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Abstract. With Moore’s law approaching its end, traditional von Neu-
mann architectures are struggling to keep up with the exceeding perfor-
mance and memory requirements of artificial intelligence and machine
learning algorithms. Unconventional computing approaches such as neu-
romorphic computing that leverage spiking neural networks (SNNs) to
perform computation are gaining traction and seek the paradigm shift
necessary to sustain the increasing demands of modern applications.
Novel memory technologies, such as resistive RAM (ReRAM), employ
a crossbar architecture that possesses the inherent capability of effi-
ciently computing vector-matrix multiplication—a dominant operation
in SNNs. The prospect of naturally mapping SNNs to the crossbar struc-
tures provides a unique opportunity for achieving a high-performance,
power-efficient neuromorphic system. In this work, we present ReSpike,
which is a new framework, behavioral simulator, and architectural de-
sign based on ReRAM crossbar architectures, enabling modeling and
co-design to achieve efficient execution of SNNs. We drive this co-design
forward by quantifying the impact that ReRAM cell nonidealities have
on the corresponding accuracy of an SNN application.

Keywords: Neuromorphic computing - Spiking Neural Networks - ReRAM
- Co-design framework

1 Introduction
Advanced software functionalities, particularly those utilizing artificial intelli-
gence (AI) and machine learning (ML) algorithms, exhibit exceeding compute
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and memory performance requirements. As Moore’s law is approaching its lim-
its 1], traditional von Neumann architectures struggle to keep up with the un-
precedented demands of such applications. To improve efficiency, researchers
are exploring novel materials and device-level innovations (e.g., resistive RAM
[ReRAM], electrochemical RAM [ECRAM], spin-transfer torque magnetic RAM
[STT-MRAM]) in conjunction with alternative computing approaches.

Neuromorphic computing is a promising computing paradigm that performs
computations by emulating the human brain, adopting a non-von Neumann ap-
proach [2]|, and colocating processing and memory to significantly reduce the
memory transfer overhead. Neuromorphic architectures leverage neuron and
synapse primitives for computation, and the “programs” created for these ar-
chitectures are detailed in neural networks which specify the connections and
parameters of the neurons and synapses. A spiking neural network (SNN) most
closely portrays a biological neuron-synapse structure, where neurons communi-
cate with each other over discrete, binary spikes [3|. Such organization with
event-driven asynchronous operation allows neuromorphic systems to be ex-
tremely energy efficient [4] while providing compute capabilities comparable to
those of conventional systems. Although mature digital implementations of neu-
romorphic systems such as Intel Loihi [5] and IBM TrueNorth [6] exist, analog
computing approaches anticipate several orders of magnitude improvement in
energy efficiency [7], implying that the future of truly energy-efficient, reliable
neuromorphic systems lies in fully analog or mixed-signal implementations.

Among the most compelling beyond-CMOS candidates, ReRAM is an emerg-
ing, nonvolatile memory technology that features analog compute capability, fast
writing speed, and high on-off ratio with CMOS compatibility [8]. ReRAM em-
ploys a crossbar architecture that is inherently capable of performing vector-
matrix multiplication (VMM) operation (in analog domain), which is the most
prevalent and critical operation in SNNs [9]|. Therefore, enabling efficient VMM
operations in analog computation ensures a significant improvement in perfor-
mance and energy efficiency for neuromorphic systems.

Incorporating novel technologies with an unconventional computing approach
brings several challenges regarding the hardware/software ecosystem. In recent
years, hardware design has significantly evolved to capture the algorithm and
software requirements more closely than ever before. On the other hand, the
algorithm and software stack has also evolved to closely incorporate the hardware
constraints. This diffusion of ideas and incorporation of constraints from top to
bottom (algorithms — software — hardware) and vice versa are known as co-
design, which is a crucial step to achieve high-performance hardware that adheres
to strict requirements pertaining to size, weight, and power.

