
SymProp: Scaling Sparse Symmetric Tucker
Decomposition via Symmetry Propagation

Zecheng Li∗, Shruti Shivakumar†, Jiajia Li∗, Ramakrishnan Kannan‡
∗{zli94, jiajia.li}@ncsu.edu, Department of Computer Science, NC State University, Raleigh, USA

†sshivakumar@nvidia.com, NVIDIA Corporation, Santa Clara, USA
‡kannanr@ornl.gov, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract—Sparse symmetric tensors are an important class
of tensors, and their decompositions serve as powerful tools
for revealing low-rank structures. This paper introduces Sym-
Prop, a novel approach for scaling sparse symmetric Tucker
decomposition by propagating symmetry through intermedi-
ate computations. SymProp optimizes two key computational
kernels: Sparse Symmetric Tensor Times Same Matrix chain
(S3TTMc) for Higher-Order Orthogonal Iteration (HOOI) and
Sparse Symmetric Tensor Times Same Matrix chain Times
Core (S3TTMcTC) for Higher-Order QR Iteration (HOQRI).
Our method employs a metaprogramming-based index iteration
approach to efficiently handle the upper triangular parts of inter-
mediate dense symmetric tensors. SymProp achieves up to 50.9×
speedup over SPLATT and up to 360.8× over Compressed Sparse
Symmetric (CSS) format on the S3TTMc operation. Moreover,
our S3TTMc and S3TTMcTC implementations support tensor
orders four levels higher than state-of-the-art methods. Our
HOQRI demonstrates superior scalability and up to a 33.6×
speedup over optimized HOOI. By enabling more scalable Tucker
decompositions for higher orders, decomposition ranks, and
dimension sizes, SymProp opens new possibilities for analyzing
complex hypergraph structures in fields such as network science,
data mining, and machine learning.

Index Terms—Sparse tensors, symmetric tensors, Tucker de-
composition

I. INTRODUCTION

Tensors generalize matrices to higher dimensions, repre-
senting multi-dimensional (or high-order) data in numerous
applications [1]. Among them, symmetric tensors form an
important class of tensors, appearing in diverse fields such as
hypergraph analytics [2], [3], deep learning [4], chemistry [5],
and data mining [6], [7]. Hypergraphs, for instance, can be
represented as sparse symmetric adjacency tensors, with each
non-zero entry mapping to a hyperedge [2]. To analyze and
compress such tensors, decompositions serve as powerful tools
that can reveal low-rank structures for tasks like community
detection [3].

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by
accepting the article for publication, acknowledges that the United States Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Decomposing large-scale tensors presents significant chal-
lenges, particularly as tensor order and dimension size in-
crease. Tucker decomposition [8], a fundamental method in
tensor analysis, faces a scalability issue as its computational
complexity scales exponentially with the tensor order [1]. This
phenomenon becomes particularly acute when dealing with
sparse symmetric tensors derived from real-world applications,
such as hypergraph clustering, which often involve substan-
tially large datasets with high edge degrees, a.k.a., high tensor
orders. Tucker decomposition of symmetric adjacency tensors
can reveal clustering structures in hypergraphs. However, its
lack of scalability for large real-world datasets, especially
those with high-order adjacencies, limits its practical appli-
cation [1], [7]. We observe two inefficiencies in the state-of-
the-art sparse symmetric decompositions.

Redundant computation. Existing methods for general
sparse tensors [9], [10] often involve redundant computations
when applied to symmetric tensors, due to the redundant
saving of symmetric entries. Even the newly proposed compact
formats specifically for sparse symmetric tensors [11], [12]
consider symmetry in the input tensor but fail to exploit
symmetry in intermediate data, thus leading to a waste of
computational power and memory space. Our work observes
the inherent symmetry property in the intermediate data and
leverages it to accelerate sparse symmetric Tucker decompo-
sitions.

Large and high-order data. Current high-performance algo-
rithms for decomposing sparse symmetric tensors are limited
in their ability to handle increased input and output data
sizes, particularly for high tensor orders and moderate Tucker
decomposition ranks [13], which result in large decomposed
tensors. By using general sparse tensor formats, like the
Compressed Sparse Fibers (CSF) format [9], as the tensor
order increases, the memory space quickly runs out, even if
they can achieve acceptable runtime performance on small
and low-order tensors. While the state-of-the-art Compressed
Sparse Symmetric (CSS) format [12] saves computation by
using memoization on a tree structure, it still cannot compete
with the runtime performance of general sparse formats when
the tensor order is low and decomposition ranks become
large. We present performant algorithms to compute symmetric
Tucker decomposition of high-order symmetric tensors that
scale not only with the tensor size but also with decomposition

rank.

𝒳

F

𝑼

Outer Product

P𝐼 𝐼

𝑅𝐼𝐼 𝑅 𝑅𝑅
𝑅

𝐼

𝑅

F

P N𝐼

𝑅

N

S3TTMc
S3TTMcTC

𝑅

𝑅

Indexing

Fig. 1: Overview of symmetry propagation in S3TTMc and
S3TTMcTC operations. All tensors, except X , are dense. “N”
(No), “P” (Partial), and “F” (Full) denote different symmetric
features. X and U are the inputs, while A is the output.

By leveraging and propagating the inherent symmetry in the
intermediate data, this paper aims to solve the inefficiencies
in computation and memory footprint of existing state-of-the-
art approaches which hinder their scaling to large and high-
order datasets and decompositions of moderate Tucker rank.
We focus on low-rank tensor decomposition with rank below
20, and consider ranks above 4 as moderate.

Figure 1 illustrates the symmetry propagation process of
two critical computational kernels of Tucker decompositions:
Sparse Symmetric Tensor Times Same Matrix chain (S3TTMc)
and Sparse Symmetric Tensor Times Same Matrix chain Times
Core (S3TTMcTC) from Higher-Order Orthogonal Iteration
(HOOI) [13] and Higher-Order QR Iteration (HOQRI) [14]
algorithms, respectively. HOOI is widely accepted for Tucker
decomposition, while HOQRI employs QR iteration instead
of SVD to eliminate large intermediate matrices, potentially
accelerating the decomposition process.

In Figure 1, starting from the input sparse symmetric
tensor X and an initialized dense non-symmetric matrix U,
the output of S3TTMc is a partially symmetric tensor Y
and a non-symmetric matrix A for S3TTMcTC. Specifically
for S3TTMcTC, it is challenging to utilize the symmetric
properties when observing only the input and output (two non-
symmetric matrices U and A). However, our work success-
fully exploits the symmetric features of intermediate data, such
as a series of tensors Ki, Y and the core tensor C, allowing us
to achieve lower computational overhead and reduced memory
storage. Based on the three proven properties in Sections III
and IV, we develop scalable and efficient symmetry-aware
algorithms for both S3TTMc and S3TTMcTC, utilizing the
state-of-the-art CSS format for sparse symmetric tensors and
a compact format for dense tensors. Our work optimizes these
algorithms, ensuring that our improvements are mathemati-
cally equivalent and preserve the properties of the original
algorithms.

Our contributions are summarized as follows:
• We optimize S3TTMc with compact storage and

symmetry-aware computation for intermediate dense sym-

metric tensors, achieving significant performance im-
provements for high-order tensors and moderate Tucker
ranks. Additionally, we accelerate our algorithm by using
efficient index iteration implemented through template
metaprogramming. (Section III)

• We optimize S3TTMcTC to fully exploit the intrinsic
symmetry in the core tensor. Based on S3TTMc, we enable
support for HOQRI with lower complexity. This allows for
efficient decomposition of tensors with larger dimension
sizes. (Section IV)

• We apply the two optimized kernels to HOOI and HOQRI
to significantly enhance their overall performance in tensor
decompositions. (Section V)

• We benchmark our implementation to demonstrate the
speedups and improved scalability compared to existing
methods. Our results show up to a 50.9× speedup and
the ability to process tensors with six additional orders
compared to SPLATT, as well as up to a 360.8× speedup
with tensors of four additional orders compared to CSS.
HOQRI outperforms HOOI by up to 33.6× on compatible
datasets. Overall, SymProp demonstrates a superior ability
to handle tensors with higher order, moderate Tucker
rank, and increased dimension sizes compared to previous
approaches. (Section VI)

II. BACKGROUND

TABLE I: Symbol List.

