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ABSTRACT

Real-time detection and classification of distant objects is necessary for many national security
applications. However, when objects are far from the sensor, they occupy only a small number of
pixels in the captured video, limiting the amount of visual detail available for recognition. State-
of-the-art classification methods typically rely on high-resolution (HR) video streams to capture
characteristic object features, but obtaining such detail is challenging for distant objects that oc-
cupy only a few pixels. This motivates the development of video super-resolution (VSR) methods
that enhance object classification by recovering fine details from low-pixel representations. Cur-
rent VSR methods rely either on model-based optimization, which is interpretable but computa-
tionally expensive, or on learning-based approaches, which are efficient and high-performing but
often lack flexibility and interpretability.

In this report, we propose an end-to-end trainable unrolled VSR network, UVSRNet, which super-
resolves each frame in a video by exploiting sub-pixel motion between neighboring low-resolution
(LR) frames as well as incorporating high-frequency detail from previously super-resolved frames.
In particular, by unrolling a plug-and-play (PnP) half-quadratic splitting (HQS) algorithm, we
leverage a model-based data-fitting module alongside a learning-based autoregressive prior mod-
ule. This combination yields a method that maintains the flexibility and interpretability of model-
based methods while achieving the performance advantages of learning-based methods.

1. INTRODUCTION

The ability to detect and classify distant objects in real time is essential for many national secu-
rity applications. Surveillance, reconnaissance, and threat monitoring systems must make deci-
sions under constrained conditions, where accurate recognition is critical for operational success.
A central challenge arises when objects of interest are far from the sensing platform. At such dis-
tances, targets occupy only a handful of pixels in the captured video stream, severely limiting the
visual detail available for recognition. The scarcity of discriminative features in LR video directly
impacts classification accuracy and reliability.

Conventional object-recognition methods are typically designed with the assumption that inputs
contain rich HR detail. For example, deep convolutional neural networks (CNNs) rely on the pres-
ence of characteristic texture and shape cues to distinguish between object categories. While
these methods perform well when applied to high-quality imagery, they significantly degrade in
scenarios where objects span only a few pixels. In real-world deployments, the achievable imaging
resolution is fundamentally limited by sensor hardware, meaning that beyond a certain distance,
it is impossible to capture HR detail regardless of bandwidth or environmental conditions. This
creates a pressing need for techniques that can enhance LR video streams to recover sufficient de-
tail for accurate recognition.

VSR has emerged as a promising solution to this problem. By leveraging temporal information
across multiple frames, VSR methods reconstruct HR video from LR inputs, effectively recover-
ing fine-grained details that are otherwise absent. Existing approaches to VSR can be broadly
grouped into two categories. Model-based optimization methods explicitly encode image forma-
tion and motion models into iterative algorithms through modeling of the physical system. These
methods offer interpretability and the ability to incorporate domain knowledge, but they are often
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computationally intensive and difficult to scale for real-time applications. In contrast, learning-
based approaches use deep neural networks to directly map LR inputs to HR outputs. Such meth-
ods are computationally efficient and deliver strong empirical performance, but they tend to op-
erate as black boxes, lacking the flexibility and interpretability required in many critical applica-
tions. Unrolled and PnP frameworks offer a promising middle ground by embedding data-consistency
updates alongside learnable priors, combining theoretical interpretability with strong empirical
performance. However, the only existing unrolled VSR framework operates primarily in the LR
domain, and its algorithmic formulation lacks rigorous theoretical justification (discussed in Sec-
tion 2). This reveals a critical gap: current VSR research lacks architectures that are both effec-
tive and efficient, while remaining grounded in an interpretable and flexible optimization frame-
work that can operate effectively within the inherent resolution constraints of real-world sensors.

To address this research gap, we propose UVSRNet, an end-to-end trainable, unrolled VSR net-
work inspired by the single-image, unrolled super-resolution framework USRNet [1]. Like USR-
Net, UVSRNet is built upon the unrolling of a PnP HQS algorithm, which naturally integrates
both model-based and learning-based components. However, whereas USRNet focuses on single
image super-resolution (SISR), UVSRNet extends the formulation to video by explicitly leverag-
ing sub-pixel motion between neighboring LR frames and incorporating an autoregressive prior.
Specifically, our architecture combines a data-fitting module that enforces consistency with LR
observations with an autoregressive prior module that contributes high-frequency detail from past
reconstructions. Through this design, UVSRNet maintains the interpretability and flexibility of
model-based methods while achieving the efficiency and reconstruction quality of learning-based
networks.

The key contributions of this report are as follows:

• We introduce UVSRNet, a novel unrolled VSR architecture that integrates model-based op-
timization with learning-based priors.

• We demonstrate how UVSRNet utilizes subpixel motion and autoregressive information
from prior reconstructions to enhance super-resolution quality.

• We compare UVSRNet with an unrolled single image super-resolution method and a CNN-
based VSR method, demonstrating UVSRNet’s ability to recover small details in simulated
videos.

