4 achieves the
highest performance in SQuAD2.0 and AdversarialQA, and Llama3.1-70B-GPTQ-INT4 achieves the
highest performance in HotspotQA.

Figure 2 shows the results of evaluating the LLMs’ inclination to generate misinformation when they reply
are presented with external ground truth. The 70B dense model achieves higher performance than the 8B
dense model in COVID-Fact and HealthVer. Comparing the performance of pruned and quantized LLMs
indicates that the pruning methods appear less effective in obtaining reasonable performance. Model
quantization does not necessarily degrade LLMs’ performance for certain datasets. The GPTQ 8B and 70B
models achieve the highest performance in SciFact. The 8B model quantized with GPTQ achieves the
highest performance in COVID-Fact. The HQQ 7B and 80B models achieve the highest performance in
Climate-FEVER.

Figure 3 shows the results of evaluating the LLMs’ performance for the four hallucination tasks. The 70B
dense model achieves higher performance than the 8B dense model in the multiple-choice task. Comparing
the performance of pruned and quantized LLMs indicates that the SparseGPT (4:8) pruning method
achieves the highest performance in text summarization and knowledge-grounded dialogue. However, the
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Figure 4a. Evaluation of the LLMs’ performance in the persona-based sycophancy

magnitude-based pruning is most ineffective for any tasks. Model quantization does not necessarily degrade
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Figure 4b. Evaluation of the LLMs’ performance in the preference-based sycophancy
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Figure 5. Evaluation of the LLMs’ performance in the adversarial factuality

LLMs’ performance for certain cases. The HQQ 8B and 70B models achieve the highest performance in
the question-answering task. Llama3.1-8B-Instruct-HQQ-INT4 achieves the highest performance in the



text-summary task. Llama3.1-8B-Instruct-AWQ-INT4 achieves the highest performance in the knowledge-
grounded dialogue task. Llama3.1-70B-Instruct-GPTQ-INT4 achieves the highest performance in the
multiple-choice task.

Figures 4 show the results of evaluating the LLMs’ performance for the two sycophancy tasks. Comparing
the performance of pruned and quantized LLMs indicates that the SparseGPT (4:8) pruning method
achieves the highest performance in similarity score. However, the magnitude-based pruning is ineffective
for any tasks. Almost all the quantized models improve the performance of the corresponding dense
models. For the percentage of opinion changes, only the quantized AWQ models could achieve higher
performance than the corresponding dense models, and the Wanda (4:8) pruning method achieves the
highest performance.

Figure 5 shows the results of evaluating the LLMs’ performance for the adversarial factuality task.
Comparing the performance of pruned and quantized LLMs indicates that pruning is ineffective for
identifying factual errors. Model quantization does not necessarily degrade LLMs’ performance for certain
cases. Llama3.1-8B-Instruct-BNB-Int4 and Llama3.1-70B-Instruct-GPTQ-INT4 achieve the highest
performance.

4.5 Discussion

To demonstrate the proposed workflow, the quantized, pruned, and dense LLMs are evaluated for their
truthfulness in the multi-dimensional trustworthiness as a use case. The results are interesting. The Llama
3.1 70B dense model does not outperform the 8B dense model in every task. Hence, the size of a model is
not necessarily an indicator of its performance. The quantized models could achieve higher performance
than the corresponding dense models in most tasks. While two NVIDIA H100 GPUs are needed to load the
70B dense model, the quantized models significantly reduce the GPU memory usage without compromising
their performance in the tasks. In terms of the compression methods, pruning is not as effective as or much
less effective than quantization because the pruned models tend to lose the ability to follow the instructions.
In other words, the models ignore the system prompt during generation of answers to questions in the
datasets.

5. CONCLUSION

This project improves the workflow for evaluating open-source large language models (LLMs) for
trustworthiness. More open-source LLMs have been added to the workflow since the release of TrustLLM.
The workflow has added the generation and evaluation options to select generation and/or evaluation of
LLM responses. In addition, the workflow has added the task options to make the generation and evaluation
of LLM responses more flexible. To overcome the limited access to the proprietary models, the workflow
has added alternative LLM-based evaluators and embedding models. The workflow also makes the API
key specification more efficient and manageable. The evaluation results can now be organized more
efficiently for further processing and analysis. To demonstrate the workflow, we evaluate the impacts of
compression methods on the performance of Llama 3.1 models’ truthfulness. The outcomes of the project
could set stage for understanding and developing trustworthy models in future projects.
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APPENDIX A. Software Usage

An overview of the arguments in the script that implements the workflow is listed below.