Symbols Description

X ,Y,K Tensors, represented by calligraphic letters.
X(n) Matricization of X on n-th mode
i, j Index tuple of a non-zero in X . E.g., i = (i1, . . . , iN)

U,E,M Matrices, represented by bold letters.

Xf IOU representation of dense full symmetric tensor X
Yp IOU representation of dense partially symmetric tensor Y

N Tensor order of X
I Dimension (mode) size of X

SN,I Size of an order N , dimension size I dense symmetric
tensor in compact storage, equals to

(N+I−1
N

)
nz(X) Non-zero index set of X
unz(X) IOU non-zero index set of X
nnz Total #Non-zeros of X
unnz Total #IOU non-zeros of X

This section provides an overview of symmetric tensors,
their representations, and operations that is related to Tucker
decomposition. We introduce the notations used throughout
the paper, as summarized in Table I.

A. Symmetric Tensors

Dense Symmetric Tensors. An order-N symmetric tensor X
represents N -dimensional data, and its dimensions are also
referred to as modes. Its entries X (i1, i2, · · · , iN) (also repre-
sented as X (i) where i = (i1, i2, · · · , iN)) remain unchanged
under any index permutation. For example, consider an order-

3, 2× 2× 2 symmetric tensor: T =

[
1 2
2 3

2 3
3 4

]
. Entries

(0, 0, 1), (0, 1, 0), (1, 0, 0) have the same value 2, and entries

(0, 1, 1), (1, 0, 1), (1, 1, 0) have the same value 3. We refer
to an entry Xi as index-ordered unique (IOU) if the index
i is ordered as i1 ≤ i2 ≤ · · · ≤ iN . Only one IOU entry
exist per index permutation: (0, 0, 1) for the value 2 and
(0, 1, 1) for the value 3. Thus, the entry values of the index set
I = {(i1, . . . , iN)|i1 ≤ · · · ≤ iN} represents not only unique
but all elements in a symmetric tensor.

We call a tensor partially symmetric when its entries remain
unchanged under permutations of a subset of its indices.
For example, when we state that a tensor has symmetry
{i1}, {i2, i3, i4} (following the notation from [15]), it means
that the tensor is symmetric in the last three dimensions, and
its entries remain unchanged when its last three indices are
permuted.

Sparse Symmetric Tensors. We only need to store the non-
zero values and their corresponding IOU indices for either
symmetric or partially symmetric tensors given the data is
sparse. The non-zero set of a sparse symmetric or partially
symmetric tensor X , denoted as nz(X), is equivalent to having
all permutations expanded on the IOU non-zero set unz(X).
Our work only involves fully symmetry in sparse tensors.

B. Symmetric Tensor Formats

Dense Symmetric Formats. A simple yet compact storage
format [16] for dense (partially) symmetric tensors stores only
the IOU entries and arranges them consecutively and linearly
in memory, following the lexicographical order of their in-
dices. In the example tensor T , the IOU indices are (0, 0, 0),
(0, 0, 1), (0, 1, 1), and (1, 1, 1) in lexicographical order. The
format stores their corresponding entries in a linearized array
[1, 2, 3, 4], respectively. This layout stores an order-N sym-
metric tensor with dimension size I in

(
N+I−1

N

)
= (N+I−1)!

N !(I−1)!
entries. Asymptotically, this is N ! times fewer than storing all
its entries, as demonstrated by the limit: lim

I→∞
IN

(N+I−1
N)

= N !.

Sparse Symmetric Formats. Various sparse tensor data
structures exist for general sparse tensors, such as coordinate-
based formats, like COO [1], HiCOO [17], and ALTO [18]
and tree-based formats, like CSF [10] and MM-CSF [19].
For sparse symmetric tensors, more compressed formats like
UCOO [11] and CSS [11] have been proposed. The UCOO
format is the COO format but only storing IOU non-zeros. The
Compressed Sparse Symmetric (CSS) format is a tree-based
format specifically designed for sparse symmetric tensors,
featuring two types of memoization: between IOU non-zeros
and within permutations of an IOU non-zero (refer to details
in [11]).

We collectively refer to the formats that only save IOU
entries as IOU-based formats, which include the dense sym-
metric formats as well as the UCOO and CSS sparse formats.

C. Operations

In the following context, we use X ∈ RI×···×I to denote
a symmetric hypercubical tensor of order N with dimension
size I .

1) Tensor Matricization/Unfolding: Tensors can be un-
folded into matrices along any mode. The n-th mode un-
folding is X(n) ∈ RIn×

∏
i̸=n Ii , defined as: X(n)(in, j) =

X (i1, i2, . . . , iN), where j = lin(i\ in) is the linearized index
of i1, . . . , iN excluding in.

2) Outer and Kronecker Products: For vectors u ∈ Rm

and v ∈ Rn, their outer product u ⊗O v is a matrix A ∈
Rm×n with entries defined as: Aij = uivj . When generalizing
this operation to tensors, the outer product of multiple vectors
results in a tensor of order equal to the number of vectors
involved. The Kronecker product is closely related to the outer
product, but in the vectorized form. For vectors u ∈ Rm and
v ∈ Rn, their Kronecker product, denoted as u⊗K v ∈ Rmn.
In other words, the Kronecker product flattens the result of
the outer product into a vector, i.e., u⊗K v = Vec {u⊗O v}.

3) Tensor-Times-Matrix Chain in Tucker Decomposition:
We describe operations related to a chain of tensor-times-
matrix operations, beginning with an introduction to the
tensor-times-matrix operation.

	𝒳

	𝑼

𝐼
𝐼

𝐼 𝑅

	𝑼 𝑅

	𝑼 𝑅

𝐼

𝑨

	𝒞 𝑅	𝒳 	𝑼𝐼

𝐼

𝐼
𝐼 𝑅 	𝒳

	𝑼

𝐼
𝐼

𝐼 𝑅

	𝑼
𝑅

	𝑼 𝑅

𝐼

𝒴

(a) TTM (b) S3TTMc (c) S3TTMcTC

Fig. 2: Tensor diagram notation for tensor-times-matrix and
its chains. X is a symmetric tensor, U is a matrix.

Tensor-Times-Matrix (TTM). The n-mode tensor-matrix
product multiplies a tensor with a matrix along the nth mode.
For a symmetric tensor X and a matrix U ∈ RIn×R, the
product Y = X×nU

⊤ yields a tensor Y ∈ RI×···×I×R×I···×I .
Elementwise: Y(i1, ..., in−1, r, in+1, ..., iN) =∑In

in=1 U(in, r)X (i1, ..., iN). Using mode-n unfolding,
it can be represented as matrix multiplication:

Y(n) = U⊤X(n) (1)

Figure 2(a) illustrates the TTM of an order-4 symmetric tensor
X with U in tensor diagram notation [20]. The nodes represent
tensors and tensor indices are notated by edges from each
node. The connection implies a multiplication along this mode
or index.

Symmetric Tucker Decomposition. For a fixed decomposi-
tion rank R, symmetric Tucker decomposition approximates
the symmetric tensor X with a core tensor C ∈ RR×···×R

and a matrix U ∈ RI×R with R orthonormal columns. The
symmetric Tucker decomposition is formulated as:

min ∥X − C × [U⊤]∥2F , subject to U⊤U = I.

The operation C × [U⊤] is a chain of TTMs that multiplies
U to all modes of C. We will give the definitions of sparse
symmetric TTM chain below. The ∥·∥F denotes the Frobenius
norm, which is the square root of the sum of the squares of a
tensor’s elements.

Sparse Symmetric Tensor Times Same Matrix chain
(S3TTMc). TTMc applies tensor-matrix products on multiple
modes of a tensor. In the popular Tucker decomposition
algorithm HOOI [13], TTMc is performed with all modes
except one. S3TTMc operation is a special case of the TTMc
operation where the tensor X is symmetric and all matrices
are identical. Due to the symmetry of X , the product over
all modes except the n-th mode is the same for any n. We
conventionally choose the first mode:

Y = X ×−1 [U
⊤] = X ×2 U

⊤ ×3 U
⊤ · · · ×N U⊤, (2)

where Y ∈ RI×RN−1

, U ∈ RI×R. The chain of multiplication
on an order-4 tensor is visualized in the tensor diagram in
Figure 2(b).

For a sparse symmetric tensor X , this matricized Y(1) could
be computed by a sum of Kronecker product of rows in U
indexed by non-zeros.