Through these contributions, this research advances the state of VSR for distant-object recogni-
tion, providing a pathway toward interpretable, efficient, and effective solutions for critical na-
tional security applications.
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2. RELATED WORK

In this section, we briefly outline the research in VSR over the last 40 years. Then, we provide an
overview of unrolled methods with a focus on those applied to super-resolution. A more thorough
review on VSR and motion estimation can be found in our literature review report [2], which is
available upon request.

2.1 VSR METHODS

Researchers began exploring the problem of VSR as early as the late 1980s [3, 4, 5, 6, 7]. Most
methods proposed prior to 2015 relied on iterative optimization frameworks that fused multi-
ple LR frames to exploit sub-pixel information. Frame registration was typically achieved either
through explicit motion estimation using optical flow [8] or by jointly estimating motion within
the iterative optimization process [9]. Since super-resolution is well-known to be inherently ill-
posed [6], regularization is essential to constrain the solution space by imposing prior assumptions
on the HR output. Many different types of regularization have been proposed for VSR, including
bilateral total variation [10] and non-local similarity [11]. While these methods made substantial
progress in VSR, they tended to suffer from high computational cost due to the large number of
iterations and relied on high-fidelity motion estimation, which degraded performance in the pres-
ence of complex motion, occlusions, or noise.

To reduce reliance on handcrafted priors and improve flexibility, researchers explored ways to in-
corporate data-driven components into iterative frameworks. In an attempt to reap the benefits
of both iterative optimization methods and end-to-end deep learning methods, Venkatakrishnan
et al. proposed the concept of PnP priors in 2012, which uses deep learning-based denoisers in
place of explicit regularization within an iterative optimization method [12]. Since then, several
researchers proposed the use of PnP priors within iterative optimization approaches for VSR [13,
14, 15, 16]. These approaches offer flexibility by allowing state-of-the-art image denoisers to act as
implicit priors, while preserving the interpretability of optimization-based formulations. However,
their reliance on iterative processing leads to high computational cost and long inference times
compared to end-to-end networks. Furthermore, the denoiser is often trained independently of the
reconstruction task, which can limit performance compared to fully learned solutions.

In light of the success of deep learning models for computer vision in the mid-2010s, researchers
began designing end-to-end CNNs for VSR. VSRNet [17], proposed in 2016, was the first CNN
specifically developed for VSR. VSRNet is built upon SRCNN [18], the pioneering SISR CNN
composed of three convolutional layers. To exploit temporal information, VSRNet aligns three
neighboring frames using optical flow estimation and frame warping, and then concatenates them
between the first and second convolutional layers. In 2017, VESPCN improved upon VSRNet by
adopting a more advanced SISR backbone—ESPCN [19]—and introducing a learnable spatial
transformer module for joint motion estimation [20].

As research progressed, it became evident that motion estimation played a critical role in VSR
performance. To overcome the limitations of explicit motion estimation, subsequent methods in-
corporated motion estimation directly into the network or eliminated it entirely. DUF [21] ex-
emplified this trend by generating dynamic, spatially-varying upsampling filters based on input
frames. Similarly, TOFlow [22] and SOF-VSR [23] embedded learnable motion estimation mod-
ules, while more advanced architectures such as RBPN [24] and EDVR [25] employed recurrent
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structures and deformable convolutions to achieve robust alignment and feature fusion. These de-
velopments led to substantial gains over traditional optical-flow-based approaches. BasicVSR [26]
further simplified the pipeline by adopting a bidirectional recurrent architecture with feature
propagation across frames, while its successor BasicVSR++ [27] introduced second-order prop-
agation and flow-guided deformable alignment for improved temporal consistency. CNN-based
methods generally achieve strong performance with reasonable computational cost, but are lim-
ited in capturing long-range temporal dependencies, and often require accurate motion estimation
to handle complex motion and occlusions.

The introduction of transformers by researchers at Google in 2017 [28] revolutionized many areas
of deep learning, including computer vision. In VSR, transformers were first applied to capture
spatial dependencies through the SwinIR framework, which was later extended to video restora-
tion tasks [29]. Subsequent work aimed to explicitly model temporal dependencies across frames;
TTVSR [30] proposed a transformer-based architecture for temporal feature fusion, while RVRT [31]
integrated recurrent propagation with transformer blocks to efficiently capture long-range spatio-
temporal information. More recently, RealViFormer [32] further advanced spatio-temporal model-
ing by leveraging recurrent transformer blocks combined with channel attention, achieving strong
performance on real-world VSR benchmarks. Transformer-based methods offer superior modeling
of long-range spatial and temporal dependencies, and can better handle complex motion. How-
ever, they tend to be computationally intensive, require large amounts of training data, and may
be prone to overfitting in low-data scenarios.

In recent years, denoising diffusion models have been increasingly applied to VSR. MGLD-VSR [33]
introduced a motion-guided latent diffusion framework to capture both fine-grained details and
global temporal consistency, demonstrating the potential of generative models for photorealis-
tic video restoration. Later, Upscale-A-Video [34] applied latent diffusion for high-quality video
upscaling, while improving temporal consistency across frames. Most recently, DiffVSR [35] lever-
aged probabilistic diffusion modeling to generate high-frequency details in real-world videos. De-
spite their impressive reconstruction quality, diffusion-based methods remain computationally in-
tensive, often requiring hundreds of inference steps, and may produce temporal inconsistencies if
motion or temporal regularization is insufficient.

