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ABSTRACT 

This work describes the improved workflow for evaluating open-source large language models (LLMs) for 

trustworthiness. The workflow facilitates the acquisition of LLMs, the generation of LLM responses, and 

the evaluation of the responses for their trustworthiness. As a use case, the workflow is employed to 

evaluate dense, quantized, and pruned Meta Llama3.1 LLMs for their truthfulness. The outcome of the 

project could set the stage for understanding and developing trustworthy models in the future projects. 

1. INTRODUCTION 

Large language models (LLMs) are revolutionizing the field of natural language processing, providing 

unprecedented capabilities in text generation, comprehension, and interaction [1]. They are cutting-edge 

artificial intelligence (AI) systems that can handle complex language tasks with approximate human-level 

performance. Hence, LLMs have increasingly been applied in domains such as education [2], law [3], and 

medicine [4]. As LLMs are deployed across increasingly diverse domains, concerns are growing about their 

trustworthiness: LLMs’ emerging generative capabilities may generate inaccurate or misleading outputs [5, 

6, 7], which could be exploited for propagation of false information and automated cyberattacks [8, 9, 10]. 

There are potential biases (e.g., gender and culture) and sensitive information in training datasets, which 

could cause fairness of contents generated by LLMs and privacy breach [11, 12]. LLMs’ responses do not 

necessarily align with human values [13], and such conflicts and contradictions could impact their broad 

application across different domains.  

 

Evaluating LLMs will mitigate the risks of misinformation and minimize generation of biased, harmful, 

unethical, unsafe contents. It is important to identify vulnerabilities and implement safeguards against them. 

Benchmarks play a critical role in evaluating LLMs’ trustworthiness. As the implementation details of a 

model often govern model performance, the lack of necessary code and sufficient detail of a model makes 

it difficult to evaluate the model releases objectively and effectively [14]. To address the concerns, there 

are benchmarks on LLMs’ toxicity, stereotype bias, the robustness against adversarial and out-of-

distribution texts, the privacy, fairness, and machine ethics of LLMs [15, 16, 17, 18]. Existing evaluation 

of trustworthiness mainly focuses on specific perspective of trustworthiness. However, one of the recent 

frameworks, TrustLLM, provides a multifaceted trustworthiness evaluation, comprising truthfulness, 

safety, fairness, robustness, privacy, and machine ethics [19]. The framework allows investigation of 

diverse LLMs with benchmarking across various tasks and datasets. The evaluation metrics are also 

established to understand the capabilities of LLMs from these tasks. 

 

After investigating TrustLLM, we find that a streamlined workflow is needed to facilitate the generation 

and evaluation of LLMs’ responses to the multifaceted trustworthiness. The proposed workflow will 

improve the current approach to assessing the trustworthiness of LLMs in model selection, task 

specification, choices of LLM-based evaluators, and correctness of the implementations of the evaluation 

metrics. 

 

2. BACKGROUND 

2.1 Summary of the Dimensions of Trustworthy LLMs 

2.1.1 Truthfulness  

Truthfulness means accurate representation of facts, information, and results [19]. The assessment of the 

truthfulness of LLMs consists of misinformation [20], hallucination [21], sycophancy [22], and adversarial 

facts [20]. The misinformation evaluates the inclination of LLMs to generate misinformation under two 



 

 

scenarios: relying solely on internal knowledge and integrating external knowledge. These two scenarios 

are considered as two tasks. The hallucination task tests LLMs’ propensity to hallucinate in four categories: 

multiple-choice question-answering, open-ended question-answering, knowledge-grounded dialogue, and 

summarization [23, 24]. The sycophancy task assesses the extent of sycophancy in LLMs, including 

persona sycophancy and preference sycophancy. The last task examines LLMs’ capabilities to correct 

adversarial facts when inputs to LLMs contain incorrect information. 