Y(1)(k, :) =
∑

i=(i1,...iN)∈nz(X)
i1=k

X (i) ·


N⊗
j=2

KU(ij , :)

 (3)

Sparse Symmetric Tensor Times Same Matrix chain
Times Core (S3TTMcTC). TTMcTC was first introduced in
the HOQRI work for sparse tensors [14], while we consider
S3TTMcTC for sparse symmetric case. Mathematically,
S3TTMcTC computes the S3TTMc and then multiply it with
unfolded core tensor C(1), resulting in a matrix A ∈ RI×R

for QR decomposition: A = Y(1)C(1). Figure 2(c) illustrates
the computation of S3TTMcTC on an order-4 sparse tensor
X using tensor diagram notation.

III. ALGORITHM DESIGN FOR S3TTMC

We first discuss the symmtry property that exists in S3TTMc
and optimize it. This property will also be used in S3TTMcTC
in Section IV.

A. S3TTMc Computation with the IOU-based Format

We represent Equation (3) in an IOU-based format and an
outer product pattern in Equation (4) to form a tensor that
exhibits a symmetric property, which will be discussed later.

Y(1)(k, :) =
∑

i∈unz(X)
k∈i

X (i) Vec
{
Ki\k

}
, (4)

where

Ki =
∑

σ∈SN

U(σ(i1), :)⊗O · · · ⊗O U(σ(iN), :), (5)

σ is a permutation of {1, . . . , N}, SN denotes the symmetric
group of all permutations. Then,

Vec
{
Ki\k

}
=

∑
σ∈SN−1

{
N−1⊗
s=1

KU(σ(js), :)

}
When computing Y(1)(in, :), every permutation
σ(i1), . . . , σ(in−1), σ(in+1) . . . σ(iN), σ ∈ SN−1 of i
excluding in contributes to the accumulation.

Take an IOU non-zero Xi = 2, i = (1, 3, 5) in an order-
3 tensor X . In the S3TTMc, it adds 2 × Vec {K1,3} to
Y(1)(5, :) (k = 5), 2 × Vec {K1,5} to Y(1)(3, :) (k = 3),
2 × Vec {K3,5} to Y(1)(1, :) (k = 1). In general, each IOU
non-zero X (i) contributes (N −1)! terms to the accumulation
of rows Y(1)(i1, :), . . . ,Y(1)(iN , :).

B. Symmetry Propagation in the IOU Structure

Intuitively, the K tensor we construct is fully symmetric
due to the formulation with all the index permutations. While
each term in the computation may not be symmetric, their
sum results in a symmetric tensor K. This property allows
us to work with only the unique elements (IOU structure)
of each intermediate K tensor, significantly reducing compu-
tational and storage requirements, which we refer to as the
propagation of symmetry. The following proposition and
proof formalizes this intuition, providing the foundation for
our SymProp optimization.

Property 1. The intermediate tensor K formed by Equa-
tion (5) is fully symmetric.

Proof. Given an arbitrary permutation τ ∈ SN , we want to
show that for an element in K at index j = (j1, . . . , jN):
Ki(j1, . . . , jN) = Ki(τ(j1), . . . , τ(jN)).

Ki(τ(j1), . . . , τ(jN)) =
∑

σ∈SN

N∏
a=1

U(σ(ia), τ(ja))

Any permutation τ ∈ SN is, by definition, a bijective function
from the set {1, . . . , N} to itself. Consequently, its inverse
τ−1 is also a permutation in SN . Choose a rearrangement of
the terms of the product U(σ(i1), τ(j1)) · · ·U(σ(iN), τ(jN))
using τ−1 as the index. Thus, we have

Ki(τ(j1), . . . , τ(jN)) =
∑

σ∈SN

N∏
a=1

U(τ−1(σ(ia)), τ
−1(τ(ja)))

Let’s consider the composition π = τ−1 ◦ σ (◦ represents the
function composition). As σ ranges over SN , π also ranges
over all of SN . Therefore, we can reindex the sum to be:

Ki(τ(j1), . . . , τ(jN)) =
∑

π∈SN

N∏
a=1

U(π(ia), ja) = Ki(j1, . . . jN)

(6)
The RHS of Equation (6) is identical to the Equation (5),
which yields the symmetric property of K that it is invariant
under any permutation of its index.

SymProp leverages the CSS format, the state-of-the-art
format for sparse symmetric tensors, to exploit the sym-
metry of the input sparse tensor X . We take advantage of
its compact format and tree structure for memoization in
S3TTMc operations. The symmetry of the intermediate tensor
K is not exclusive to the CSS format. Our approach can be
implemented with any IOU-based format, such as UCOO, and
is adaptable to future IOU formats.

C. Symmetric Tensor Outer Products

We derive the symmetric tensor outer product formula to
compute tensor Y that takes full advantage of the propagated
symmetry, and adopt a metaprogramming technique to address
the challenge in index mapping on compact symmetric tensor
storage.

	1

	3 	5

	3

	5

	5

5
𝟐

3
𝟐

1
𝟐

1 3 5

3,51,51,3

Fig. 3: CSS tree with one IOU non-zero Xi = 2, i = (1, 3, 5).

1) Formulation: In CSS format, we utilize tensor outer
product to compute the K tensors in a tree structure to
memoize the intermediate results. From CSS tree level l − 1
to level l, each tensor K(l)

i at level l is formed by sum of
outer products between different K(l−1)

i\in s corresponding to
the non-zero indices and rows of U, shown in Equation (7).
K ∈ RR×···×R with the order |i| > 1 equals to the level l.

K(l)
i =

l∑
n=1

U(in, :)⊗O K(l−1)

i\in (7)

Figure 3 demonstrates the IOU i = (1, 3, 5) in the CSS
tree structure, decorated by the K tensors. The tree has two
levels, with nodes represented as circles. Level one K(1)s are
equal to the corresponding U rows, while the level two K(2)s
are computed using outer products of level one K(1)s with
rows of U. The rectangular pairs connected to the second level
represent the indices of the Y(1) rows and their corresponding
non-zero values. (For details of the CSS tree structure, refer
to [11].)

According to the symmetry propagation in Property 1, we
only need to preserve the IOUs in the outer product step when
computing each term. Consider a single term in Equation 7,
its element-wise representation is

K(l)
i (j1, . . . , jl−1, r) += U(in, r)K(l−1)

i\in (j1, . . . , jl−1). (8)

Thus, we can compute Y(1)(k, :) on only IOU indices via
Equation (4).

2) Efficient Index Iteration: Extracting the IOU indices of
K(l) and K(l−1) during the iteration over their index space is
required in Equation (8) to compute the outer product. Since
K(l) at each level is symmetric, we use compact storage format
by linearizing IOUs in a lexicographical order mentioned in
Section II-B [15] to store it. Thus, a careful algorithm design is
needed to obtain good memory locality and avoid the overhead
of computing the mapping of multi-dimensional indices to a
particular memory location for each IOU entry.

Our approach addresses this challenge by using nested for
loops to iterate the index space of K(l), shown in Algorithm 1.

This index iteration matches with the memory layouts of
both K(l) and K(l−1), leads to continuous memory access.
This nested for-loop implementation has two benefits: 1) no
computational overhead for the index mapping, which could
be O(N+R) in existing work [21], [22]; 2) compiler-friendly,
allowing the compiler to automatically optimize the code due
to its predictable behavior, fewer branches, and continuous
memory access, compared to the existing coupled for- and
while-loop approach that iterates indices by tracing back index
boundaries for each mode [16]. In Algorithm 1, the locl
iterates on the K(l) and increments at the level-l loop while
locl−1 iterates on K(l−1) and shares the same l− 1 for-loops.

Algorithm 1 Symmetric outer product algorithm for Equa-
tion (8).

// Base case: K(1) = U(i1, :).
// Index memory locations of K(l) and K(l−1).

1: Initialize locl, locl−1 ← 0
2: for i1 ← 0 to R− 1 do ▷ Index Iteration
3: for i2 ← i1 to R− 1 do
4: · · ·
5: for il−1 ← il−2 to R− 1 do
6: for il ← il−1 to R− 1 do
7: K(l)[locl]← U[in, il]×K(l−1)[locl−1]
8: locl ← locl + 1
9: end for

10: locl−1 ← locl−1 + 1
11: end for
12: · · ·
13: end for
14: end for

3) Template Metaprogramming: However, the number of
nested for-loops in Algorithm 1 is unknown before execution
and varies with different level l values. This brings difficul-
ties in implementing this algorithm. We leverage template
metaprogramming to generate the nested for-loops for all
possible orders at compile time and dynamically dispatched
during execution time, avoiding the need to implement them
separately.

