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Abstract

The surge in scientific literature obscures breakthroughs and hin-
ders the discovery of new research paths. We propose an artificial
intelligence (AI) powered framework using large language models
(LLMs) and knowledge graphs (KGs) to automate parts of scien-
tific discovery, focusing on energy-efficient Al circuits. Our hybrid
approach combines LLMs, structured data, and ontology-based
reasoning to construct a comprehensive knowledge graph that inte-
grates insights across computational neuroscience, spiking neuron
models, learning rules, architectural motifs, and neuromorphic de-
vice technologies. This multi-domain representation enables the
generation of hypotheses that connect biological function with
implementable, energy-efficient hardware architectures. Using KG
embeddings and graph neural networks, the framework generates
hypotheses for novel circuits, validates them through optimization
on exascale HPC systems, and with tools like SuperNeuro and Fugu,
the most promising designs will be prototyped in hardware. This
open-source system aims to accelerate discoveries and bridging
neuroscience with hardware innovation, drive collaboration, and
unlock new opportunities in low-power Al computing.
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1 Introduction

The scientific method generally involves understanding prior re-
search, forming a hypothesis based on this prior work, making a
prediction, and verifying or rejecting the prediction through exper-
iments or simulations. The volume of publications generated daily
makes it impossible for the research community to keep up with
the latest findings. This results in information overload, duplicate
research efforts and unreliable or unreproducible results [4]. How-
ever, significant advances in artificial intelligence (AI), particularly
in natural language processing and representation learning, have
led to the development of increasingly powerful methods for encod-
ing and analyzing textual information. These innovations facilitate
the extraction of nuanced semantic meaning, syntactic structure,
and contextual dependencies from text, enabling more accurate
and scalable analysis in diverse applications in scientific research,
industry, and beyond.

Consequently, automated text extraction from scientific publica-
tions using AI has made it possible to build large-scale knowledge
graphs (KG) by systematically pulling key facts, relationships, and
entities from thousands of research papers. This process uses natu-
ral language processing to identify and organize information such
as relationships, patterns, or outcomes found in text-based data. As
a result, data that was once locked in dense, unstructured text be-
comes accessible and connected, allowing researchers to use graph
algorithms to explore patterns, generate hypotheses, and integrate
findings across disciplines at a scale that manual curation could
never match.

This work describes our approach to utilize cutting-edge large
language models (LLMs) to extract and encode the research liter-
ature into an extensive knowledge graph to design more energy-
efficient circuits for artificial intelligence (AI). We focus on inte-
grating insights from diverse domains—including neuromorphic
engineering, spiking neural networks (SNNs), and computational
neuroscience—into a unified KG to guide hypothesis generation
and circuit design. In particular, we aim to extract and structure
knowledge related to third-generation spiking neuron models and
cortical microcircuit architectures inspired by biological brains.
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While such architectures are well studied in neuroscience, they re-
main underutilized in neuromorphic systems and spiking AI models.
Our framework seeks to bridge this gap, enabling the automated
discovery and simulation of biologically inspired circuits through
scalable tools and HPC-enabled analysis.

2 Background

Traditionally, knowledge extraction from scientific publications has
relied heavily on manual curation, keyword-based searches, and
rule-based systems. These approaches often depend on predefined
taxonomies and human effort to identify relevant information, sum-
marize findings, and establish conceptual links between studies.
Although effective in limited contexts, such methods are labor in-
tensive, scale poorly with the rapid growth of the literature, and
frequently miss deeper semantic relationships embedded in the text.
Consequently, the ability to comprehensively map and integrate
scientific knowledge has been constrained by both methodological
limitations and the sheer volume of unstructured data.

2.1 Language Models for Scientific Knowledge
Extraction

Large language models (LLMs) have significantly advanced auto-
mated scientific knowledge extraction by enabling the interpre-
tation of complex linguistic patterns and the structuring of un-
structured data. Foundational models like BERT[8], SciBERT[5],
and BioBERT[19] have shown strong performance in tasks such
as named entity recognition and relation extraction. More recent
tools, such as SciDaSynth [26] and domain-specific models like
MatSciBERT [10], demonstrate the growing role of LLMs in liter-
ature synthesis and targeted retrieval. Parallel to this, LLMs have
transformed knowledge graph (KG) construction, replacing rigid,
rule-based methods with prompt-based and zero-shot learning ap-
proaches. Plug-and-play systems using GPT-4 [17], frameworks
like SAC-KG [6], and tools such as itext2kg [18] and KnowGPT
[27] highlight how LLMs now serve as both generators and en-
hancers of KGs. This integration enables cross-domain reasoning
and hypothesis generation at scale, while also raising challenges
in maintaining consistency, scalability, and trustworthiness [21]
engineering research.