2.2 UNROLLED METHODS

Deep unrolling, also known as deep unfolding, is a method of reformulating an iterative algorithm
as a fixed-depth neural network with learnable parameters. It was originally applied to the itera-
tive shrinkage-thresholding algorithm (ISTA) for sparse coding in 2010 by Gregor and LeCun [36].
In 2014, Hershey et al. formalized deep unrolling as a general framework for mapping iterative
algorithms to end-to-end learnable architectures [37].

Building on these foundations, early work extended unrolling beyond sparse coding to a wide
range of iterative procedures [38]. Notable examples include ADMM-Net [39], which reformulated
the alternating direction method of multipliers (ADMM) for image reconstruction with learnable
convolutional updates, as well as primal-dual hybrid gradient methods and approximate message
passing (AMP) [40, 41]. These approaches demonstrated that learned update rules could accel-
erate convergence while maintaining the interpretability of classical solvers, paving the way for
practical applications in inverse problems such as compressed sensing, deconvolution, and MRI
reconstruction.

Concurrently, PnP methods emerged as an alternative route to integrating deep learning into iter-
ative reconstruction pipelines (as introduced in Section 2.1). Unlike fixed unrolled networks, PnP
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methods decouple the data-consistency update from the prior, allowing advanced denoisers such
as DnCNN [42] or DRUNet [1] to be incorporated seamlessly. More recent works have combined
unrolled optimization backbones with PnP-inspired priors, creating hybrid architectures that re-
tain algorithmic interpretability while leveraging strong data-driven regularization [43, 44, 45].

Several researchers have used unrolled PnP frameworks for image super-resolution. For example,
USRNet [1] and ISTAR [46] iteratively refine HR reconstructions by integrating advanced denois-
ers at each stage, while maintaining algorithmic transparency. In USRNet, the classical maximum
a posteriori (MAP) formulation of the super-resolution problem is unfolded into a fixed number
of iterations, where each alternates between a data-fidelity update and a learned CNN-based de-
noiser, effectively combining principled model-based optimization with data-driven regularization.
Similarly, ISTAR extends ISTA into an unrolled framework for super-resolution, embedding learn-
able proximal mappings that act as implicit priors. These approaches exemplify a broader trend
in unrolled PnP methods: instead of treating the denoiser as a generic black-box, the network
structure and update rules are carefully aligned with the underlying optimization algorithm. This
adaptation leads to improved convergence, reduced computational overhead, and enhanced recon-
struction fidelity compared with purely black-box or end-to-end CNN approaches.

In 2021, Chiche et al. proposed an unrolled framework for VSR (UVSR) [47]. UVSR consists of
an unrolled gradient descent network with two learnable modules: one which estimates the LR
optical flow map from the previous frame to the current frame, and one that processes the current
frame using the previous super-resolved frame, the previous LR frame, and the current LR frame.
However, both modules operate entirely in the LR domain, which may limit reconstruction qual-
ity. Rather than incorporating learnable layers to explicitly map features between low- and HR
spaces, the framework relies on fixed space-to-depth and depth-to-space operators. Furthermore,
the prior term architecture is built on a a super-resolution backbone, although in this setting the
prior module is not employed to super-resolve a frame. Unlike PnP priors based on additive white
gaussian noise (AWGN) denoisers, which are supported by a well-established theoretical founda-
tion, this design choice lacks a rigorous justification. Finally, UVSR assumes that the adjoint of
the motion operator is equivalent to its inverse. This identity only holds for strictly integer trans-
lational motion, not in the more general sub-pixel or non-rigid motion cases typical of real-world
video sequences.

Motivated by these limitations, we propose an unrolled VSR network—UVSRNet—grounded in
PnP theory and inspired by the design of USRNet [1]. By explicitly formulating VSR within a
principled MAP optimization framework, our method alternates between data-consistency up-
dates and a denoiser prior that is both theoretically justified and empirically effective. Unlike
UVSR, our approach leverages a denoiser that operates in the HR domain, avoiding the loss of
fidelity inherent in LR-only updates. By using algorithm unrolling, we retain the interpretability
and convergence guarantees of iterative optimization, while enhancing reconstruction fidelity and
temporal consistency across frames via end-to-end training. This establishes our framework as a
principled and flexible alternative that unites the strengths of PnP priors with the efficiency of
unrolled architectures for VSR.
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3. METHOD

In this section, we present our proposed unrolled VSR framework, UVSRNet. We begin by outlin-
ing the assumed forward model and defining the autoregressive MAP estimate. Next, we describe
our proposed autoregressive unrolled optimization method for computing the MAP estimate. Fi-
nally, we provide a detailed description of the deep unrolled network architecture and the end-to-
end training procedure.