Our approach utilizes a recursive template function to
generate N nested loops, one for each level. It maintains an
indices array to track the N indices for the right-hand side
tensor K(l−1). It recursively calls the iterate function to allow
each nested loop starts from the index of its outer loop. The
compiler unrolls and inlines these recursive calls, effectively
transforming them into the equivalent for-loop implementation
of Line 2-5 in Algorithm 1 at compile time.

1 template <typename Func, size_t R>
2 static void iterate_(dim_t dim, Func &&f, array<dim_t, N>

&indices, index_t &idx, dim_t start = 0) {
3 if constexpr (R == 0) {
4 f(indices, idx);
5 idx++;
6 } else {
7 for (dim_t i = start; i < dim; ++i) {
8 indices[N-R] = i;
9 iterate<Func, R-1>(dim, f, indices, idx, i);

10 }
11 }
12 }
13
14 template <typename Func>
15 static void iterate(dim_t dim, Func &&f) {

16 std::array<dim_t, N> indices{};
17 index_t oned_idx = 0;
18 iterate_<Func, N>(dim, std::forward<Func>(f), indices,

oned_idx);
19 }

This method allows for flexible computations on iterated
elements through a template function parameter. The Line 6-
9 in Algorithm 1 is passed as a function parameter in Line
15 of the C++ code and is being called with the IOU and
memory indices of K(l−1). It iterates the symmetric tensor
consecutively in memory, keeping minimal state (N indices)
and avoiding the runtime cost of index computation. It is
highly efficient for operations like outer products that linearly
traverse the tensor.

D. Complexity Analysis

Since we store fully symmetric tensors in a compact format,
we compute for IOU indices where i1 ≤ i2 ≤ · · · ≤ il−1 ≤
j < R. This leads to a reduction of computation from 2Rl

to 2Sl,R floating-point operations for a single outer product
at level-l. Therefore, we reduce the level-l complexity in
S3TTMc from ccss(l;N,R) = (2l − 1)

(
N
l

)
Rlunnz [12] to

csp(l;N,R) = (2l − 1)

(
N

l

)
Sl,Runnz (9)

where sp is the shorthand for SymProp. Note that Sl,R =(
l+R−1

l

)
, the reduction in level-l computation is Rl

Sl,R
={

l! as R → ∞
2l

l+1 when R = 2
.

IV. ALGORITHM DESIGN FOR S3TTMCTC

Based on the partially symmetric property of the Y ten-
sor, we propagate the symmetry to derive a computationally
efficient S3TTMcTC.

A. Symmetric Propagated S3TTMcTC

Algorithm 2 shows our optimized S3TTMcTC on the CSS
format.

Algorithm 2 Optimized CSS-based S3TTMcTC.
Input: Sparse symmetric tensor X , orthonormal factor U
Output: Intermediate matrix A

1: Yp = X ×−1 [U
⊤] ▷ Optimized S3TTMc

2: Cp(1) = U⊤Yp(1) ▷ Refer to Property 2
3: A = Y(1)C⊤(1) = Yp(1)MC⊤p(1) ▷ Refer to Property 3

Based on Property 1, the K tensors in Equation (5) are
fully symmetric. Since the sum of symmetric tensors is still
symmetric, we identify that tensor Y is symmetric on all
dimensions but the first, which we state as partial symmetry
{i1}, {i2, . . . , iN}. Recall that a dense symmetric tensor with
order N and dimension size R has SN,R =

(
N+R−1

N

)
unique

non-zero entries. We store Y in the compact form Yp with
I · SN−1,R space. Yp(1) ∈ RI×SN−1,R unfolds the symmet-
ric modes {i2, . . . , iN} to matrix rows. Unlike the HOQRI
paper [14], which completely avoids explicitly storing the Y

tensor, we still save it in the compact format Yp since storing
it is not a bottleneck compared to the space required for the
tree format for input and intermediate tensors. Moreover, we
avoid redundant computation of CSS format by keeping the
Yp tensor in memory.

The core tensor C in symmetric Tucker decomposition is
fully symmetric [23]. However, we choose to represent it in
partially symmetric form with symmetry {i1}, {i2, . . . , iN}
that matches the memory layout of rows of Yp(1) and columns
of C⊤

p(1). Thus, we can compute a regular matrix multiplication
Cp(1) = U⊤Yp(1) in Line 2, where Cp(1) ∈ RR×SN−1,R , allow-
ing simpler multiplication on the symmetric modes. The cor-
rectness of this multiplication is proven in Section IV-B. If C is
stored in the fully symmetric form Cf , multiplying Yp(1)C⊤

f(1)

becomes non-trivial because index mapping is needed, leading
to not only implementation complexity but also computational
overheads described in Section III-C2. The partially symmetric
Cp allows us to apply the aformentioned index iteration to
efficiently iterate over the unique non-zeros, and the memory
overhead is negligible since Cp(1) ∈ RR×SN−1,R is much
smaller than Yp(1) ∈ RI×SN−1,R . The multiplication on the
symmetric modes of Cp in Line 3 is detailed in Section IV-C.

Algorithm 2 allows us to compute A in O(IRSN−1,R)
complexity in addition to S3TTMc.

B. Multiplication on the Non-symmetric Mode

Line 2 in Algorithm 2 forms the unfolded core tensor
C in partially symmetric compact form Cp. By the Tucker
decomposition, C = X × [U⊤] on all modes, here we compute
Y = X×−1[U

⊤] with S3TTMc and subsequent C = Y×1U
⊤.

Property 2. Let Yp be a partially symmetric tensor of order
N , with symmetric modes {i2, . . . , iN}. The tensor-matrix
multiplication Yp ×1 U⊤ along the non-symmetric mode i1
produces a partially symmetric tensor Cp, which retains the
same layout as Yp for the symmetric modes {i2, . . . , iN}.

Proof. Let the size of a dense order-N tensor with dimension
size R be RN and the size of a symmetric tensor with the
same shape, stored in compact form, be SN,R. The tensor-
matrix multiplication Cp = Yp×1U

⊤ is equivalent to Cp(1) =
U⊤Yp(1) based on Equation (1).

We define an expansion matrix E ∈ RRN−1×SN−1,R that
maps from the unfolded compact symmetric rows of Yp

to their full representation. E(j, i) = 1 if the i-th IOU
in the compact form expands to include the j-th linearized
full representation index, and 0 otherwise. This map gives
Y(1) = Yp(1)E

⊤. Let’s consider the full multiplication:

C(1) = U⊤Y(1) = U⊤(Yp(1)E
⊤) = (U⊤Yp(1))E

⊤ = Cp(1)E⊤

Since C(1) and Y(1) are constructed from their respective
compact forms using the same indicator matrix E, Cp(1) and
Yp(1) have the same symmetric layout.

Property 2 proves the correctness of Line 2 in Algorithm 2.

C. Multiplication on the Unfolded Symmetric Modes

We now present our approach to the A = Y(1)C⊤
(1) at

Line 3. We perform the matrix multiplication on the partially
symmetric representation Yp and Cp.

Property 3. Y(1)C⊤
(1) = Yp(1)MC⊤

p(1), where M is the diag-
onal matrix such that Mii is the number of permutations of
the i-th IOU non-zero obtained from the compact ordering of
the dense symmetric tensor Yp(1)(q, :) for any row q.

Proof. Since Y(1)C⊤
(1) = Yp(1)E

⊤EC⊤
p(1), M = E⊤E.

M(i, k) = (E⊤E)(i, k) =

RN−1∑
j=1

E(j, i)E(j, k)

Following the definition of E, E(j, i) = 1 if the i-th IOU in
the compact form expands to include the j-th linearized full
representation index, and 0 otherwise.

When i ̸= k, the i-th and k-th IOU are different. There does
not exist a full tensor index that is a permutation of both IOU
at i and k at the same time. Therefore, M(i, k) = 0 for all
i ̸= k.