In this study, we develop ReSpike, an architecture design and simulator with a
complete co-design framework for the exploration of neuromorphic architectures
aimed at utilizing the analog computing capability of ReRAM crossbars. To this
extent, the main contributions of this work are as follows:

— Designing and implementing the ReSpike neuromorphic processor architec-
ture by using ReRAM cell-array structures capable of processing SNN,
leveraging in-memory analog computation.



ReSpike 3

— Developing a co-design framework that accommodates the ReSpike archi-
tecture across the stack from applications/algorithms to devices/materials,
enabling seamless training and inference of SNNs.

— Quantifying the impact of certain ReRAM device nonidealities on the devi-
ation of accuracy on the proposed architecture.

The rest of the paper is organized as follows: Section [2] discusses the underly-
ing background and concepts of the study; Section [3| presents the organization
and implementation of the ReSpike framework; Section [4] discusses the results
obtained from the experiments; Section [5] discusses prior works related to this
study; and Section [6] presents the outcome and conclusion of the work.

2 Background

In this section, we discuss the fundamentals of neuromorphic computing, includ-
ing neurons, synapses, and SNNs; the characteristics, behavior, and purpose of
the Smartpixels application along with its training process and platform; and
the organization, and operation of ReRAM, providing the essential background
information for the techniques and technologies discussed in the study.

2.1 Neuromorphic Computing

Neuromorphic architectures are inspired by the structure of the human brain’s
neurons and synapses, adopting a non-von Neumann approach and collocating
processing and memory, in contrast to the conventional computing systems in
which the processor and memory are organized as separate units. Conventional
computing systems execute programs based on numerical values that are trans-
formed in binary values for processing, whereas programs for neuromorphic archi-
tectures are defined by the structure and organization of neural networks with
associated parameters. Neurons and synapses are the basic building blocks of
neuromorphic computers, where neurons are connected with each other through
synapses and communicate over discrete, binary spikes. Defining when these
spikes occur, their magnitude, and shape enables a neuromorphic program’s in-
formation to be encoded. Collocated processing and memory can significantly
improve system throughput, and event-driven execution provide an immense op-
portunity to be extremely energy efficient [3|. Several implementations of neu-
romorphic systems have demonstrated their inherent scalability [51/10].

To carry out the SNN simulation and evaluation, we employ the TENNLab
neuromorphic computing framework [11]. This framework provides a software
ecosystem across different levels of the compute stack, allowing for training
SNNs, developing model abstraction, and co-designing a hardware platform. At
the very last layer of the stack lie the architectural, circuit, and device-level con-
straints, which are provided to the software simulator. The neuron and synapse
dynamics are defined also by the underlying hardware dynamics.

To train the SNNs, we utilize Evolutionary Optimization for Neuromorphic
Systems (EONS) [12]. EONS is an evolutionary algorithm that optimizes the
parameters and structure of an SNN for deployment in neuromorphic systems.
It takes into account the constraints of the underlying hardware for optimizing
SNNs. It begins with a set of randomly originated SNNs as its initial population.
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Fig.1: (a) Integrate-and-fire neuron model. (b) ReRAM cells in low-resistance /
high-resistance states and ReRAM cells organized in crossbar arrays [13|, capable
of performing VMM operations without additional compute units.

The initial population may also include networks generated from a previous run,
generated from a separate training approach, or manually customized by a user.
When an initial population of networks is established, each network receives a
fitness score, followed by an evaluation of the population. Then, tournament
selection is used to select parent networks with the best fitness scores and re-
production operations are conducted, resulting in a child population through
crossover, cloning, and random mutations. EONS adopts a special mechanism
to retain the best networks in the child population from the previous popula-
tion. This process to evaluate, select, and reproduce continues repeatedly until
the stopping criteria are triggered, such as reaching the desired fitness score or a
maximum number of generations. A network of neurons connected via synapses
forms the basic structure of SNNs, which is the primary mechanism for deploy-
ing AT as well as general-purpose workloads on neuromorphic computers. In this
study, we use the integrate-and-fire (IF) neuron model, as shown in Figure
The details of the behavioral SNN model is discussed in Section [3.1] .