2.2 Neuromorphic Design and Learning
Principles

Neuromorphic and low-power circuit design techniques aim to
replicate the brain’s energy-efficient computation using compact,
event-driven hardware. Neuromorphic systems often employ sub-
threshold CMOS circuits and memristive devices for spike-based
communication and learning, leveraging mechanisms like spike-
timing-dependent plasticity (STDP) to minimize energy use while
enabling local adaptation [3] [22]. CMOS-based synapse and neu-
ron designs further reduce area and power through voltage scal-
ing and asynchronous operation [13]. Recent work also explores
hybrid analog-memristive architectures for in-memory neuromor-
phic learning, enhancing energy efficiency and system integration
[16][9]. However, most existing designs are handcrafted and rely
on simplified models like leaky integrate-and-fire (LIF) neurons,
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lacking automated methods to explore biologically inspired configu-
rations. Moreover, while novel neuromorphic devices offer distinct
physical properties—such as non-volatility, local state-dependent
switching, or stochasticity—their potential has not been systemati-
cally mapped to specific computational motifs or learning rules. To
address this gap, we propose extracting and structuring knowledge
on neuron models, microcircuit architectures, plasticity mecha-
nisms, and device characteristics from literature spanning neu-
roscience, SNNs, and neuromorphic hardware. This information
will be encoded in a multi-domain knowledge graph to support
cross-level reasoning and generate biologically plausible, hardware-
feasible architectural hypotheses.

2.3 Circuit Design Using Knowledge Graphs

Knowledge graphs have been applied in prior circuit design work
to support analog design reuse, circuit validation, and component
matching. In [12], a method is introduced to extract and represent
meta-knowledge from analog circuit design literature. The model
includes a conceptual hierarchy, performance tradeoffs, and causal
design reasoning. It helps identify new applications, improve de-
signs, and ensure correctness. A case study on 30 high-frequency
circuits showcases its use. More recently, the work of [24] discusses
the use of a knowledge graph for circuit design. The system models
electrical circuits as RDF-based graphs, using components as nodes
and wiring as edges, and simulates circuit behavior with Ngspice to
calculate parameters. These parameters, combined with formulae
and matching criteria also stored in RDF, help identify compatible
real-world components from a product knowledge graph, enriched
with data like price and specifications from vendor sites. Although
full cost optimization isn’t yet possible, the system enables engi-
neers to shortlist and compare suitable components based on con-
straints, pricing, and availability, with future plans for automated
recommendations and constraint checks. Similarly, several recent
works have explored combining large language models (LLMs) with
symbolic knowledge graphs (SKGs) for analog circuit synthesis. In
[23], LLMs generate high-level circuit modules, while the SKG pro-
vides structured guidance on their assembly. This offers a more
explainable and modular synthesis pipeline, though it remains fo-
cused on electrical component composition and does not extend
to higher-level architectural reasoning. However, these works are
primarily focused on analog or RTL-level circuits and operate at
low abstraction levels. They are not designed to support hypothesis-
driven architectural exploration.

Our work addresses a critical gap in the design flow by introduc-
ing a structured, hypothesis-driven architectural search phase that
precedes circuit-level synthesis. Rather than focusing on transistor-
or component-level implementation, we leverage knowledge graphs
to generate and evaluate high-level hypotheses—such as functional
microcircuit motifs, spiking neuron models, and biologically plausi-
ble learning rules. These hypotheses can be validated using architec-
tural simulators like SuperNeuro and Fugu[2, 7]. Additionally, our
KG captures information about the neuromorphic device landscape,
allowing us to reason about which emerging substrates (e.g., mem-
ristors, spintronic devices, phase-change materials) may align with
specific architectural patterns or computational properties. This
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integration bridges functional hypotheses with device-level feasi-
bility, forming a cohesive framework for design exploration across
abstraction layers. By utilizing KGs as active reasoning engines, our
approach paves way for the automated discovery of biologically
inspired architectures that are both plausible and hardware-aware.