When i = k, M(i, i) =
∑RN−1

j=1 E(j, i)E(j, i). Since E is a

binary matrix, it is equivalent to
∑RN−1

j=1 E(j, i) which counts
the number of 1s in the i-th column of E. This sums up to
the number of permutations of the i-th IOU of any row in
Yp(1).

In our implementation, instead of storing M as a matrix,
we represent it as a vector p ∈ RSN−1,R , where each pi
corresponds to the i-th diagonal element of M. Therefore, we
scale each row of C⊤

p(1) ∈ RSN−1,R,R by the corresponding
element of p (We choose Cp instead of Yp since it is smaller).

C′⊤
p(1)(i, j) = (MC⊤

p(1))(i, j) = p(i) · C⊤
p(1)(i, j)

The subsequent dense matrix multiplication of Y(1) and the
scaled C′⊤

p(1) is accelerated by calling the BLAS library.
For an IOU i1, . . . , iN with index value frequencies

k1, . . . , km, the number of permutations of the IOU is given
by the multinomial coefficient

(
N

k1,k2,...,km

)
[16]. Before

the iterations in HOQRI, we enumerate all the IOU indices
of one row in Y(1) through the index iteration method in
Section III-C2, compute frequency for each index, and apply
the multinomial coefficient to compute each element in vector
p. Since same p is used in different iterations of Tucker
decomposition, we compute it once and memoize it.

V. SPARSE SYMMETRIC TUCKER DECOMPOSITION

To improve the scalability of symmetric Tucker decompo-
sition, we focus on two key algorithms: Higher-Order Orthog-
onal Iteration (HOOI) [13] and Higher-Order QR Iteration
(HOQRI) [14]. These algorithms aim to minimize the Tucker
objective, which is the least-squares cost function, according
to [13]: f(X̂) = ∥X − X̂∥2F = ∥X∥2F − ∥C∥2F where C is the
core tensor, X̂ = C ×−1 [U⊤] is the Tucker approximation
of the original tensor X . Both algorithms initialize the factor
matrix U using Higher-Order Singular Value Decomposition

(HOSVD) [24] or randomly. Symmetric HOSVD initialization
computes the R leading left singular vectors of the mode-1
unfolding of the tensor to obtain a U matrix as a starting
point.

A. HOOI

The Higher-Order Orthogonal Iteration algorithm [13] is
based on the Alternating Least Square technique. We focus
on the sparse symmetric HOOI where the same matrix U
is used for each Tucker factor. As shown in Algorithm 3,
each iteration performs the S3TTMc operation, followed by
updating U with the left singular vectors via SVD on the
unfolded tensor. These steps are repeated until the stopping
criterion is met, either when the objective converges or the
maximum number of iterations is reached.

Algorithm 3 Order-N sparse symmetric HOOI
Input: Sparse symmetric tensor X
Output: Core tensor C, and orthonormal matrix U

1: Initialize U ∈ RI×R randomly or using HOSVD
2: while f(X̂) not improving or max iteration reached do
3: Y = X ×−1 [U

⊤] ▷ S3TTMc
4: U← R left singular vectors of Y(1) via SVD
5: C = Y ×1 U

⊤

6: f(X̂) = ∥X∥2 − ∥C∥2
7: end while

B. HOQRI

Higher-Order QR Iteration [14] aims to improve the scal-
ability of Tucker decomposition by using QR decomposition
for orthogonalization in each iteration instead of the SVD in
HOOI. It also eliminates the large intermediate matrix Y by
introducing the novel TTMcTC kernel. The convergence of
HOQRI has been theoretically proven in previous work [14],
[25]. Our implementation of S3TTMcTC differs from the orig-
inal HOQRI’s n-ary contraction approach that computes the A
matrix element-by-element without intermediate memory. We
leverage S3TTMc and store the Y tensor in partially symmetric
form to achieve lower computational complexity as shown in
Section IV.

Algorithm 4 Order-N sparse symmetric HOQRI
Input: Sparse symmetric tensor X
Output: Core tensor C, and orthonormal matrix U

1: Initialize U ∈ RI×R randomly or using HOSVD
2: while f(X̂) not improving or max iteration reached do
3: C = X × [U⊤]
4: A = S3TTMcTC(X ,U)
5: U← an orthonormal basis of A via QR
6: f(X̂) = ∥X∥2 − ∥C∥2
7: end while

Compared to HOOI, HOQRI typically demonstrates better
scaling in terms of memory and computation, especially for
tensors with higher tensor orders and larger dimension sizes.
While HOQRI may require more iterations to converge, each
iteration is computationally faster, potentially leading to faster
overall solutions. This makes HOQRI particularly suitable

for high-order, high-rank tensor decompositions where HOOI
might struggle due to memory constraints or high computa-
tional costs.

TABLE II: Tucker decomposition algorithm complexities

Algorithm Complexity

HOOI-CSS [11] CCSS +O(IRN−1 min(I, RN−1))
HOOI-SymProp CSP +O(IRN−1 min(I, RN−1))

HOQRI [14] O(RNN !unnz)
HOQRI-SymProp CSP +O(ISN−1,RR)

C. Complexity Analysis

For HOOI algorithms, the complexity for SVD step
is O(IRN−1 min(I,RN−1)). The original S3TTMc
costs CCSS =

∑N−1
l=2 ccss(l;N,R) + 2NRN−1unnz,

while symmetric propagated S3TTMc costs CSP =∑N−1
l=2 csp(l;N,R) + 2NSN−1,Runnz. The maximum level

l for an order-N tensor is N − 1.
In the original HOQRI work [14], their n-ary contraction

approach costs O(RNnnz) = O(RNN !unnz), which is
higher than the original S3TTMc since they do not feature
memoization.

In our HOQRI-SymProp, matrix multiplications on Lines
2 and 3 each have complexity O(ISN−1,RR), and QR de-
composition on A costs O(IR2) which is negligible. Both
our HOQRI-SymProp and HOOI-SymProp have lower time
complexity than the state-of-the-art approaches.

Since HOQRI’s complexity depends linearly on input di-
mension size I and SN−1,R, while HOOI has a dependency
on RN−1. Although SN−1,R still grows exponentially with N
and R, it grows much more slowly than RN−1. This difference
in complexity allows HOQRI to perform better as the input
dimension size, decomposition rank and tensor order increase.

VI. EXPERIMENTS

We conduct comprehensive experiments on both synthetic
and real-world datasets, focusing on the performance of oper-
ations, scalability analysis, and a comparison between HOQRI
and HOOI decomposition algorithms.

TABLE III: Description of sparse symmetric tensors from
synthetic and real data, along with Tucker decomposition
ranks.

Category Dataset Order Dim UNNZ Rank

Synthetic

6D (L6) 6 100 10,000 2
7D (L7) 7 400 1,000,000 3
10D (L10) 10 400 1,000 5
12D (H12) 12 400 10,000 3

Real

contact-school [26] 5 245 12,704 12
trivago-clicks [27] 6 154,987 208,076 4
walmart-trips [28] 8 62,240 47,560 10
stackoverflow [29] 9 2,549,043 740,857 4
amazon-reviews [30] 12 701,429 136,407 3

A. Experimental Settings

Environment. We conduct experiments on a single node of
the Andes supercomputer [31] hosted by Oak Ridge Lead-
ership Computing Facility (OLCF). The node has 256 GB
of memory, with 2 AMD EPYC 7302 16-core processor
at 3.0GHz (total 32 cores). Non-Uniform Memory Access
(NUMA) and Sub-NUMA clustering are enabled.

Our code is written in C++ with shared memory paralleliza-
tion via OpenMP and we set OMP PROC BIND to spread to
ensure consistent thread scheduling. Floating-point numbers
are represented in double-precision. The code is compiled
with GCC 10.3.0 and linked against multithreaded OpenBLAS
3.17 [32] with OpenMP for matrix multiplication, SVD and
QR decompositions.

Dataset. We evaluate our algorithm and baselines on both
synthetic and real-world datasets, listed in Table III. Synthetic
tensors come from the prior work [12] by requesting the
authors, we choose L6, L7, L10, and H12 from their large
and huge datasets. Real-world tensors are constructed from
hypergraph datasets [33]. In symmetric tensor construction,
each hyperedge corresponds to a unique nonzero element, with
its indices representing the connected nodes. Dummy nodes
are introduced to unify non-uniform hyperedge cardinalities to
match the tensor order. Due to memory constraints (256 GB
on our platform) and the exponential complexity of Tucker
decomposition with respect to the tensor rank, we use a
subset of a hypergraph by limiting the maximum hyperedge
cardinality to the tensor order column in the table1. Real-world
symmetric tensors often have large dimension sizes (i.e., the
number of nodes in a hypergraph).