3.1 FORWARD MODEL

Let xi ∈ RNp denote the rasterized ith frame of the unknown HR video to be recovered. We as-
sume that the jth frame of the observed LR video is given by

yj = Ai→jxi + ϵj , (1)

where yj ∈ RNp/L2 is the rasterized jth LR frame, Ai→j is an operator that registers the ith HR
frame to the jth LR frame and reduces its resolution by a factor of L, and ϵj ∼ N (0, σ2I) is inde-
pendent and identically distributed (i.i.d.) AWGN.

We model Ai→j as the composition of a motion operator Ei→j , a blurring operator B, and a down-
sampling operator D, i.e. Ai→jxi = DBEi→jxi. Specifically:

• Ei→j registers the ith frame to the jth frame, assuming 2D affine motion (translation, rota-
tion, and scaling),

• B convolves the image with a Gaussian kernel, with standard deviation and kernel size de-
termined by the super-resolution factor L,

• D performs subsampling by selecting every Lth pixel along both spatial dimensions.

Together, these assumptions define a physically motivated forward model that captures the effects
of blur, downsampling, and motion, providing a principled basis for recovering HR video frames
from their LR observations.

3.2 AUTOREGRESSIVE UNROLLED OPTIMIZATION

Our method estimates the ith HR frame given a set of LR frames

Yi := {yj}i+w
i−w (2)

and a set of previously super-resolved frames

x̂<i := {x̂i−k}p1, (3)

where w and p are user-defined parameters specifying the number of neighboring LR frames and
previously recovered HR frames, respectively.

We define the data-fidelity term as the average negative log-likelihood across all frames in Yi:

f(xi;Yi) :=
1

2w + 1

i+w∑
j=i−w

1

2σ2
∥yj −Ai→jxi∥2 (4)
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The autoregressive MAP estimate is then defined as

x̂i = argmin
xi

{f(xi;Yi) + λg(xi; x̂<i)} . (5)

where g(xi; x̂<i) is a prior term that regularizes xi using information from previously super-resolved
frames and λ > 0 is a weighting parameter that controls the amount of regularization.

To obtain an unrolled optimization method for (5), we use HQS, a quadratic penalty method with
alternating minimization. Namely, we decouple the regularizer using an auxiliary variable zi,

x̂i = argmin
xi

{f(xi;Yi) + λg(zi; x̂<i)} such that xi = zi. (6)

Then, instead of enforcing this constraint directly, we use a quadratic penalty term with tunable
weight parameter γ

x̂i = argmin
xi

{
f(xi;Yi) + λg(zi; x̂<i) +

1

2γ2
∥xi − zi∥2

}
. (7)

Solving this using alternating minimization results in an iterative algorithm that alternates be-
tween a data-fitting and prior sub-problem, i.e.

ẑ
(k)
i = argmin

zi

{
f(xi;Yi) +

1

2γ2
∥xi − zi∥2

}
(8)

x̂
(k)
i = argmin

xi

{
g(zi; x̂<i) +

1

2λγ2
∥xi − zi∥2

}
. (9)

The quadratic penalty weight γ is typically scheduled to decrease over iterations, allowing the
algorithm to initially focus on solving each sub-problem independently and then gradually enforce
consistency between xi and zi as the iterations progress.

The data-fitting sub-problem,

ẑ
(k)
i = argmin

zi

{
f(xi;Yi) +

1

2γ2
∥xi − zi∥2

}
, (10)

is quadratic in zi and can be solved efficiently using conjugate gradient method (CGM). CGM is
particularly well-suited in this situation because the Hessian of the objective is symmetric and
positive definite, and explicitly forming it would be computationally expensive due to the large
size of Ai→j . Instead, CGM iteratively computes matrix-vector products with A⊤

i→jAi→j , avoiding
explicit matrix construction while converging to the exact solution in a finite number of steps. In
practice, a small fixed number of iterations is sufficient to achieve high-quality approximations,
which makes the method both memory- and computation-efficient. This iterative approach natu-
rally integrates into the unrolled network, allowing backpropagation through the CGM steps dur-
ing end-to-end training.

For the prior sub-problem,

x̂
(k)
i = argmin

xi

{
g(zi; x̂<i) +

1

2γ2
∥xi − zi∥2

}
, (11)

we adopt a PnP approach, where the prior subproblem is implicitly represented by a learned de-
noiser which removes AWGN with standard deviation γ

√
λ [12]. This strategy enables the use of

a powerful deep network as a prior without requiring an explicit regularization function, allowing
the model to capture complex temporal dependencies from previously super-resolved frames while
remaining flexible and data-driven.
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Figure 1. Overall pipeline of UVSRNet for super-resolving frame i. The network
alternates between a data-fitting module, which enforces consistency with the

observed LR frames, and an autoregressive denoiser, which serves as a learned prior.
A hyperparameter estimation module (from USRNet [1]) adaptively predicts the

iteration-specific hyperparameters that balance these two components.