2.2 Smartpixels Application

Previous studies have demonstrated an SNN for an application in high energy
physics experimentation [14]. It was shown that an SNN trained with EONS can
successfully filter out simulated charged clusters in the sensors associated with
low transverse momentum (pr) tracks with a signal efficiency of 91% but with
nearly half the number of parameters compared with a similar-performing DNN.
It was also shown that the SNN could natively process a temporal signal in the
form of spikes encoded from the sensor charge waveforms. As the amount of data
in the form of spikes can be very sparse, this also holds potential to reduce the
operating energy in the underlying hardware.

For example, a set of cluster samples, having a dimension of 21x13, are
converted to streams of spikes, where the number of spikes in each channel is
dependent on the rising or falling rate of the corresponding cluster’s charge
waveform. The 3D spike cluster is further spatially reduced by compressing the
spike trains along rows, or columns, or specified dimensions within the 21x13
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cluster frame |14]. For filtering out low momentum charge clusters, the SNN is
trained to classify the cluster samples into high or low pp. The SNN has two
output neurons, where one neuron spikes the highest to indicate a sample is low
pr, and the other spikes the highest for the high-p; sample. During training, the
samples having pr less than a threshold (typically 0.2 GeV) are categorized as
low-pr ones and are filtered out by the detector. During inference, the metrics
used are signal efliciency, which measures the success of correctly identifying
high-pr samples (|pr| > 2 GeV), and data rejection, which measures the success
rate on correctly identifying low-pr samples (|pr| < 2 GeV).

We used the neuromorphic TENNLab framework [11] to create and train
SNNs using EONS for the Smartpixels application. The SNN simulation is car-
ried out on a software simulator mimicking the hardware behavior of a field-
programmable gate array-based neuromorphic hardware called Caspian [15].
Caspian uses integer precision to represent all the parameters of the network.
The Smartpixels SNN was trained with a precision of 9-bits for the weights,
8-bits for the neuron thresholds, and 4-bits for the synaptic delays.

2.3 ReRAM

ReRAM is a nonvolatile memory composed of ReRAM cells that leverage resis-
tance properties to store data. A ReRAM cell is typically a two-terminal device
with a metal-insulator-metal structure. The insulator is realized with memristors,
which can form a low-resistance state (LRS) or a high-resistance state (HRS) by
establishing and dissolving a conductive filament through applied voltage. The
SET process is used to establish the conductive filament by oxygen drifts to the
memristive layer. The RESET voltage is applied to bring oxygen ions to fill up the
vacancies creating a gap in the conductive filament converting it to a HRS [16].
The memristive layer usually consists of HfOs, NiO, TasOs5, TiOs, or Al;O3,
while the terminals are formed with Pt or TiN. Figure [T presents a simplified
structure and operational states of ReRAM cells, as well as how the cells are
organized in a crossbar structure [13].

The unique structure and properties of ReRAM crossbars make it naturally
capable of performing VMMs, which are a key operation in SNNs. In the crossbar,
when an input vector is fed to the word lines as supply voltage, the current
accumulated on the bit lines produces the resultants of the VMM operation,
according to Kirchhoff’s law [13]. As the ReRAM device and crossbar operate
in the analog domain, digital-to-analog converters (DACs) and analog-to-digital
converters (ADCs) are added to the word-line and bit-line interfaces [4].

Although the analog properties of ReRAM device arrays offer intrinsic ef-
ficiency benefits over digital implementations, retaining accuracy has been a
consistent problem due to read noise [17], programming errors |13|, process vari-
ation, parasitic resistance, and other issues. These error and noise models can
be further subcategorized in state-independent and state-proportional models.
In state-proportional models, the deviation is proportional to the cell’s state (i.e.,
smaller conductance having an smaller error), and state-independent models are,
as the name suggests, independent of the cell’s current state |18].
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3 ReSpike Framework

This section describes both the ReSpike architecture model used to build up
the ReRAM devices into neuromorphic computing systems and the co-design
effort leveraging the ReSpike simulation framework, which is used to simulate
the behavior of these systems.