For synthetic datasets, we use the same ranks as in prior
work [12] to enable direct comparison. For real-world datasets,
the ranks are set to the maximum values that allow the baseline
algorithms to run on the first two datasets, and SymProp to run
within memory constraints on the remaining three datasets.

6D 7D 10D 12D
contact

triv
ago

walmart
sta

ckof
amazon

10 3

10 2

10 1

100

101

102

Ti
m

e
(s

)

O
O

M

O
O

M

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

TTMc-SPLATT S3TTMc-CSS S3TTMc-SP S3TTMcTC-SP

Fig. 4: Performance comparison of operations. “OOM” stands
for out-of-memory.

B. Performance of Operations

We compare the performance of our approaches S3TTMc-
SP (SymProp) and S3TTMcTC-SP against the baseline imple-
mentations S3TTMc-CSS [11], the state-of-the-art S3TTMc

1Except “contact-school” hypergraph is up to five-order.

implementation, and TTMc-SPLATT2 [9], [34], the popular
and efficient framework for general sparse TTMc on multicore
CPUs. Each operation is run 10 times to calculate the average
runtime.

1) Performance Comparison: Figure 4 compares the op-
eration runtime in a logarithmic scale for datasets listed in
Table III3. S3TTMc-SP outperforms S3TTMc-CSS by 1.44−
285.49×, and TTMc-SPLATT by up to 4.98× for the runnable
cases, with the speedup increasing for higher orders and ranks.
S3TTMcTC-SP adds only an average of 2.1% additional run-
time to S3TTMc due to its extra computation. TTMc-SPLATT
performs well on lower-order tensors and is the fastest on the
order-5 “contact-school” dataset. However, it quickly runs out
of memory for higher-order datasets. S3TTMc-CSS fits larger
tensors into memory, but still runs out of memory for datasets
with higher orders and ranks such as “12D” and “walmart-
trips”.

2) Parameter Sweep: To demonstrate performance char-
acteristics, we conduct experiments on synthetic datasets,
varying one parameter at a time while keeping the others fixed.
The base case is an order-7 tensor, with 10K unique non-zeros
and dimension size 400 with Tucker decomposition rank 4.
The plots show the average running time over 10 runs and the
variance on a logarithmic scale.

2 4 8 12 16 20
(a) Rank (R)

10 2

10 1

100

101

102

Ti
m

e
(s

)

5 6 7 8 9 10 12 14
(b) Order (N)

10 2

10 1

100

101

102 103 104 105 106

(c) #Unique Non-zeros (unnz)

10 3

10 2

10 1

100

101

Ti
m

e
(s

)

102 103 104 105 106

(d) Dimension size (I)

10 2

10 1

TTMc-SPLATT S3TTMc-CSS S3TTMc-SP S3TTMcTC-SP

Fig. 5: Performance comparison with baselines by sweeping
four parameters.

Sweep rank. Figure 5(a) shows the scalability with re-
spect to Tucker decomposition rank. Both S3TTMc-CSS and
SPLATT run out of memory with Tucker rank 16 and above.

2We modify the I/O in SPLATT to allow it read tensor inputs directly from
IOU format to avoid reading all permutations. The MAX MODE is set to 12
to allow it run on our benchmarked tensors in Table III.

3Due to the machine’s memory capacity, we cannot run the “12D” dataset
in the paper [12].

S3TTMc-SP achieves up to 50.9× speedup over SPLATT
and 360.8× over S3TTMc-CSS at rank 12. The runtime of
S3TTMc-SP increases more slowly and steadily compared to
SPLATT and CSS. S3TTMcTC-SP adds minimal overhead as
the S3TTMc step dominates its execution time.

Sweep order. Figure 5(b) demonstrates scalability with re-
spect to input tensor order. S3TTMc-SP outperforms SPLATT
starting from order-6 tensors and achieves 2.10 − 41.2×
speedup over S3TTMc-CSS. It successfully runs on order-
14 tensors, which is 4 and 6 orders higher than S3TTMc-
CSS and SPLATT, respectively. The performance model of
CSS [12] shows that S3TTMc-CSS outperforms SPLATT for
higher order and lower rank tensors, which matches the results
of the cross points in Figure 5(a),(b).

Sweep number of IOUs. Figure 5(c) illustrates runtime per-
formance with increasing IOUs. All four kernels scale lin-
early with the number of IOUs. Our optimized S3TTMc-
SP consistently outperforms SPLATT by 4.27 − 4.89× and
S3TTMc-CSS by 2.75−6.58×. SPLATT runs out of memory
for 1M number of IOUs. Since the computation added by
S3TTMcTC is independent of number of IOUs, the overhead
of S3TTMcTC-SP is more noticeable with fewer IOUs (up to
42%) but becomes negligible as the number of IOUs grows.

Sweep dimension size. Figure 5(d) shows the relationship
between runtime performance and dimension size I . Although
the number of floating-point operations in TTMc is indepen-
dent of the dimension size, we observe a slight increase in
runtime due to the increased size of the Y tensor, which
results in slower access times and impacts performance. For
S3TTMcTC-SP, the times-core operation at lines 2 and 3 in Al-
gorithm 2 scales linearly with I , contributing to the increased
runtime with larger dimensions. However, this benefit would
outweigh the added complexity of SVD in HOOI that will be
shown in Section VI-C.

3224161286421
Number of Cores

32
24
16
12

8
6
4

2

1

Sp
ee

du
p

walmart dataset rank-10

S3TTMc
S3TTMcTC
Ideal

3224161286421
Number of Cores

32
24
16
12

8
6
4

2

1

7D dataset rank-3

S3TTMc
S3TTMcTC
Ideal

Fig. 6: Scaling of our implementation on a single Andes node

3) Thread Scalability: We analyze the thread scalability of
S3TTMc and S3TTMcTC on the “walmart-trips” and “7D”
dataset with rank 10 and 3 respectively as representatives. As
shown in Figure 6, for the “walmart-trips” dataset, S3TTMc
and S3TTMcTC achieve 27.6× and 26.3× speedup, respec-
tively, on 32 cores compared to sequential execution. For the
“7D” dataset, the speedups are lower at 18.6× and 18.8×,
respectively, due to less computation resulted from the lower
rank.

4) Index Iteration Analysis: We mimic the behavior of one
step of the symmetric outer product in S3TTMc on tensors of
order 2 to 14 with decomposition ranks ranging from 3 to 8.
By comparing 4 our metaprogramming approach and the index
iteration method [16], our approach achieves a geometric mean
speedup of 1.54×.

C. Behavior of Tucker Decompositions

6D 7D 10D 12D
contact

triv
ago

walmart
sta

ckof
amazon

100

101

102

103

Ti
m

e
(s

)

O
O

M

O
O

M

O
O

M

HOOI
HOQRI

Fig. 7: Total running time comparison between HOOI and
HOQRI.

1) HOQRI versus HOOI: Figure 7 shows the overall run-
time of HOOI and HOQRI in our optimized approaches
for 100 iterations. HOOI achieves similar or even better
performance in lower-order tensors (“6D” and “7D” tensors).
However, for larger ranks, higher tensor orders, or larger
dimensions (“10D”, “12D”, and real-world tensors), HOQRI
outperforms HOOI significantly, 18.3× and 33.6× for the
“contact-school” and “trivago-clicks” datasets, respectively.
This is because the SVD step limits the overall performance
due to its O(IRN−1 min(I,RN−1)) complexity, which is
orders of magnitude higher than the QR in HOQRI that costs
merely O(IR2). HOOI runs out of memory for the last three
datasets due to excessive memory requirements in the SVD
step. For example, the matricized Y(1) (of size 62K × 10M)
in HOOI for the “walmart-trips” dataset requires 4.6TB of
memory, while in HOQRI, Ypsym(1) (of size 62K × 11K) only
occupies 5.3GB memory, resulting in a 99.88% reduction in
size.