3 Circuit Assessment Workflow

The system operates as a closed-loop architectural exploration
pipeline. Beginning with structured knowledge extraction, each
phase builds upon and informs the next. Hypotheses generated
from the knowledge graph are evaluated via simulation, and re-
sults are fed back into earlier stages to refine future predictions.
This feedback loop is central to making the system adaptive, effi-
cient, and capable of converging toward high-performing, energy-
efficient neuromorphic designs. Figure 1 illustrates a four-phase,
Al-enhanced workflow for the design, evaluation, and optimization
of neuromorphic circuits. It represents a complete design cycle,
spanning from knowledge discovery to performance-driven refine-
ment, and is structured to enable continuous improvement through
feedback and Al-based optimization.

In Phase 1, the system collects information from diverse sources
such as technical publications, circuit diagrams, and simulation
code. A large language model (LLM) is employed to process and
understand the unstructured content within these sources. The
LLM identifies key technical concepts, component interactions, per-
formance characteristics, and design constraints. This extracted
information is then used to construct a structured knowledge graph,
where nodes represent components, parameters, or concepts, and
edges denote the relationships between them. The knowledge graph
serves as a foundational resource for reasoning and inference in
subsequent phases, enabling the system to make informed design
decisions and uncover non-obvious connections across circuit de-
signs and literature.

Phase 2 builds on the structured knowledge assembled in the pre-
vious phase. The knowledge graph acts as a source for identifying
meaningful patterns and relationships that can inspire new circuit
designs. By analyzing patterns and relationships within the graph,
the system can identify potential combinations of components, con-
figurations, and design strategies that align with desired circuit
functions. This is especially useful for proposing novel neuromor-
phic circuit architectures, which mimic the behavior of biological
neural networks. The system leverages prompt engineering, graph
traversal techniques, and Al reasoning to hypothesize how differ-
ent components might interact to produce spiking behavior, enable
energy-efficient signaling, or replicate synaptic plasticity. These
hypotheses form the basis for new circuit implementations, guiding
the exploration of cutting-edge designs that traditional methods
might overlook.

Phase 3 focuses on testing the design hypotheses generated in
the previous phase. Proposed neuromorphic architectures are im-
plemented and evaluated using neuromorphic simulation tools such
as SuperNeuro and Fugu. These simulators enabling accurate as-
sessment of circuit behavior under biologically inspired conditions.
SuperNeuro supports large-scale, parallel evaluations of network
dynamics, while Fugu offers a modular framework for defining and
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simulating spiking neuron models across different hardware back-
ends. With these tools, the system measures performance metrics
such as latency, energy efficiency, spiking activity, and synaptic
behavior. The simulation results provide critical feedback on how
well the circuits meet their design objectives, identifying areas for
improvement and guiding the next iteration in the design loop.
Models that show promise at this point could then be evaluated
by low-level circuit simulators like Xyce [11] to evaluate the elec-
trical properties and physical realism of the underlying analog or
mixed-signal components. Xyce enables fine-grained simulation of
transistor-level behavior, power consumption, and signal timing,
making it valuable for verifying that neuromorphic circuits function
correctly not only at the algorithmic level but also at the hardware
implementation level. Together, these tools provide a comprehen-
sive understanding of each circuit’s behavior across abstraction
levels, offering feedback that informs both performance evaluation
and iterative design refinement.

Phase 4 serves as the intelligent refinement stage of the design
loop, where the results of circuit simulations from Phase 3 are sys-
tematically analyzed to improve the overall workflow. Performance
results are assessed to determine which hypotheses fell short of
design goals and which ones demonstrated promise. This feedback
is then used to guide optimization efforts across multiple levels of
the pipeline.

At the knowledge extraction level (Phase 1), the system uses
this performance feedback to fine-tune how information is prior-
itized and interpreted during extraction. For instance, if specific
circuit patterns consistently lead to poor performance, the extrac-
tion algorithms can be adjusted to deprioritize or reinterpret similar
structures in future iterations.