3.1 Behavioral model of SNNs using IF neurons

As highlighted in Section 2.1 and Figure [Ta] our SNN behavioral model uses IF
neurons. To model SNNs with IF neurons, the ReSpike architecture leverages the
ReRAM crossbar structure to sum weighted synaptic input connections, adding
a digital neuron component to it, which converts the accumulated charge from
the synapses into a digital value with an ADC. Then, the threshold compare-
and-fire block adds this incoming charge to the neuron’s previous charge and
compares this sum to a threshold value. If the charge exceeds the threshold, then
the neuron fires, emitting a spike to the ADU and clearing the stored charge.
Otherwise, if the value is less than the threshold, then the neuron does not fire,
and the charge is stored for the next cycle. The ADU adds temporal delay to
spikes by enabling a programmable delay in the spike propagation. In hardware,
this is commonly implemented as a shift register. To allow for all-to-all synaptic
connection configurability, all the outputs from the digital neurons are routed
back to the input rows of the crossbar. Figure [2a] presents a simplified block dia-
gram of this architecture with all connections and components. The architecture
is a mixed-signal design with the synapses implemented in the analog domain
with the ReRAM devices programmed with the weight values assigned to the
synapses.

3.2 Vector-matrix multiplication using crossbar architecture

To process a SNN, the structure essentially performs VMM operations in which
the input rows of the crossbar take in the input vector values from the spikes
of the previous cycle, and the weight matrix is assigned on the crossbar re-
flecting the synaptic connections of the network. During continuous cycles, the
VMM operations accumulate dendrite charges for each neuron in the digital neu-
ron model and cause the neuron to fire when the charge exceeds the neuron’s
threshold. While the VMM operation is performed on the crossbar architecture
in the analog domain, the Analog-to-Digital Converter (ADC) converts the den-
drite charge to a digital value, and the threshold compare-and-fire takes place in
the digital domain. These binary spikes are then reconverted to a high (spike)
or low (no spike) voltage level by the Digital-to-Analog Converter (DAC) and
applied to the rows of the crossbar. External input and output are handled in
the digital neuron component by applying the incoming external input directly
to the neuron’s accumulator and by sending external spike outputs when the
neuron fires.

3.3 The co-design approach

The ReSpike architecture must be accommodated through a larger co-design
effort to explore spiking neuromorphic systems across the full stack (e.g., ap-
plications, algorithms, software, architectures, circuits, devices), as highlighted
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Fig.2: (a) Block diagram of the ReSpike architecture for a simplified 4x4 cross-
bar configuration for a 4-neuron SNN, with configurable all-to-all synaptic con-
nections; (b) The co-design effort developing the ReSpike framework—providing
support across the full stack from applications, algorithms, software, architec-
ture, circuits and devices, highlighting the selection of models and components
used for each layer.

in Figure 2B This simplified but realistic architecture model allows us to eval-
uate the performance of the application at the top level in the design stack.
The simulator is a behavioral model that can evaluate the accuracy obtained by
algorithms developed higher in the stack on lower-level devices.

To implement the behavioral simulator of this model, we use the Analog Core
from CrossSim [19] to model the crossbar component and adjacent peripherals
(e.g. ADC, DAC etc.) of the architecture. The digital IF neuron is implemented
in a Python class that supports parameter loading, integration, reset, and check
for fire functions to simulate its operation. The main ReSpike simple class imple-
ments the simple routing and ADU components as a 2D array where neuron fires
are inserted at the proper neuron ID and delay value slot. Then, the array shifts
in the time dimension, and the last time slot is applied as input to the crossbar.
The ReSpike simple class is then wrapped into a processor class that imple-
ments a neuromorphic processor fulfilling the processor compatibilities with the
TENNLab framework processor interface. This class implements the proper API
to load networks, provide input spikes, run the processor, and read back the out-
put spikes. Because the processor is compatible with the TENNLab framework,
the target processor in the Smartpixels application can be changed to ReSpike
to execute an application using the ReSpike simulator.