6D 7D 10D 12D
contact

triv
ago

walmart
sta

ckof
amazon

0

20

40

60

80

100

Pe
rc

en
ta

ge

O
O

M

O
O

M

O
O

M

S3TTMc
SVD
Other
S3TTMcTC
QR
Other

Fig. 8: Performance breakdown of HOOI and HOQRI.

2) Performance Breakdown: From the percentage break-
down in Figure 8, we notice the SVD in HOOI dominates
the runtime when HOOI is much slower than HOQRI on the

4Since a single run only takes microseconds, we benchmark it using Google
Benchmark [35] for precise results.

tensors in Figure 7. The performance gain of HOQRI over
HOOI primarily comes from eliminating the SVD step of the
large intermediate matrix; the S3TTMcTC in HOQRI adds
only a small amount of computation to S3TTMc for the two
matrix multiplications in Algorithm 2, as shown in Figure 5(d).

0 10 20
Iterations

7.665 × 10 1
7.67 × 10 1

7.675 × 10 1
7.68 × 10 1

7.685 × 10 1
7.69 × 10 1

7.695 × 10 1
7.7 × 10 1

7.705 × 10 1

R
el

at
iv

e
E

rr
or

Contact dataset rank-12

HOOI
HOQRI

0 10 20 30
Iterations

100

9.9965 × 10 1
9.997 × 10 1

9.9975 × 10 1
9.998 × 10 1

9.9985 × 10 1
9.999 × 10 1

9.9995 × 10 1

Trivago dataset rank-4

HOOI
HOQRI

Fig. 9: Convergence comparison between HOOI and HOQRI
on real-world datasets.

3) Convergence: To validate our implementation, we com-
pare the convergence of HOOI and HOQRI on real-world
datasets. Figure 9 illustrates the convergence rates of HOOI
and HOQRI on the “contact-school” and “trivago-clicks”
datasets as two examples. We initialize the factor matrices
using HOSVD for the “contact-school” dataset and random
initialization 5 for the “trivago-clicks” dataset due to the
inability to run HOSVD on such a large tensor. For both
datasets, the algorithms converge to the same error level, but
HOOI converges faster and more stably.

VII. RELATED WORK

Symmetric Tensor Formats. Existing works explores the
format for symmetric tensors to improve computational effi-
ciency and reduce memory usage. Ballard et al. [16] explored
a compact storage format for efficient eigenvalue computa-
tion on GPUs. The Cyclops Tensor Framework (CTF) [36]
extended this concept to distributed computing, using a similar
compact format with padding for load balancing. Schatz et
al. [15] introduced the Blocked Compact Symmetric Storage
(BCSS), which uses a block structure to store IOU entries with
padding, though this approach could consume more storage
space for some high-order tensors. Shivakumar et al. [12]
first proposed a tree-based Compressed Sparse Symmetric
(CSS) format for sparse symmetric tensors. We adopted both
sparse [11] and dense [16] symmetric tensor formats and
applied a novel metaprogramming approach to efficiently
iterate the dense symmetric tensor.

TTMc Optimizations. Various optimizations on TTMc
have been proposed to enhance their efficiency. Smith et
al. [9] devised an efficient TTMc algorithm on the Com-
pressed Sparse Fiber (CSF) format [10]. Distributed computing
approaches have been developed for both dense [37] and
sparse [38], [39] TTMc operations. Specifically addressing
symmetric tensors, Shivakumar et al. [12] optimized the
S3TTMc kernel based on the CSS format. Our work further

5We randomly initialize both algorithms 20 times with different seeds and
select the one with the lowest reconstruction error, following the approach in
the paper [13].

optimizes S3TTMc and S3TTMcTC by exploiting symmetry
throughout the computation process.

QR Factorization for Tensor Decomposition. Various
approaches have leveraged QR factorization to improve the
efficiency of tensor decomposition. The Higher-Order QR
Iteration (HOQRI) [14] enhanced efficiency by replacing
SVD with QR factorization. Additional research has explored
different QR factorization variants, including rank-revealing
QR [40] and QR with L2,1-norm minimization [41], offering
alternative approaches for tensor compression and completion.
Our work adopts HOQRI due to its similarity to the HOOI
algorithm in key computational routines. Additionally, our
optimization ideas could inspire performance improvements
in QR factorization variants when applied to sparse symmetric
tensors.

Scalable Tucker Decompositions. Several algorithms have
been developed to address the scalability challenges in Tucker
decomposition. S-HOT [42] minimized intermediate data but
used N copies of the indices data, while Singleshot [43]
enabled processing of subtensors to handle larger inputs. Ran-
domized algorithms [44]–[47] applied randomization process
for reduced complexity. Distributed computation methods [38],
[39], [48] leveraged multiple nodes for large-scale tensors,
and GPU-accelerated algorithms [49] exploited hardware par-
allelism. Jin et al. [23] provided a novel scalable symmetric
tensor decomposition algorithm from a mathematical perspec-
tive. Our work optimizes the TTMc kernels for both traditional
HOOI and the more scalable HOQRI algorithms to improve
scalability.

VIII. CONCLUSION

This paper introduces SymProp, a novel approach for scal-
ing sparse symmetric Tucker decomposition via symmetry
propagation. Our method significantly improves the efficiency
of decomposing sparse symmetric tensors by leveraging sym-
metry throughout the computation process. We demonstrate
substantial performance gains and enabled Tucker decom-
positions for higher orders, ranks and dimension sizes that
previously intractable. SymProp opens new possibilities for an-
alyzing larger-scale complex hypergraph structures and other
symmetric data. While we focuse on optimizing HOOI and
HOQRI algorithms, future work could explore applying the
idea of propagated symmetry to other tensor decomposition
methods. As the need for analyzing large-scale symmetric data
continues to grow in fields such as data science and machine
learning, we believe SymProp provides a significant improve-
ment in making such analyses computationally feasible.

IX. ACKNOWLEDGEMENT

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory
and supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research
under Contract No. DE-AC05-00OR22725. This work is also
supported by the National Science Foundation under Awards
No. 2247309 and 2316201 and through startup funds from

the Computer Science Department at North Carolina State
University.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009. [Online]. Available:
https://doi.org/10.1137/07070111X

[2] X. Ouvrard, J.-M. L. Goff, and S. Marchand-Maillet, “Adjacency
and tensor representation in general hypergraphs part 1: e-adjacency
tensor uniformisation using homogeneous polynomials,” 2018. [Online].
Available: https://arxiv.org/abs/1712.08189

[3] Z. T. Ke, F. Shi, and D. Xia, “Community detection for hypergraph
networks via regularized tensor power iteration,” arXiv: Methodology,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
202577680

[4] M. Wang, Y. Zhen, Y. Pan, Y. Zhao, C. Zhuang, Z. Xu, R. Guo, and
X. Zhao, “Tensorized hypergraph neural networks,” 2024. [Online].
Available: https://arxiv.org/abs/2306.02560

[5] C. Bender, “Integral transformations. a bottleneck in molecular
quantum mechanical calculations,” Journal of Computational Physics,
vol. 9, no. 3, pp. 547–554, 1972. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0021999172900101

[6] S. Sherman and T. G. Kolda, “Estimating higher-order moments using
symmetric tensor decomposition,” SIAM Journal on Matrix Analysis
and Applications, vol. 41, no. 3, pp. 1369–1387, 2020. [Online].
Available: https://doi.org/10.1137/19M1299633

[7] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 2, Oct. 2016.
[Online]. Available: https://doi.org/10.1145/2915921

[8] L. R. Tucker, “The extension of factor analysis to three-dimensional
matrices,” in Contributions to mathematical psychology., H. Gulliksen
and N. Frederiksen, Eds. New York: Holt, Rinehart and Winston, 1964,
pp. 110–127.

[9] S. Smith and G. Karypis, “Accelerating the tucker decomposition with
compressed sparse tensors,” in Euro-Par 2017: Parallel Processing,
F. F. Rivera, T. F. Pena, and J. C. Cabaleiro, Eds. Cham: Springer
International Publishing, 2017, pp. 653–668.

[10] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “Splatt:
Efficient and parallel sparse tensor-matrix multiplication,” in 2015 IEEE
International Parallel and Distributed Processing Symposium, 2015, pp.
61–70.

[11] S. Shivakumar, J. Li, R. Kannan, and S. Aluru, “Efficient parallel sparse
symmetric tucker decomposition for high-order tensors,” in SIAM Con-
ference on Applied and Computational Discrete Algorithms (ACDA21).
SIAM, 2021, pp. 193–204.