Simultaneously, the knowledge graph used in Phase 2 is updated
based on these insights. Failed hypotheses may trigger the removal
or weakening of certain relationships in the graph, while promising
ones may reinforce or introduce new connections. This dynamic
adjustment helps the system become more selective and informed
in its hypothesis generation process.

The overarching goal of this optimization phase is to minimize
the creation of low-value or redundant hypotheses and maximize
the discovery of novel, high-performing designs. By leveraging
both success and failure data, the system becomes progressively
more efficient and creative, continuously refining its understanding
of circuit design space and enhancing its ability to innovate.

These phases collectively create a closed-loop system in which
knowledge, simulation, and Al-driven feedback operate in coordi-
nation.

4 Hypothesis Generation from the Knowledge
Graph

An extensive knowledge graph forms the foundation of the work-
flow, enabling researchers to initiate and iteratively refine the de-
sign of neuromorphic circuits. A knowledge graph enables efficient
organization and retrieval of complex interconnected information,
thereby facilitating better understanding, reasoning, and insights
across various domains by structuring data relationships. To the
best of our knowledge, no knowledge graph currently captures
relations of circuits, devices, and systems from scientific papers,
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Figure 1: Circuit Assessment Workflow: Raw content in the
form of publications, circuit designs, and prior simulation
codes are processed into a knowledge graph. The knowledge
graph is then used for hypothesis generation. Hypotheses
are then evaluated through simulation to assess performance
and applicability.

particularly in the neuromorphic computing field. We posit that
comprehensive knowledge graphs generate hypotheses that are
more insightful and contextually relevant. The significance of differ-
ent parts of the KG, however, can vary across research communities
and change over time. For example, the importance of dexametha-
sone, a corticosteroid commonly used to reduce inflammation, grew
during the COVID-19 pandemic, especially among medical com-
munities focused on treating severe acute respiratory syndrome
[25]. This shift shows how the relevance of certain concepts can
increase in response to new challenges and evolving priorities.
Consequently, as the KG structure evolves, so too does the hypothe-
ses that are generated. We frame hypothesis discovery as a link
prediction task within the knowledge graph. Knowledge graph em-
bedding models predict new relationships between entities that
represent scientific concepts, publications, co-author relationships,
circuit information, and experimental details. To perform hypoth-
esis discovery, we leverage [15] to analyze the KG and generate
fully formulated hypotheses, including newly discovered triples
(hypothesis statements) by using supporting statements from pub-
lications, embeddings of these statements using LLMs, relevant
reference publications, and interested authors (hypothesis evidence
and history) extracted from the knowledge graph. The resulting hy-
potheses will then be modeled and evaluated for accuracy, energy
efficiency, and computational speed.

4.1 Proof of Concept

As an initial demonstration of our circuit assessment workflow,
we applied our knowledge extraction and hypothesis generation
pipeline to a curated set of twenty position papers from the U.S.
Department of Energy’s 2024 Neuromorphic Computing for Science
Workshop [1]. To guide the extraction and structuring of knowledge
from the selected position papers, we designed a series of struc-
tured prompts tailored for the GPT-40 model [20]. These prompts
instructed the model to identify key scientific concepts—such as
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neuron models, synaptic plasticity mechanisms, architectural mo-
tifs, device technologies, and implementation strategies—and or-
ganize them into labeled knowledge graphs. The model was ex-
plicitly directed to avoid generating disconnected nodes and to
label relationships such as causality, similarity, contradiction, and
usage. We began by building individual knowledge graphs for each
paper, followed by prompts to integrate these graphs into a sin-
gle, unified graph capable of supporting complex, cross-domain
queries. To assess the reasoning capabilities of the resulting graph,
we posed exploratory prompts such as: “Design a biologically plau-
sible, scalable spiking neuron model for neuromorphic hardware,”
and “Which device technologies are best suited for implementing
dynamic, task-adaptive learning rules?” These prompts enabled
the model to leverage the structured knowledge for hypothesis
generation and illustrate the potential of our approach in synthesiz-
ing actionable research insights. To expand this proof-of-concept
into the full workflow, we plan to simulate generated hypotheses
using tools like SuperNeuro and Fugu, map promising designs to
appropriate hardware platforms, and feed simulation results back
into the graph to refine future hypothesis generation.