The Caspian simulator used when training the Smartpixels application is a
configurable digital leaky IF simulator, which is optimized for quick evaluation
using a neuromorphic processor event simulator written in C++. To make these
Caspian-trained networks compatible with ReSpike, a synaptic to axonal delay
conversion to the appropriate threshold and weight range is implemented by
creating always-firing-on-input intermediate neurons for every unique synapse
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base .1 3 5

delay value so that the same varying synapse delays can be represented by the
different axon delays of the intermediate neurons. To aid in the mapping of
neurons to columns in the crossbar, a step is added that compacts the neuron
IDs into a contiguous range starting from 0. Finally, a generic parameter value
conversion step is used to map the values of the parameters into the correct
ranges and into the correct data types. This mapping equation is shown in :

T — .
2’ = cast <ffmfln X (tmaw - tmin) + tmin) ) (1>
max min

where 2’ is the new parameter value, cast is the type cast to the new data type,
Sfmin and fpq. are the previous value range, t,,;n and t,,., are the new value
range, and x in the previous parameter value.

4 Evaluation

In this paper, we evaluate the ReSpike framework using networks and utilities
developed for the smart-pixel application. SNNs have a different structure than
other artificial neural networks, and custom applications must be developed to
leverage emerging hardware architectures as features and implementation details
differ without a standard feature set or common set of benchmarks. We compare



ReSpike 9

062N Fe=F==FoFo-FoF=oT] 5 | * s
] e 5%
§0.60 s 3
15%

2 0.58 60s o v -
0.
& 2 $0.6 A * 50%
B 50E
20.56 =)
£ oY *
§ 0.54 40_§ é 0.5
<052 308 &
< o &
= 0 04
% 0.50 208
i} == Testing Accuracy g n

048] ! Testing F1 Score ig

1 == Inference Testing Time 105 03 .

base 1 3 5 7 15 25 50

Independent noise (%) 03 04 05 06 07 08 09

Efficiency (>2GeV)

a (b)
Fig.5: Effects of independent noise rates on the deviation of (a) accuracy, F1
score, inference testing time; and (b) efficiency vs rejection.

087 .

0.625 e e = ==

~
IS)

0.600

N

S
e
9

o
<)
=2GeV)
o
o
L 2
*
H

w
=]

Rejection (<
o
wn

N

1S]
N
IS

Testing Accuracy/F1 Score

= Testing Accuracy

Testing F1 Score

1 == |nference Testing Time
base 1 5 10 20 30 40 50 70
Proportional noise (%)

i 'S
o o
Inference Testing Time (in hours)

o
w

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Efficiency (>2GeV)

(a) (b)
Fig. 6: Effects of proportional noise rates on the deviation of (a) accuracy, F1
score, inference testing time; and (b) efficiency vs rejection.

the ReSpike framework with the Caspian simulator and achieve the same infer-
ence accuracy for the Smartpixels application with the default ReRAM device
configuration that does not incorporate any error or noise variation, and we re-
fer to it as the base configuration. The ReSpike framework enables us to use its
simulator to quantify the deviation in accuracy and F1 scores While accuracy em-
phasizes true positives and true negatives, F1 score is used when false negatives
and false positives must be observed. for certain percentages of error and noise
variability in ReRAM devices. To that end, we perform a sensitivity analysis on
several ReRAM device configurations, varying independent error, proportional
error, independent noise, and proportional noise (see Section and present
the corresponding deviation of accuracy and F1 scores. We also report inference
testing time and efficiency vs. rejection for each set of experiments.