[12] ——, “Sparse symmetric format for tucker decomposition,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 34, no. 6, pp. 1743–
1756, 2023.

[13] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the
best rank-1 and rank-(r1 ,r2 ,. . .,rn) approximation of higher-
order tensors,” SIAM Journal on Matrix Analysis and Applications,
vol. 21, no. 4, pp. 1324–1342, 2000. [Online]. Available: https:
//doi.org/10.1137/S0895479898346995

[14] Y. Sun and K. Huang, “Hoqri: Higher-order qr iteration for scalable
tucker decomposition,” in ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022,
pp. 3648–3652.

[15] M. D. Schatz, T. M. Low, R. A. van de Geijn, and T. G.
Kolda, “Exploiting symmetry in tensors for high performance:
Multiplication with symmetric tensors,” SIAM Journal on Scientific
Computing, vol. 36, no. 5, pp. C453–C479, 2014. [Online]. Available:
https://doi.org/10.1137/130907215

[16] G. Ballard, T. Kolda, and T. Plantenga, “Efficiently computing tensor
eigenvalues on a gpu,” in 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, 2011,
pp. 1340–1348.

[17] J. Li, J. Sun, and R. Vuduc, “Hicoo: Hierarchical storage of sparse
tensors,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2018, pp. 238–252.

[18] A. E. Helal, J. Laukemann, F. Checconi, J. J. Tithi, T. Ranadive,
F. Petrini, and J. Choi, “Alto: adaptive linearized storage of sparse
tensors,” in Proceedings of the 35th ACM International Conference
on Supercomputing, ser. ICS ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 404–416. [Online]. Available:
https://doi.org/10.1145/3447818.3461703

[19] I. Nisa, J. Li, A. Sukumaran-Rajam, P. S. Rawat, S. Krishnamoorthy,
and P. Sadayappan, “An efficient mixed-mode representation of sparse
tensors,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’19. New York, NY, USA: Association for Computing Machinery,
2019. [Online]. Available: https://doi.org/10.1145/3295500.3356216

[20] TensorNetwork.org, “Tensor network diagram notation,”
https://tensornetwork.org/diagrams/, accessed: 2024-10-02.

[21] M. Lysenko, “symmetric-tensor-index,” 2024. [Online]. Available:
https://github.com/mikolalysenko/symmetric-tensor-index

[22] A. Abbott, “Symtensor,” 2024. [Online]. Available: https://github.com/
adabbott/SymTensor

[23] R. Jin, J. Kileel, T. G. Kolda, and R. Ward, “Scalable symmetric
tucker tensor decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 45, no. 4, pp. 1746–1781, 2024. [Online]. Available:
https://doi.org/10.1137/23M1582928

[24] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000. [Online]. Available:
https://doi.org/10.1137/S0895479896305696

[25] P. A. Regalia, “Monotonically convergent algorithms for symmetric
tensor approximation,” Linear Algebra and its Applications, vol.
438, no. 2, pp. 875–890, 2013, tensors and Multilinear Algebra.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0024379511007300

[26] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton,
M. Quaggiotto, W. V. den Broeck, C. Régis, B. Lina, and P. Vanhems,
“High-resolution measurements of face-to-face contact patterns in a
primary school,” PLoS ONE, vol. 6, no. 8, p. e23176, 2011. [Online].
Available: https://doi.org/10.1371/journal.pone.0023176

[27] P. S. Chodrow, N. Veldt, and A. R. Benson, “Hypergraph clustering:
from blockmodels to modularity,” Science Advances, 2021.

[28] I. Amburg, N. Veldt, and A. R. Benson, “Clustering in graphs and
hypergraphs with categorical edge labels,” in Proceedings of the Web
Conference, 2020.

[29] N. Veldt, A. R. Benson, and J. Kleinberg, “Minimizing localized ratio cut
objectives in hypergraphs,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM Press, 2020.

[30] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using
distantly-labeled reviews and fine-grained aspects,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[31] Oak Ridge Leadership Computing Facility, “Andes user guide,” 2024,
accessed: 2024-10-06. [Online]. Available: https://docs.olcf.ornl.gov/
systems/andes user guide.html

[32] Z. Xianyi, M. Kroeker, and OpenBLAS Project, “Openblas,” 2024.
[Online]. Available: http://www.openblas.net/

[33] A. R. Benson, “Austin R. Benson datasets,”
https://www.cs.cornell.edu/˜arb/data/, accessed: 2024-10-03.

[34] S. Smith and G. Karypis, “SPLATT: The Surprisingly ParalleL spArse
Tensor Toolkit,” http://cs.umn.edu/ splatt/, 2016.

[35] Google, “Google benchmark,” 2024. [Online]. Available: https:
//github.com/google/benchmark

[36] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, “Cyclops
tensor framework: Reducing communication and eliminating load imbal-
ance in massively parallel contractions,” in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, 2013, pp. 813–824.

[37] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, X. Liu, P. Murali,
Y. Sabharwal, and D. Sreedhar, “On optimizing distributed tucker
decomposition for dense tensors,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2017, pp. 1038–1047.

[38] O. Kaya and B. Uçar, “High performance parallel algorithms for the
tucker decomposition of sparse tensors,” in 2016 45th International
Conference on Parallel Processing (ICPP), 2016, pp. 103–112.

[39] V. T. Chakaravarthy, J. W. Choi, D. J. Joseph, P. Murali, S. S.
Pandian, Y. Sabharwal, and D. Sreedhar, “On optimizing distributed

tucker decomposition for sparse tensors,” in Proceedings of the 2018
International Conference on Supercomputing, ser. ICS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 374–384.
[Online]. Available: https://doi.org/10.1145/3205289.3205315

[40] M. Beaupère, D. Frenkiel, and L. Grigori, “Higher-order qr with
tournament pivoting for tensor compression,” SIAM Journal on Matrix
Analysis and Applications, vol. 44, no. 1, pp. 106–127, 2023. [Online].
Available: https://doi.org/10.1137/20M1387663

[41] Y. Zheng and A.-B. Xu, “Tensor completion via tensor qr decomposition
and l2,1-norm minimization,” Signal Processing, vol. 189, p.
108240, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0165168421002772

[42] J. Oh, K. Shin, E. E. Papalexakis, C. Faloutsos, and H. Yu,
“S-hot: Scalable high-order tucker decomposition,” in Proceedings
of the Tenth ACM International Conference on Web Search and
Data Mining, ser. WSDM ’17. New York, NY, USA: Association
for Computing Machinery, 2017, p. 761–770. [Online]. Available:
https://doi.org/10.1145/3018661.3018721

[43] A. Traoré, M. Berar, and A. Rakotomamonjy, “Singleshot: a scalable
tucker tensor decomposition,” Advances in Neural Information Process-
ing Systems, vol. 32, 2019.

[44] P. Drineas and M. W. Mahoney, “A randomized algorithm for a
tensor-based generalization of the singular value decomposition,” Linear
Algebra and its Applications, vol. 420, no. 2, pp. 553–571, 2007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0024379506003867

[45] R. Minster, A. K. Saibaba, and M. E. Kilmer, “Randomized algorithms
for low-rank tensor decompositions in the tucker format,” SIAM Journal
on Mathematics of Data Science, vol. 2, no. 1, pp. 189–215, 2020.
[Online]. Available: https://doi.org/10.1137/19M1261043

[46] M. Che and Y. Wei, “Randomized algorithms for the approximations of
tucker and the tensor train decompositions,” Advances in Computational
Mathematics, vol. 45, no. 1, pp. 395–428, 2019.

[47] S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki,
A. H. Phan, T. Tanaka, and I. Oseledets, “Randomized algorithms for
computation of tucker decomposition and higher order svd (hosvd),”
IEEE Access, vol. 9, pp. 28 684–28 706, 2021.

[48] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, “Haten2:
Billion-scale tensor decompositions,” in 2015 IEEE 31st International
Conference on Data Engineering, 2015, pp. 1047–1058.

[49] J. Lee, D. Han, O.-K. Kwon, K.-W. Chon, and M.-S. Kim, “Gputucker:
Large-scale gpu-based tucker decomposition using tensor partitioning,”
Expert Systems with Applications, vol. 237, p. 121445, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417423019474