3.3 DEEP UNROLLED NETWORK

With this unrolled optimization algorithm as our foundation, we construct the proposed unrolled
VSR network (UVSRNet). UVSRNet iteratively alternates between a data-fitting module, which
enforces consistency with the observed LR frames by solving (10), and an autoregressive denoiser,
which serves as a learned prior in place of (11). Since both modules depend on iteration-specific
hyperparameters, we incorporate the hyperparameter estimation module from USRNet [1], which
adaptively predicts the optimal values at each step. The overall pipeline of UVSRNet for super-
resolving frame i is summarized in Figure 1.

3.3.1 DATA-FITTING MODULE

The data-fitting module addresses the subproblem in (10), enforcing consistency between the cur-
rent estimate and the observed LR frames through the forward model Ai→j . At the same time, it
prevents large deviations from the previous estimate, where the degree of “closeness” is controlled
by the step size parameter predicted by the hyperparameter module. The subproblem is solved
efficiently using 5 iterations of the conjugate gradient method (with early stopping if the tolerance
10−5 is met). Importantly, this module contains no trainable parameters, making it highly flexible
and generalizable across different forward models.

3.3.2 AUTOREGRESSIVE PRIOR MODULE

The prior module serves as a learned regularizer, producing a cleaner HR estimate xk from the
intermediate solution zk. In our framework, we employ an autoregressive denoiser that leverages
both spatial and temporal information. Specifically, the denoiser takes as input the concatenation
of zk, a noise-level map corresponding to output of the hyperparameter estimation module out-
put, and neighboring frames from the sequence, thereby exploiting temporal redundancy to guide

8



Figure 2. Architecture of the autoregressive prior module. At each iteration, the
denoiser refines the intermediate solution zk by processing the concatenation of zk, a

noise-level map, and registered neighboring frames. DRUNet [43] serves as the
backbone, but we extend the input layer to handle multiple frames for exploiting

temporal correlations in VSR.

the reconstruction. An overview of the autoregressive denoiser pipeline and architecture is shown
in Figure 2).

As the backbone of this denoiser, we adopt the DRUNet architecture [43], a state-of-the-art restora-
tion network that combines U-Net’s multi-scale feature aggregation with residual connections for
stable training and strong representational power. DRUNet naturally supports the injection of a
noise map as an additional input channel, allowing a single model to adapt across varying noise
levels without retraining.

Architecturally, DRUNet follows a four-scale U-Net structure with residual blocks embedded in
both downsampling and upsampling paths. The number of channels increases across scales (64,
128, 256, and 512), with 2 × 2 strided convolutions for downsampling and 2 × 2 transposed con-
volutions for upsampling. Each residual block consists of two 3 × 3 convolutions with ReLU ac-
tivations and an identity skip connection, enhancing both training stability and representational
depth. In our implementation, the autoregressive design extends DRUNet by concatenating mul-
tiple input frames along the channel dimension, enabling the network to capture temporal correla-
tions while remaining lightweight and modular. This design is particularly well-suited for VSR, as
it promotes temporal consistency while reducing artifacts that arise in frame-wise processing.

3.3.3 HYPERPARAMETER ESTIMATION MODULE

We adopt the hyperparameter estimation module proposed in USRNet [1], which serves as a con-
troller to balance the outputs of the data-fitting and prior modules. Specifically, it predicts the
step size for the data-fitting update and the noise level for the denoiser prior, both of which vary
across iterations. Rather than fixing these parameters, the module learns to adapt them based on
two critical factors that govern the ill-posedness of the problem: the scale factor L and the mea-
surement noise level σ. The module is implemented as a lightweight fully-connected network with
three layers (64 hidden units each), using ReLU activations for the first two layers and Softplus
in the output layer (with an added 10−6 offset to enforce positivity and numerical stability). By
dynamically adapting the hyperparameters to the imaging conditions, this module balances data
fidelity and prior regularization across iterations while eliminating the need for manual parameter
tuning.
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3.4 END-TO-END TRAINING

We employ end-to-end training to jointly optimize the trainable parameters of the autoregres-
sive prior module and the hyperparameter estimation module. This section describes the training
data, loss function, and implementation details.

For training, we generate 100 synthetic videos of size 256× 256 with 25 frames each, derived from
the REDS training set [48]. Each HR video is created by selecting the 15th frame of a REDS se-
quence and applying a fixed 2 pixel translation upward and leftward across 25 frames, producing
temporally consistent motion. The corresponding LR videos are obtained by applying a 9 × 9
Gaussian blur with σ = 1.5, subsampling by a factor of 4, and adding AWGN with σ = 0.01.
This controlled design ensures that the inter-frame motion is exactly known, removing the need
for motion estimation and avoiding mis-registration artifacts. Such a setup allowed us to focus on
refining the core method without confounding factors. In future work, we will extend the train-
ing pipeline by incorporating motion estimation for real video data and expanding the scale of the
training set.

The loss for a single video is computed as the average L1 error over its 25 frames. Following USR-
Net, we apply supervision only to the final reconstructed video rather than intermediate outputs.
Optimization is performed using the Adam solver [49] with an initial learning rate of 1 × 10−4,
reduced by a factor of two if the validation SSIM does not improve for 10 epochs. Training is con-
ducted for 50 epochs using PyTorch on a single NVIDIA H100 GPU with 80 GB of memory. End-
to-end training of one model for 50 epochs requires approximately 12 hours.