4.1 Accuracy deviation for independent error

Figure (a) presents the accuracy and F1 score deviation for a range of indepen-
dent error rates. The x-axis provides the independent error rates for the device,
the primary y-axis provides the accuracy/F1 score, and the secondary y-axis
plots the inference testing time for each case. For each data point, we simulated
ten instances of the same configuration and plotted the average value with error
bars showing standard deviations. Results show that the accuracy and F1 score
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are very sensitive to independent error and gradually slope downward with an in-
creasing rate of independent error having the accuracy dropping down from 0.623
(base) to 0.55 with a 5%, and to 0.515 with a 50% independent error—suggesting
higher error rates cause the accuracy to drop, as expected. Configurations with
induced error yield a significant increase in inference time as well. Figure b)
presents the efficiency vs. rejection plot for the configurations with independent
errors. On this chart, an efficiency of 1 (x-axis) with a rejection of 0 (y-axis)
indicates that the model always classifies the samples as high py. Similarly, an
efficiency of 0 and rejection of 1 designate when all samples are being classified
as low ppr. The results show that changing the magnitude of independent error
affects efficiency vs. rejection points for each configuration, generally moving
from lower-right regions to upper-left regions with an increasing error rate. The
default decision of the SNN decoder when no neuron fires is to indicate a low-pp
sample, which in turn indicates that the increasing error is leading to a reduction
in the overall network’s firing output. Hence, as depicted in Figure b), there
is an increase in the rejection rate and a drop in the average efficiency.

4.2 Accuracy deviation for proportional error

We also run experiments to analyze the effect of proportional versus independent
programming error on accuracy and F1 score deviation. Understanding the sen-
sitivity to the error profile is important because different analog devices tend to
have different profiles. In particular, ReRAM, like other resistive memories, tends
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to have an error profile that is relatively independent of the target state |20].
This has been cited as a disadvantage for CNNs implemented in resistive analog
systems when compared to flash, which has a proportional error profile [18§].
Our results, as presented in Figure a) indicate that SNNs implemented with
resistive devices exhibit very similar trends and range for accuracy and F1 score
deviation for proportional errors in comparison to the independent errors. The
accuracy drops from 0.623 (base) to 0.546 with a 5% and to 5.15% with a 50%
proportional error. Note that this is a very high level of error, which typically
may be on the order of 10% [20]|. This indicates that for this analog SNN im-
plementation, independent error devices like ReRAM will be equally accurate
to proportional error devices like flash. However, inference testing time with
induced proportional error is higher and more deterministic. Figure b) also
shows similar sensitivity for proportional error on efficiency vs. rejection data in
comparison to the independent error variation.

4.3 Accuracy deviation for independent and proportional noise

In addition to programming error, it is important to understand the effect of read
noise on accuracy. Physically, read noise represents effects such as random tele-
graph noise that can manifest as fluctuations in current when held at a constant
bias |21]. Figures 5| and |§| present the impact of independent and proportional
noise, respectively. It is possible that this noise may or may not be proportional
to the target state, hence both are modeled |22|. Introducing higher noise rates
reduces the accuracy and F1 scores as expected. Interestingly, as with program-
ming error, there is non a significant difference whether the error is proportional
to or independent of state. The efficiency vs. rejection plots show that with in-
creasing noise rates, the model gradually moves from classifying samples as high

pr to low pr.
4.4 Error and noise’s effect on internal spiking behavior

To further investigate the accuracy loss and increasing low-pr classifications, we
ran a separate set of experiments for each configuration to observe the effect of
error and noise rates on internal spiking behaviors. Figure[7] presents the number
of total spikes fired for the full inference time of 20 cycles for each configuration
under observation. Darker lines represent lower error/noise rate and lighter lines
represent higher error/noise rate and the legends show total number of spikes
for a particular error/noise rate. From the plots we observe that an increasing
error and noise rate generally reduces the number of spikes. This loss of spike
activity contributes to the observed loss of application performance.

5 Related Work

A few studies propose ReRAM-based solutions for accelerating SNNs. Li et al. [23]
investigate the energy bottleneck of ReRAM-based processing in memory and
propose ReSiPE, a circuit design supporting the single-spiking multiply-and-
accumulate operation. In another study, Ankit et al. |24] propose a reconfigurable
energy-efficient architecture with memristive crossbars for deep SNNs and claim
to achieve 500 energy efficiency with 300x higher throughput. Jang et al. [25]
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explore device-level improvements for ReRAM cells and implement an analog ar-
tificial synapse using PCMO-based ReRAM, which is suitable for neuromorphic
systems.