The evaluation metrics for these tasks are diverse. For the CODAH dataset [25] used in the internal 

knowledge task, the accuracy is measured by the number of exact matches between responses generated by 

LLMs and provided gold answers. For the SQuAD2.0 [26], HotpotQA [27], and AdversarialQA [28] 

datasets, an LLM-based evaluator will assess whether LLMs’ responses align with gold answers [19]. For 

the external knowledge task, the macro-averaged F1 score is computed to evaluate the performance of 

LLMs for zero-shot fact-checking using the datasets Climate-FEVER [29], SciFact [30], COVID-Fact [31], 

and HealthVer [32]. For the hallucination task, the evaluation metric is accuracy. Higher accuracy indicates 

that LLMs could choose the correct answers more accurately or better differentiate between hallucinated 

and non-hallucinated answers. To evaluate the persona-based sycophancy, the similarity between responses 

generated by LLMs and non-sycophantic answers, as well as how distinct the responses are from 

sycophantic answers are measured. A higher value indicates that non-sycophantic answer is more distinct 

from sycophantic answer. To evaluate the preference-based sycophancy, the metric is the percentages of 

opinion changes in responses generated by LLMs when prompted with a pair of preference pairs. A lower 

value indicates reduced sycophantic behavior exhibited by LLMs. An LLM-based evaluator is used to 

assess whether response pairs convey the same meanings. For the last task, an LLM-based evaluator 

assesses whether responses generated by LLMs under evaluation effectively identify inaccuracies in input 

prompts. 

2.1.2 Safety 

Safety is LLMs’ ability to avoid unsafe, illegal outputs and only engage in a safe conversation [19]. The 

assessment of the safety of LLMs consists of four tasks: jailbreak [33], exaggerated safety [34], misuse 

[35], and toxicity [36]. The jailbreak task assesses the resilience of LLMs against jailbreak attacks. The 

exaggerated safety task assesses whether LLMs exhibit over-defensiveness given safe prompts. The toxicity 

task measures toxicity in generation of contents using a score obtained from Perspective API [37]. The tool 

uses machine learning to identify toxic comments. The misuse task assesses whether LLMs will refuse to 

answer various types of misuse (e.g., spreading false information, launching network attacks, or providing 

illegal information) given various direct prompts. 

In Tasks 1-3, the evaluation metric is the percentage of “Refuse to Answer” in LLMs’ responses. This is 

obtained by the Longformer model [38] that determines whether LLMs refuse to answer. Task 4 computes 

a toxicity score obtained from Perspective API to measure toxicity in contents. 

2.1.3 Fairness 

Fairness generally means that LLMs are designed, trained, and deployed in unbiased and nondiscriminatory 

ways. The assessment of the fairness of LLMs consists of three tasks: stereotypes [39], disparagement [40], 

and preference bias [ 41 ]. The stereotypes task evaluates LLMs’ opinions on stereotypes from the 

perspective of underlying values, whether LLMs can accurately recognize stereotypes, and stereotype risk 

for user queries in potential real-world scenarios [19]. The disparagement task assesses a model’s behavior 

that reinforces the notion that certain groups are less valuable than others and less deserving of respect (or 

resources). The preference bias task assesses LLMs’ degree of subjectivity.   



 

 

In Task 1, the evaluation metric is the percentage of instances where LLMs’ outputs agree with the 

stereotype statements. A lower percentage indicates fewer stereotypes. An LLM-based evaluator is utilized 

for automated answer analysis. In Task 2, the evaluation metric is the p-value for each attribute in every 

model as a Chi-square test [19]. In Task 3, The evaluation metric is Refuse to Answer and the Longformer 

model (classifier) determines whether LLMs respond by refusing to answer. 

2.1.4 Robustness 

Robustness is LLMs’ capability to handle diverse inputs including noise, interference, adversarial attacks, 

and changes in data distribution, among other factors. The assessment of the robustness of LLMs consists 

of four tasks [19]: input with noises, open-ended instruction, out-of-distribution (OOD) detection, and OOD 

generalization. The noise task assesses LLMs’ robustness in natural language processing tasks with ground-

truth labels from the Adversarial GLUE (AdvGLUE) dataset [42]. The open-ended instruction task assesses 

LLMs’ robustness in open-ended tasks without ground-truth labels using the AdvINSTRUCTION dataset 

[19]. The OOD detection task assesses LLMs’ capabilities of identifying information beyond their training 

distribution [43]. The OOD generalization task assesses a model’s ability to deal with new, unseen data that 

may come from a different distribution [44]. 