10



4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed UVSRNet on synthetic test data designed to provide
controlled and interpretable comparisons. The test set consists of 15 videos of size 256 × 256 with
25 frames each, generated from the REDS dataset [48] using the same procedure as described in
Section 3.4. This setup ensures known inter-frame motion, enabling a focused study of the net-
work’s behavior without the confounding effects of motion estimation errors. We assess recon-
struction quality using both qualitative visualizations and quantitative metrics (peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM)). The residuals are calculated
as the mean absolute error between the reconstructed frame and the ground truth frame over the
three color channels.

Our experiments are organized to systematically analyze the contributions of different design
choices in UVSRNet. First, we investigate the impact of the number of PnP iterations, which
controls the degree of unrolling. Next, we examine the role of the temporal window size, i.e. the
number of LR frames used, and the effect of conditioning on previously super-resolved frames in
the autoregressive prior. We then analyze the complementary behavior of the data-fidelity and
denoiser modules, as well as the behavior of the hyperparameter estimation module across itera-
tions. Finally, we compare UVSRNet against two baselines, the single-image USRNet [1] and the
video-based RealBasicVSR [50], to highlight the strengths and limitations of our approach.

4.1 IMPACT OF NUMBER OF PNP ITERATIONS

When designing unrolled networks, the number of iterations K is an important trade-off parame-
ter. A larger number of iterations provides more opportunities for alternating between the data-
fidelity and prior modules, potentially improving reconstruction quality. However, increasing K
also raises both training and inference costs, and past a certain point, additional iterations may
yield only marginal benefits. To identify a reasonable balance between performance and efficiency,
we evaluate our method with K = 3, 5, 7, and 9 PnP iterations. For this experiment, the other
parameters are fixed as w = 2 and p = 2.

Figure 3 shows the average PSNR and SSIM values across 15 test videos for varying numbers of
PnP iterations. Reconstruction quality improves slightly as K increases, with K = 7 achieving
the highest average performance. However, the gains over K = 3 and K = 5 are modest, and
K = 9 provides no additional benefit. This suggests diminishing returns when using more than a
few iterations.

Figure 4 provides a qualitative comparison of one cropped frame from a test video. Consistent
with the quantitative results, the reconstructions are visually very similar across different values
of K. Based on this observation, we adopt K = 3 in practice, as it offers nearly the same visual
and quantitative performance while substantially reducing both training and inference time.

4.2 IMPACT OF NUMBER OF LOW-RESOLUTION FRAMES

When designing a VSR method, a natural question is how many neighboring LR frames should be
incorporated into the reconstruction. Using additional frames provides more spatial–temporal in-
formation, particularly in the form of subpixel motion information that is absent when relying on
a single frame. However, using too many frames may lead to redundancy, increased computational
cost, and potential error accumulation from imperfect motion alignment. To better understand
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(a) Average PSNR across all test videos (b) Average SSIM across all test videos

Figure 3. Quantitative evaluation of the impact of the number of PnP iterations K
on reconstruction quality. Results are averaged over 15 simulated test videos with 25
frames each. Using K = 7 achieves the best performance, though differences across
K = 3, 5, 7, 9 are relatively small. Note the limited y-axis ranges (PSNR: 28–30 dB,

SSIM: 0.75–0.85).

this trade-off, we investigate the impact of varying the temporal window size w, where 2w + 1 de-
notes the number of LR frames used in each reconstruction step. For this experiment, the other
parameters are fixed as K = 3 and p = 2.

Figure 5 reports the average PSNR and SSIM across 15 test videos for varying number of LR
frames. We observe that incorporating more than 1 LR frame (w > 0) consistently improves
performance compared to the single-frame baseline (w = 0), confirming the value of leveraging
temporal cues and subpixel motion. While w = 2 yields the best results, the primary performance
gain arises from moving beyond the single-frame case, with only incremental improvements when
adding more than one neighboring frame.

Figure 6 presents qualitative examples. While differences between w = 1 and w = 2 are subtle,
both clearly outperform the single-frame case (w = 0), showing sharper textures and reduced
residuals. These results highlight that the key benefit comes from exploiting subpixel motion
through multiple frames, with w = 2 providing the strongest overall performance without requir-
ing a larger temporal window.

4.3 IMPACT OF NUMBER OF PREVIOUS FRAMES

A key design choice in our autoregressive prior is the number of previously super-resolved frames
used, p. Intuitively, incorporating past frames should provide useful temporal information that
can improve consistency across frames. However, conditioning on too many frames may also intro-
duce error propagation, where artifacts from earlier reconstructions accumulate and degrade per-
formance. To better understand this trade-off, we evaluate the effect of varying p on both quanti-
tative metrics and qualitative reconstructions. For this experiment, the other parameters are fixed
as K = 3 and w = 2.