Other studies investigate the possibility of using non-ReRAM crossbars for
SNNs. Kim et al. [4] propose ADC-less neuromorphic compute-in-memory pro-
cessor which is fabricated in 28 nm CMOS technology and occupies only a
2.9 mm? die area while achieving 92% accuracy for CIFAR-10 with 4-bit in-
put and weights. Bang et al. [26] develop a novel spike prediction technique and
a sparse direct feedback alignment technique to reduce the complexity of back
propagation delay for on-chip learning of low-energy SNNs. Both of these tech-
niques are implemented in 65 nm process technology, and a 52.1% decrease in
energy consumption and a 0.3% accuracy loss are reported.

Long et al. [§] present a ReRAM-based processing-in-memory architecture for
accelerating RNNs, characterizes system throughput, area, and power consump-
tion for a 28 nm implementation; and reports a 79x computing efficiency. Arrassi
et al. |27] adopt another approach: an SNN-based computation-in-memory archi-
tecture that uses ReRAM devices based on unsupervised spike time—dependent
plasticity and supports lightweight online learning and achieves high energy ef-
ficiency while maintaining a 95% inference accuracy.

Several studies explore the endurance, reliability, and nonideality aspects of
ReRAM cells. Wen et al. [28] focus on endurance degradation aspects of ReRAM
cells and propose ReNEW, a novel framework using single-level cells instead of
multilevel cells because the write endurance of a single-level ReRAM cell is typi-
cally 4-6 magnitudes higher than that of a multilevel ReRAM cell. Dampfhoffer
et al. [29] demonstrate that error-aware training can be very effective in miti-
gating high error rates in neural networks, and static and dynamic errors have
different effects on accuracy. The study also reports that SNNs and RNNs are
inherently more robust to dynamic errors compared with static errors. Bhat-
tacharjee et al. [30] emphasize the importance of analyzing the effect of intrinsic
crossbar nonidealities and show that repetitive crossbar computations through
multiple time steps expedite error accumulation, and recommend training SNNs
with fewer time steps for better accuracy. Xiao et al. [18] suggest that the so-
lution quality in analog systems can be degraded by noise, process variations,
and parasitic resistances. The study conducts and presents an extensive anal-
ysis of how nonidealities of analog neural network inference accelerators affect
accuracy, examining various parameters such as weight bit slicing, offset sub-
traction vs. differential cells for handling negative numbers, state-independent
and state-proportional errors, and parasitic resistance.

6 Conclusion

This study advances the state-of-the-art with a new architecture for neuromor-
phic processing leveraging ReRAM crossbar structures and develops a complete
framework for all design layers through a rigorous co-design effort. This effort
spans over multiple scientific areas from AI, high energy physics to material
and device level innovation to develop ReSpike framework that takes advan-
tage of in-memory analog computation at the core, opening up opportunities for
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highly energy efficient computing. Furthermore, ReSpike provides a platform to
explore different device configurations based on emerging materials for various
application domains to study their feasibility and accuracy deviation due to non-
idealities such as programming errors and read noises. For our experiments, we
evaluated SNN of the Smartpixel application on the ReSpike framework and in-
vestigated the accuracy deviation for independent/proportional error and noise
rates. The results show steep degradation of accuracy for inducing around 5% er-
ror/noise and gradual slow downs for higher rates, projecting a downward slope
towards a total loss of accuracy. This analysis provides valuable insights on ex-
pected accuracy losses with nonideal devices and highlights the needs for error
and noise aware training. We also analyze how firing behaviors are changed for
various device level configurations. We believe the ReSpike framework will serve
as a stepping stone for further investigation of co-design efforts involving novel
device, material and computing paradigms enabling design space exploration.
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