Task 1 has two metrics: accuracy (Acc) and attack success rate (ASR). The “benign” accuracy (Acc(ben)) 

evaluates LLMs’ performance on original data and the “adversarial” accuracy (Acc(adv)) their accuracy on 

perturbed data. ASR is the ratio of the number of samples correctly classified in the benign set but 

misclassified in the adversarial set to the number of samples correctly classified within the benign set. It 

indicates whether LLMs can adequately defend against perturbations. The overall performance of LLMs is 

measured using a robustness score (RS). The evaluation metric for Task 2 is the semantic similarity between 

outputs before and after perturbation. The similarity is computed using the embeddings of the outputs and 

their cosine similarity. The evaluation metric for Task 3 is Refuse to Answer and the Longformer model 

(classifier) determines whether LLMs respond by refusing to answer. The F1 score is the metric for Task 

4. 

2.1.5 Privacy 

Privacy is an LLM’s capability to safeguard private and sensitive information [45]. The assessment of the 

privacy of LLMs consists of three tasks: privacy confidence, privacy awareness, and privacy leakage. The 

first task assesses whether LLMs agree or disagree with the appropriate usage of privacy information. The 

awareness task assesses LLMs’ ability to identify and manage requests that may implicate privacy concerns. 

The privacy leakage task assesses whether LLMs disclose private information in the training datasets. 

The evaluation metric for Task 1 is Pearson’s correlation coefficient. “Refuse to Answer” (RtA), the 

proportion of instances where an LLM refuses to answer, is the metric for evaluating privacy awareness. 

Three metrics are used for evaluating the privacy leakage of LLMs: Refuse to Answer, Total Disclosure, 

and Conditional Disclosure [19]. 

2.1.6 Machine Ethics 

Machine ethics refers to LLMs’ ethical behaviors when they serve as intelligent agents [46]. The assessment 

of the privacy of LLMs consists of two tasks: implicit ethics and explicit ethics. The implicit ethics task 

evaluates whether ethical values embedded in LLMs align with human ethical standards using the ETHICS 

and SOCIAL CHEMISTRY 101 datasets [47, 48]. The explicit ethics task assesses LLMs’ ability of 

processing scenarios and acting on ethical decisions using the MoralChoice dataset [49]. The evaluation 

metric for all the tasks is accuracy.  



 

 

2.2 External Framework Dependencies of the Workflow 

2.2.1 PyTorch 

PyTorch is an open-source machine learning library for applications such as computer vision and natural 

language processing [50]. It was designed to support an imperative and Pythonic programming style and is 

consistent with other popular scientific computing libraries. It provides tensor computing with strong 

acceleration via graphics processing units (GPUs) [51]. It offers a comprehensive collection of building 

blocks for developing neural networks with productivity and performance. 

2.2.2 Transformers 

Transformers is a machine learning library that provides application-programming interfaces (APIs) and 

tools to download and operate on pretrained machine learning models [52]. These pretrained models are 

available in the Hugging Face Hub [53] where users could find not only models but also datasets and 

applications. The Hub promotes collaboration and learning among machine learning practitioners. 

2.2.3 FastChat 

FastChat is an open platform for training, serving, and evaluating LLMs [54]. Users could rapidly deploy 

LLMs via the platform and access the service via compatible APIs. To support a model, FastChat 

implements a conversation template and a model adapter for the model. 

3. PROPOSED WORKFLOW 

The workflow of TrustLLM has been improved to automate access to LLMs for conducting a comparative 

analysis of growing LLMs, assess the trustworthiness of LLMs, understand the capabilities and limitations 

of the LLMs in various trustworthiness aspects, and maintain the integrity of the testing process with a 

robust dataset for analysis. 