Although the knowledge graph constructed from the 20 posi-
tion papers enabled meaningful hypothesis generation, the results
were less promising in a parallel experiment using 20 full-length
research papers (the maximum number allowed in a single Chat-
GPT project). In that case, the responses to complex queries were
often incoherent, lacked important cross-domain connections, or
included incompatible elements across abstraction levels—for ex-
ample, linking biologically inspired mechanisms to physically un-
feasible or mismatched hardware implementations. Several factors
likely contributed to this performance gap. Unlike the concise and
conceptually focused position papers, research papers contain sig-
nificantly more technical detail, variability in structure, and dense
mathematical notation, which may reduce the model’s ability to
consistently extract and relate relevant concepts. Additionally, the
language model used was not fine-tuned for domain-specific lit-
erature in neuromorphic computing, limiting its semantic align-
ment with specialized terminology and reasoning patterns. Lastly,
the knowledge graph construction process may require more ad-
vanced parsing and ontology-based validation to ensure consistency
and completeness at larger scales. These challenges highlight the
need for domain-adapted LLMs, more structured scientific corpora,
and post-processing enhancements to scale up this framework to
broader, more heterogeneous literature collections.

5 Simulation, Validation, and Optimization

Following hypothesis generation, candidate neuromorphic archi-
tectures are evaluated through a multi-tiered simulation and opti-
mization workflow. This process ensures that the proposed spiking
network designs—derived from the knowledge graph—are not only
functionally plausible but also meet practical constraints such as
energy efficiency, latency, and scalability.

To support this, we employ simulation tools that span multiple
levels of abstraction. At the high level, SuperNeuro [7] and NEST
[14] are used to evaluate global network behavior, spiking dynam-
ics, and learning patterns under biologically inspired conditions.
SuperNeuro is particularly well-suited for parallel simulation of
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large-scale SNNs, while NEST offers mature support for neuron-
level detail and biological fidelity.

Fugu [2], our open-source platform for spiking neural networks,
enables the construction of modular, reusable network components
referred to as Bricks. These Bricks serve as composable units that
can be assembled into complex SNN architectures and compiled
for various hardware backends. Previously, we used evolutionary
learning methods to construct Fugu Bricks. In this work, we extend
that approach by integrating Fugu with knowledge graph—derived
motifs to generate and evaluate more sophisticated neuron types
and microcircuit structures. A database of reusable Bricks will be
created and dynamically updated as part of the design loop.

Simulation outcomes are fed back into the design pipeline as
part of a closed-loop feedback system. Successful design patterns
reinforce knowledge graph connections and hypothesis generation
rules, while poorly performing designs are used to deprioritize in-
effective motifs. This adaptive mechanism enables the system to
improve its understanding of design constraints over time, enhanc-
ing its capacity to generate novel, resource-efficient neuromorphic
systems.

6 Summary & Future Work

This work presents a novel framework for automating hypothesis-
driven neuromorphic circuit design by integrating large language
models and structured knowledge graphs. While we demonstrate
only a small proof of concept using a curated set of position papers,
the proposed system lays the foundation for a closed-loop, Al-
enhanced design process that can scale across multiple abstraction
layers (e.g., from biological insight to hardware implementation).
The framework addresses a key gap in the design space by enabling
the integration of neuroscientific principles, such as cortical mi-
crocircuit motifs and learning rules like STDP, with circuit-level
parameters and emerging device technologies. The use of LLM-
based extraction and KG embeddings allows for scalable hypoth-
esis generation, and future iterations will incorporate continuous
feedback from simulations—both architectural (e.g., SuperNeuro,
Fugu) and low-level (e.g., SPICE, Xyce)—to refine and prioritize
design candidates. However, challenges remain. For instance, LLM-
extracted knowledge can introduce noise or bias, and integrating
cross-disciplinary data from neuroscience, hardware, and machine
learning poses non-trivial alignment issues. Looking ahead, we plan
to expand the system to include real-world prototyping on neuro-
morphic hardware, enable co-design with emerging substrates, and
support explainable KG reasoning paths. We also aim to develop
community-driven tools for collaborative refinement and embed
temporal awareness to adapt hypothesis generation to evolving
research priorities. Ultimately, this framework seeks to accelerate
scientific discovery in energy-efficient computing by transforming
unstructured knowledge into actionable, hardware-aware design
hypotheses.
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