Figure 7 shows the average PSNR and SSIM values using p = 0, 1, and 2. Using one previously
super-resolved frame (p = 1) yields the highest reconstruction quality, although the margin over
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(a) LR Frame (b) Initial Guess (Bicubic) (c) Ground Truth

(d) K = 3 (e) K = 5

(f) K = 7 (g) K = 9

Figure 4. Qualitative comparison of reconstructions using different numbers of PnP
iterations K. Results are shown for a 200× 200 crop of a test video. Cropped regions

show minimal visible differences across K = 3, 5, 7, 9, consistent with the small
quantitative variations shown in Figure 3.
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(a) Average PSNR across all test videos (b) Average SSIM across all test videos

Figure 5. Quantitative evaluation of the impact of the number of LR frames w on
reconstruction quality. Results are averaged over 15 simulated test videos with 25

frames each. Incorporating neighboring frames (w > 0) leads to a significant
improvement over the single-frame case (w = 0), highlighting the benefit of exploiting
subpixel motion. Among the tested settings, using 5 LR frames (w = 2) achieves the
best overall performance, though the difference between w = 1 and w = 2 is modest.

Note the limited y-axis ranges (PSNR: 25–30 dB, SSIM: 0.65–0.85).

p = 0 and p = 2 is slight. This suggests that temporal information is beneficial, but relying on
more than one frame offers limited gains in this controlled setting.

Figure 8 provides a qualitative comparison on a cropped region. While differences across p =
0, 1, 2 are subtle in the reconstructions, the residual maps reveal small variations that align with
the quantitative results. Because this evaluation is performed on simulated videos with simple
translational motion, the benefits of temporal conditioning are limited. We anticipate that in-
corporating previous frames will play a more significant role in challenging real-world scenarios
involving complex motion and degradations. Based on these results, we choose to use p = 1 for all
remaining experiments.

4.4 ANALYSIS OF DATA-FITTING AND DENOISER MODULES

In this subsection, we examine the respective contributions of the data-fitting module and the au-
toregressive denoiser across iterative updates. Figure 9(a) illustrates the outputs of both modules
for 4× super-resolution of frame 22 from a simulated LR video, with the top row corresponding to
the data-fitting module and the bottom row to the autoregressive denoiser. Figure 9(b) provides
a magnified view of the cropped region indicated by the green box in the ground-truth frame of
Figure 9(a).

The two modules exhibit complementary behavior: the data-fitting module primarily sharpens
structural details and delineates edges, while the autoregressive denoiser suppresses blocking arti-
facts and noise, thereby enhancing perceptual quality. The alternating application of these mod-
ules across iterations yields reconstructions of substantially higher fidelity than those obtained
from either module in isolation.
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(a) LR Frame (b) Initial Guess (Bicubic
Interpolation)

(c) Ground Truth Frame

(d) Super-Resolved Frame
with w = 0

(e) Super-Resolved Frame
with w = 1

(f) Super-Resolved Frame
with w = 2

(g) Residual for
Super-Resolved Frame with

w = 0

(h) Residual for
Super-Resolved Frame with

w = 1

(i) Residual for
Super-Resolved Frame with

w = 2

Figure 6. Qualitative comparison of reconstructions using different numbers of LR
frames w. Results are shown for a 200× 200 crop of a test video. Using w > 0
produces visibly sharper textures and reduces residual error compared to the
single-frame case (w = 0). The difference between w = 1 and w = 2 is minor,

consistent with the quantitative results in Figure 5.
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(a) Average PSNR across all test videos (b) Average SSIM across all test videos

Figure 7. Quantitative evaluation of the impact of the number of previous frames p
on reconstruction quality. Results are averaged over 15 simulated test videos with 25

frames each. Using p = 1 achieves the best performance, though differences across
p = 0, 1, 2 are relatively small. Note the limited y-axis ranges (PSNR: 28–30 dB,

SSIM: 0.75–0.85).

4.5 ANALYSIS OF HYPERPARAMETER ESTIMATION MODULE

Figure 10 shows the outputs of the hyperparameter module under the assumed forward model of
4× super-resolution with additive white Gaussian noise (AWGN) of standard deviation σ = 0.01.
Both the data-fitting step size and the denoiser noise level decrease progressively across iterations,
a behavior that mirrors the convergence properties of HQS and reflects the algorithm’s transition
from coarse updates to fine refinements. Notably, the data-fitting step size remains consistently
larger than the denoiser noise level, underscoring a design in which data fidelity exerts stronger
influence than regularization. This weighting suggests that the method prioritizes adherence to
the observation model while still leveraging the autoregressive denoiser to suppress residual arti-
facts, thereby striking a balance between reconstruction accuracy and perceptual quality.

4.6 COMPARISON TO OTHER SUPER-RESOLUTION METHODS

In this section, we compare the proposed UVSRNet with two state-of-the-art baselines: USRNet,
a single-image super-resolution method, and RealBasicVSR, a VSR approach. We use the offi-
cial implementations for each of these methods, which can be found at https://github.com/
ckkelvinchan/RealBasicVSR and https://github.com/cszn/KAIR. Note that neither USR-
Net or RealBasicVSR use the known-motion assumption that UVSRNet does. Since USRNet is a
single-image super-resolution method that operates on only one LR frame, we include it primarily
as a baseline. This comparison is useful because UVSRNet extends USRNet to the video setting;
thus, demonstrating improvement over USRNet confirms that leveraging multi-frame information
indeed enhances reconstruction quality.