3.1 Support of More LLMs 

More open-source LLMs have been added to the workflow since the release of TrustLLM. The list of open-

source model families includes Baize [55], Baichuan [56], Yi [57], ChatGLM2 and GLM4 [58], Vicuna 

[59], Llama2, Llama3 and Llama3.1 [60], MPT [61], Guannaco [62], Oasst [63], Lemur [64], Qwen2 [65], 

StableLM [66], WizardLM [67], Mixtral and Mistral [68], and Dolly [69]. The proposed workflow also 

supports loading quantized models. The quantization methods of the models are GPTQ [70], AWQ [71], 

BNB [72] and HQQ [73]. Model quantization allows deployment of LLMs with limited resources. 

3.2 Generation and Evaluation of LLMs in Each Dimension 

The workflow has added the generation and evaluation options to make generation and evaluation of LLM 

responses flexible. The options along with the generation and evaluation dimensions allow users to select 

which dimension(s) to generate and evaluate. Without the option, all dimensions will be generated or 

evaluated against the datasets, and this process is typically very time-consuming. It may be common that 

users are interested in evaluating a specific dimension of trustworthy LLMs. 

3.3 Generation and Evaluation of LLMs for Tasks in Each Dimension 

The workflow has added the task option to make the generation and evaluation of LLM responses even 

flexible. The option along with the generation and evaluation dimensions allow users to select which task(s) 



 

 

in a dimension to generate and evaluate. Without the option, all tasks in a dimension will be generated or 

evaluated. The option is useful when a specific task in a dimension needs to be tested or evaluated. 

3.4 Support of Open Source LLM-based Evaluators 

OpenAI’s ChatGPT is employed as an evaluator in TrustLLM for evaluating LLMs’ responses. However, 

ChatGPT is built on proprietary series of generative pre-trained transformer (GPT) models and is fine-tuned 

for conversational applications [74]. To overcome the limited access to any proprietary models, the 

proposed workflow has added alternative LLM-based evaluators. Most evaluators are based on open-source 

LLMs including the GLM [58] and Llama [60] families. 

3.5 Support of Open Source Embedding Model 

In TrustLLM, OpenAI’s embedding model is utilized to obtain embeddings of the output [75]. To overcome 

the limited access to proprietary embedding models, the proposed workflow has added an open source 

embedding model [76]. Users can choose the embedding model as an alternative to the proprietary model 

or add more models. 

3.6 Specification of API Keys 

Perspective analyzes a string of text for its toxicity and predicts the perceived impact that it might have on 

a conversation [37]. To enable access to the Perspective API, a key is required to authenticate the request. 

Similarly, a key is required to access proprietary LLMs. In TrustLLM, an API key is specified in the source 

code. The proposed workflow requests a user to specify a required key as a command-line option or set it 

as an environment variable, which makes the key specification more efficient and manageable. 

3.7 Collection of Results for Postprocessing 

In TrustLLM, results from a model evaluation are directly printed to a terminal as numerical values. To 

ensure that results are stored for further analysis and organized efficiently, the proposed workflow allows 

a user to specify a file path to evaluation results. As JSON is a widely used data interchange format [77], 

the evaluation results will be saved as JSON files for different models. Furthermore, the workflow 

associates a result with its corresponding metric’s name for better interpreting the meanings of the results. 

3.8 Improvement of Accuracy of Results 

We find that certain evaluation results differ from the published results significantly. An analysis of the 

results indicates that there are several potential causes. 1) There exist errors in the dataset. For example, the 

CODAH dataset is an evaluation set for commonsense question-answering. Because it is a multiple-choice 

question-answering task, the accuracy is measured by the exact match between the responses generated by 

LLMs and the provided gold answers. However, the index of a gold answer is not supposed to be 0; it 

should start from 1. The issue was promptly addressed after it was raised. 2) LLMs’ responses were 

completely nonsensical to the corresponding prompts. The cause is that the order of the parameters in a 

function call does not match the order of the arguments in the function definition. 3) For certain evaluation 

metric, a regular expression pattern is applied to the LLM responses to extract the matches. However, the 

pattern may fail to extract them properly when the responses of a LLM do not follow the instructions. 4) 

While each evaluation metric is described in the paper, the implementation of certain metric may be 

incorrect in the source code. 5) TrustLLM used OpenAI’s proprietary models to automate the evaluation of 

LLM responses for certain tasks. These models often achieve the best performance in natural language 

processing. When the evaluators are replaced with open-source models, the evaluation results will differ. 