--model:
The identifier of a machine learning model

--data path
The path to the datasets (default: dataset under the project folder)

--restart
Re-generation of LLM responses from scratch (default: False)

--num_gpus
Set the number of GPUs needed for loading a model (default: 1)

--max_new_token
Maximum number of new tokens to generate (default: 1024)

--load bnb model
Load a quantized model (e.g. 4-bit or 8-bit) using the bitsandbytes
(BNB) library (default: False)

--load hgq model
Load a HQQ-quantized model (default: False)

--load custom model
Load a custom model (default: False)

--hqq bits
Number of bits in HQQ (default: 4)

--hqq_groupsize
The group size in HQQ (default: 64)

--judge family
Family of the LLM-as-judge including GPT, Gemini, Llama, GLM, Gemma'

--judge_model
Model in a Family (default: meta-llama/Meta-Llama-3.1-8B-Instruct)

--embed_choice
Choice of the embedding model (0: GPT, 1: BGE-M3 (default))

--do_generate
Enable generation of LLM responses (default: False)

--do_evaluate
Enable evaluation of LLM responses (default: False)



--output
The path to a JSON file containing the evaluation results

--include_generate_ types
Select which tasks to generate. They are 'ethics', 'safety',
'fairness', 'robustness', 'truthfulness', 'privacy'

--include_evaluate types
Select which tasks to evaluate. They are the same as the names listed
in the tasks to generate.

--subtasks

Select which task(s) in each dimension to evaluate. The names of the
tasks are 'explicit moralchoice', 'implicit ethics',

'implicit social', 'jailbreak', 'exaggerated safety', 'misuse',
'toxicity', 'use internal knowledge', 'use external knowledge',
'hallucination', 'sycophancy', 'adversarial factuality',

'privacy confidence', 'privacy awareness', 'privacy leakage',
'adversarial glue', 'adversarial instruction', 'ood detection',

'ood generalization', 'stereotypes', 'disparagement',

'preference bias’'.

--openai_api_key

Specify the OpenAI API key. If not provided, then uses environment
variable OPENAI API KEY. The key is only required for accessing the
OpenAl models.

--gemini_ api key

Specify the Gemini API key. If not provided, then uses environment
variable GEMINI API KEY. The key is only required for accessing the
Gemini models.

--perspective_api_ key

Specify the Perspective API key. If not provided, then uses
environment variable PERSPECTIVE API KEY. The key is only required for
accessing Perspective API.



Below is an example command for loading an HQQ-quantized Llama 3.1 8B model from the Hugging Face
Hub, generating the model’s responses to questions in the datasets, and evaluating the model’s inclination
to generate misinformation when they rely solely on their internal knowledge. The results of the evaluation
will be saved in a JSON file.

python main.py

--model mobiuslabsgmbh/Llama-3.1-8b-instruct 4bitgs64 hgqg calib
--load hgg model

-—do_generate --include generate types truthfulness

-—do_evaluate --include evaluate types truthfulness

-—subtasks use internal knowledge

--judge _model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
--output results.json

Below is an example command for loading a pruned Llama 3.1 8B model from a custom location,
generating the model’s responses to questions in the datasets, and evaluating the model’s inclination to
generate misinformation when they rely solely on their internal knowledge. The results of the evaluation
will be saved in a JSON file.

python main.py

--model wanda/model/Meta-Llama-3.1-8B-Instruct-mag-24

-—-load custom model

--do_generate --include generate types truthfulness

-—do_evaluate --include evaluate types truthfulness

-—-subtasks use_ internal knowledge

--judge model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
--output results.json

Below is an example command for loading a BNB-quantized Llama 3.1 70B model from the Hugging Face
Hub, generating the model’s responses to questions in the datasets, and evaluating the model’s inclination
to generate misinformation when they rely solely on their internal knowledge. The results of the evaluation
will be saved in a JSON file.

python main.py

--model unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit
-—-load bnb model

--do_generate --include generate types truthfulness

--do_evaluate --include evaluate types truthfulness

--subtasks use_ internal knowledge

--judge model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
--output results.json
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