 

 

4. ASSESS THE TRUTHFULNESS OF LLMS AS A USE CASE 

To demonstrate the proposed workflow, this section presents an evaluation of dense, quantized, and pruned 

LLMs for their truthfulness in the multi-dimensional trustworthiness as a use case. 

4.1 Models 

This study chooses the Meta Llama 3.1 8B and 70B instruction tuned (Instruct) generative models for 

evaluation. The numbers of parameters in the models are 8 billion and 70 billion, respectively. The Llama 

3.1 models were pretrained on approximately 15 trillion tokens of data from publicly available sources. 

Due to the resource constraints, the largest 405B model in the Llama family will be evaluated in future 

work. The fine-tuning data includes publicly available instruction datasets, as well as over 25 million 

synthetically generated examples. The tuned models are upgraded versions of the Llama 3 8B and 70B 

models in terms of model capabilities and performance. Compared to the 8B model, the 70B model can 

reach higher performance across a set of standard benchmarks [78]. 

Table 1.  List of LLMs evaluated in the experiments 

 

Name Description 

Llama3.1-8B-Instruct-AWQ-INT4 Llama 3.1 8B model quantized with AWQ from 16-bit precision to 4-bit precision 

Llama3.1-8B-Instruct-GPTQ-INT4 Llama 3.1 8B model quantized with GPTQ from 16-bit precision to 4-bit precision  

Llama3.1-8B-Instruct-BNB-INT4 Llama 3.1 8B model quantized with BNB from 16-bit precision to 4-bit precision  

Llama3.1-8B-Instruct-HQQ-INT4 Llama 3.1 8B model quantized with HQQ from 16-bit precision to 4-bit precision  

Llama3.1-8B-Instruct Llama 3.1 8B instruction tuned model  

Llama3.1-70B-Instruct-AWQ-INT4 Llama 3.1 70B model quantized with AWQ from 16-bit precision to 4-bit precision  

Llama3.1-70B-Instruct-GPTQ-INT4 Llama 3.1 70B model quantized with GPTQ from 16-bit precision to 4-bit precision  

Llama3.1-70B-Instruct-BNB-INT4 Llama 3.1 70B model quantized with BNB from 16-bit precision to 4-bit precision 

Llama3.1-70B-Instruct-HQQ-INT4 Llama 3.1 70B model quantized with HQQ from 16-bit precision to 4-bit precision 

Llama3.1-70B-Instruct Llama 3.1 70B instruction tuned model 

Llama3.1-8B-Instruct-mag-24 Llama 3.1 8B model pruned with Magnitude and 2:4 pattern 

Llama3.1-8B-Instruct-sparsegpt-24 Llama 3.1 8B model pruned with SparseGPT and 2:4 pattern 

Llama3.1-8B-Instruct-wanda-24 Llama 3.1 8B model pruned with Wanda and 2:4 pattern 

Llama3.1-8B-Instruct-mag-48 Llama 3.1 8B model pruned with Magnitude and 4:8 pattern 

Llama3.1-8B-Instruct-sparsegpt-48 Llama 3.1 8B model pruned with SparseGPT and 4:8 pattern 

Llama3.1-8B-Instruct-wanda-48 Llama 3.1 8B model pruned with Wanda and 4:8 pattern 

 



 

 

4.2 Compression Methods 

Compression is critical for deploying large models with limited resources, which reduces memory 

consumption for inference and training. This work focuses on pruning (removing parameters) and 

quantization (reducing precision) for compressing dense LLMs. The common pruning techniques are 

Magnitude, SparseGPT, and Wanda. Magnitude pruning removes individual weights based on their 

magnitudes [79]. SparseGPT prunes LLMs by solving a local layer-wise reconstruction problem [80]. 

Wanda considers the impacts of input activations and prunes weights on a per-output basis [81]. The 

sparsity pattern is structured N:M in which at most N weights are non-zero for every continuous M weights 

[82]. The quantization methods are GPTQ, AWQ, BNB, and HQQ. GPTQ is a weight quantization method 

based on approximate second-order information. AWQ leverages the activation-aware quantization to 

adaptively scale weights. BNB applies k-bit quantization of large language models. HQQ is a fast quantizer 

using a half-quadratic solver to find the quantization parameters. GPTQ and AWQ are calibration-based 

methods while BNB and HQQ do not rely on an external dataset. Hence, there are tradeoffs in quantization 

quality and time among these methods [70-73]. 

4.3 Experimental Setup 

The evaluation is conducted on a compute node with NVIDIA H100 GPUs in the Experimental Computing 

Laboratory at Oak Ridge National Laboratory. The versions of Python, PyTorch, and Transformers are 

3.9.19, 2.4.0+cu12.1, and 4.45.0, respectively. FastChat is cloned from the GitHub repository as the 

repository has been supporting more LLMs since the latest release in February 2024. Without access to a 

proprietary model (e.g., ChatGPT) as an LLM-based evaluator, the quantized Llama3.1 70B model (i.e., 

Llama3.1-70B-AWQ-INT4) is used as the evaluator. All dense and quantized models, listed in Table 1, are 

publicly available in the Hugging Face Hub [83, 84]. The Llama 3.1 8B model is pruned using the script 

[85]. 

 
 

Figure 1.  Evaluation of the LLMs’ performance relying on internal knowledge in the misinformation task 
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4.4 Experimental Results 

Figure 1 shows the results of evaluating the LLMs’ inclination to generate misinformation when they rely 

solely on their internal knowledge. The 70B dense model achieves higher performance than the 8B dense 

model for all datasets except AdversarialQA. Among the four datasets, both models deliver the lowest 

performance in SQuAD2.0. Comparing the performance of pruned and quantized models indicates that all 

pruning methods appear ineffective in obtaining reasonable performance. On the other hand, model 

quantization does not necessarily degrade those models’ performance for certain datasets. Llama3.1-8B-

Instruct-BNB-Int4 achieves the highest performance in CODAH, Llama3.1-70B-AWQ-INT4 achieves the 

highest performance in SQuAD2.0 and AdversarialQA, and Llama3.1-70B-GPTQ-INT4 achieves the 

highest performance in HotspotQA. 

Figure 2 shows the results of evaluating the LLMs’ inclination to generate misinformation when they reply 

are presented with external ground truth. The 70B dense model achieves higher performance than the 8B 

dense model in COVID-Fact and HealthVer. Comparing the performance of pruned and quantized LLMs 

indicates that the pruning methods appear less effective in obtaining reasonable performance. Model 

quantization does not necessarily degrade LLMs’ performance for certain datasets. The GPTQ 8B and 70B 

models achieve the highest performance in SciFact. The 8B model quantized with GPTQ achieves the 

highest performance in COVID-Fact. The HQQ 7B and 80B models achieve the highest performance in 

Climate-FEVER. 

Figure 3 shows the results of evaluating the LLMs’ performance for the four hallucination tasks. The 70B 

dense model achieves higher performance than the 8B dense model in the multiple-choice task. Comparing 

the performance of pruned and quantized LLMs indicates that the SparseGPT (4:8) pruning method 

achieves the highest performance in text summarization and knowledge-grounded dialogue. However, the 

 
 

Figure 2.  Evaluation of the LLMs’ performance with integrating external knowledge in the 

misinformation task 
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magnitude-based pruning is most ineffective for any tasks. Model quantization does not necessarily degrade 

 
 

Figure 3.  Evaluation of the LLMs’ performance in the hallucination tasks 
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Figure 4a.  Evaluation of the LLMs’ performance in the persona-based sycophancy 
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LLMs’ performance for certain cases. The HQQ 8B and 70B models achieve the highest performance in 

the question-answering task. Llama3.1-8B-Instruct-HQQ-INT4 achieves the highest performance in the 

 
 

Figure 4b.  Evaluation of the LLMs’ performance in the preference-based sycophancy 
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Figure 5.  Evaluation of the LLMs’ performance in the adversarial factuality 
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text-summary task. Llama3.1-8B-Instruct-AWQ-INT4 achieves the highest performance in the knowledge-

grounded dialogue task. Llama3.1-70B-Instruct-GPTQ-INT4 achieves the highest performance in the 

multiple-choice task. 

Figures 4 show the results of evaluating the LLMs’ performance for the two sycophancy tasks. Comparing 

the performance of pruned and quantized LLMs indicates that the SparseGPT (4:8) pruning method 

achieves the highest performance in similarity score. However, the magnitude-based pruning is ineffective 

for any tasks.  Almost all the quantized models improve the performance of the corresponding dense 

models. For the percentage of opinion changes, only the quantized AWQ models could achieve higher 

performance than the corresponding dense models, and the Wanda (4:8) pruning method achieves the 

highest performance. 

Figure 5 shows the results of evaluating the LLMs’ performance for the adversarial factuality task. 

Comparing the performance of pruned and quantized LLMs indicates that pruning is ineffective for 

identifying factual errors. Model quantization does not necessarily degrade LLMs’ performance for certain 

cases. Llama3.1-8B-Instruct-BNB-Int4 and Llama3.1-70B-Instruct-GPTQ-INT4 achieve the highest 

performance. 

4.5 Discussion 

To demonstrate the proposed workflow, the quantized, pruned, and dense LLMs are evaluated for their 

truthfulness in the multi-dimensional trustworthiness as a use case. The results are interesting. The Llama 

3.1 70B dense model does not outperform the 8B dense model in every task. Hence, the size of a model is 

not necessarily an indicator of its performance. The quantized models could achieve higher performance 

than the corresponding dense models in most tasks. While two NVIDIA H100 GPUs are needed to load the 

70B dense model, the quantized models significantly reduce the GPU memory usage without compromising 

their performance in the tasks. In terms of the compression methods, pruning is not as effective as or much 

less effective than quantization because the pruned models tend to lose the ability to follow the instructions. 

In other words, the models ignore the system prompt during generation of answers to questions in the 

datasets. 

5. CONCLUSION 

This project improves the workflow for evaluating open-source large language models (LLMs) for 

trustworthiness. More open-source LLMs have been added to the workflow since the release of TrustLLM. 

The workflow has added the generation and evaluation options to select generation and/or evaluation of 

LLM responses. In addition, the workflow has added the task options to make the generation and evaluation 

of LLM responses more flexible. To overcome the limited access to the proprietary models, the workflow 

has added alternative LLM-based evaluators and embedding models. The workflow also makes the API 

key specification more efficient and manageable. The evaluation results can now be organized more 

efficiently for further processing and analysis. To demonstrate the workflow, we evaluate the impacts of 

compression methods on the performance of Llama 3.1 models’ truthfulness. The outcomes of the project 

could set stage for understanding and developing trustworthy models in future projects. 
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APPENDIX A. Software Usage 

An overview of the arguments in the script that implements the workflow is listed below. 

--model:  

The identifier of a machine learning model  

 

--data_path 

The path to the datasets (default: dataset under the project folder) 

 

--restart 

Re-generation of LLM responses from scratch (default: False) 

 

--num_gpus  

Set the number of GPUs needed for loading a model (default: 1) 

 

--max_new_token 

Maximum number of new tokens to generate (default: 1024) 

 

--load_bnb_model 

Load a quantized model (e.g. 4-bit or 8-bit) using the bitsandbytes 

(BNB) library (default: False) 

 

--load_hqq_model 

Load a HQQ-quantized model (default: False) 

 

--load_custom_model 

Load a custom model (default: False) 

 

--hqq_bits 

Number of bits in HQQ (default: 4) 

 

--hqq_groupsize 

The group size in HQQ (default: 64) 

 

--judge_family 

Family of the LLM-as-judge including GPT, Gemini, Llama, GLM, Gemma' 

 

--judge_model 

Model in a Family (default: meta-llama/Meta-Llama-3.1-8B-Instruct) 

 

--embed_choice 

Choice of the embedding model (0: GPT, 1: BGE-M3 (default)) 

 

--do_generate 

Enable generation of LLM responses (default: False) 

 

--do_evaluate 

Enable evaluation of LLM responses (default: False) 

 

 



 

 

--output 

The path to a JSON file containing the evaluation results 

 

--include_generate_types 

Select which tasks to generate. They are 'ethics', 'safety', 

'fairness', 'robustness', 'truthfulness', 'privacy' 

 
--include_evaluate_types 

Select which tasks to evaluate. They are the same as the names listed 

in the tasks to generate. 

 
--subtasks 

Select which task(s) in each dimension to evaluate. The names of the 

tasks are 'explicit_moralchoice', 'implicit_ethics', 

'implicit_social', 'jailbreak', 'exaggerated_safety', 'misuse', 

'toxicity', 'use_internal_knowledge', 'use_external_knowledge', 

'hallucination', 'sycophancy', 'adversarial_factuality', 

'privacy_confidence', 'privacy_awareness', 'privacy_leakage', 

'adversarial_glue', 'adversarial_instruction', 'ood_detection', 

'ood_generalization', 'stereotypes', 'disparagement', 

'preference_bias'. 

 
--openai_api_key 

Specify the OpenAI API key. If not provided, then uses environment 

variable OPENAI_API_KEY. The key is only required for accessing the 

OpenAI models. 

 

--gemini_api_key 

Specify the Gemini API key. If not provided, then uses environment 

variable GEMINI_API_KEY. The key is only required for accessing the 

Gemini models. 

 

--perspective_api_key 

Specify the Perspective API key. If not provided, then uses 

environment variable PERSPECTIVE_API_KEY. The key is only required for 

accessing Perspective API. 

 

 

 

 

 

  



 

 

Below is an example command for loading an HQQ-quantized Llama 3.1 8B model from the Hugging Face 

Hub, generating the model’s responses to questions in the datasets, and evaluating the model’s inclination 

to generate misinformation when they rely solely on their internal knowledge. The results of the evaluation 

will be saved in a JSON file. 

 
python main.py  

--model mobiuslabsgmbh/Llama-3.1-8b-instruct_4bitgs64_hqq_calib  

--load_hqq_model 

--do_generate --include_generate_types truthfulness  

--do_evaluate --include_evaluate_types truthfulness  

--subtasks use_internal_knowledge  

--judge_model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4 

--output results.json 

 

 

Below is an example command for loading a pruned Llama 3.1 8B model from a custom location, 

generating the model’s responses to questions in the datasets, and evaluating the model’s inclination to 

generate misinformation when they rely solely on their internal knowledge. The results of the evaluation 

will be saved in a JSON file. 

 
python main.py  

--model wanda/model/Meta-Llama-3.1-8B-Instruct-mag-24  

--load_custom_model 

--do_generate --include_generate_types truthfulness  

--do_evaluate --include_evaluate_types truthfulness  

--subtasks use_internal_knowledge  

--judge_model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4 

--output results.json 

 

 

Below is an example command for loading a BNB-quantized Llama 3.1 70B model from the Hugging Face 

Hub, generating the model’s responses to questions in the datasets, and evaluating the model’s inclination 

to generate misinformation when they rely solely on their internal knowledge. The results of the evaluation 

will be saved in a JSON file. 

 
python main.py  

--model unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit 

--load_bnb_model 

--do_generate --include_generate_types truthfulness  

--do_evaluate --include_evaluate_types truthfulness  

--subtasks use_internal_knowledge  

--judge_model hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4 

--output results.json 
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