Figure 11 shows the average PSNR and SSIM values over the 15 test videos for each method.
UVSRNet consistently outperforms both USRNet and RealBasicVSR for all 25 frames, achiev-
ing the highest average PSNR and SSIM values. The improvement relative to USRNet highlights
the benefit of incorporating temporal information. Although RealBasicVSR is also designed for
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(a) LR input (b) Bicubic upsampling
(initial guess)

(c) Ground truth

(d) Reconstruction with
p = 0

(e) Reconstruction with
p = 1

(f) Reconstruction with
p = 2

(g) Residual for p = 0 (h) Residual for p = 1 (i) Residual for p = 2

Figure 8. Qualitative comparison of reconstructions using different numbers of
previous frames p. Results are shown for a 200× 200 crop of a test video. Differences

among p = 0, 1, 2 are visually small, consistent with the quantitative results.
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(a)

(b)

Figure 9. (a) Outputs of the data-fitting module (top row) and autoregressive
denoiser (bottom row) across iterations for 4× super-resolution, with green box

indicating the cropped region. (b) Magnified view of the cropped area, showing that
the data-fitting module sharpens structures while the denoiser suppresses artifacts;

their alternation yields higher-fidelity reconstructions.
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Figure 10. Output of the hyperparameter module under 4× super-resolution forward
model with AWGN of standard deviation σ = 0.01. Both the data-fitting step size

and the denoiser noise level decrease across iterations, reflecting HQS-like
convergence from coarse to fine updates. The data-fitting step size remains
consistently larger, indicating stronger weighting on data fidelity relative to

regularization, thereby balancing reconstruction accuracy with artifact suppression.

(a) Average PSNR over test set (b) Average SSIM over test set

Figure 11. Quantitative evaluation of the reconstruction quality from USRNet,
RealBasicVSR, and our proposed UVSRNet. Results are averaged over 15 simulated
test videos with 25 frames each. UVSRNet achieves the best performance by a large

margin. Note the limited y-axis ranges (PSNR: 19.5–30 dB, SSIM: 0.45–0.85).
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video inputs, UVSRNet provides a significant gain in both metrics, highlighting the effectiveness
of the proposed unrolled PnP framework.

Figure 12 provides a qualitative comparison of UVSRNet with USRNet and RealBasicVSR. The
top row shows (a) the LR input frame, (b) the bicubic upsampled frame, and (c) the ground-
truth HR frame. The second row displays the super-resolved results from (d) USRNet, (e) Re-
alBasicVSR, and (f) the proposed UVSRNet. The third row presents residual maps with respect
to the ground truth for (g) USRNet, (h) RealBasicVSR, and (i) UVSRNet, computed as the mean
absolute difference over the three color channels. Qualitatively, UVSRNet produces sharper edges
and better preserves fine details than both USRNet and RealBasicVSR, while reducing the over-
smoothing and artifacts observed in the baselines. The residual maps reinforce this observation:
lighter and less structured residuals around object boundaries in the UVSRNet results indicate a
closer match to the ground truth. Figure 13 further highlights these differences by zooming into a
150 × 150 region. In this cropped view, UVSRNet successfully reconstructs the thin vertical bars
of the purple fence, which occupy only a few pixels in the LR input, whereas the other methods
fail to recover this detail.

While UVSRNet retains smaller details, it is also noisier than the other two reconstructions and
underperforms in capturing realistic texture in the trees compared to RealBasicVSR. This could
be a result of the training set, as RealBasicVSR is trained on the entire REDS dataset while UVS-
RNet is currently only trained on a small subset of the REDS dataset. Future work will equalize
the training sets for a fairer comparison between these two methods.
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(a) LR Frame (b) Initial Guess (Bicubic
Interpolation)

(c) Ground Truth Frame

(d) USRNet (e) RealBasicVSR (f) UVSRNet (Proposed)

(g) USRNet Residual (h) RealBasicVSR Residual (i) UVSRNet Residual

Figure 12. Qualitative comparison of UVSRNet with USRNet and RealBasicVSR.
The first row provides context with the LR, bicubic, and ground-truth HR frames,

while the second row shows the reconstructions from the three methods. The
residual maps in the third row highlight differences with respect to the ground truth.
UVSRNet produces sharper edges, better preserves fine details, and yields smaller

residuals compared to the baselines.
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(a) LR Frame (b) Initial Guess (Bicubic
Interpolation)

(c) Ground Truth Frame

(d) USRNet (e) RealBasicVSR (f) UVSRNet (Proposed)

(g) USRNet Residual (h) RealBasicVSR Residual (i) UVSRNet Residual

Figure 13. Zoomed-in comparison on a 150× 150 region from Figure 12. UVSRNet
more faithfully reconstructs fine structures—such as the thin vertical bars of the

purple fence—that are lost or blurred in USRNet and RealBasicVSR.
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5. FUTURE WORK

Our immediate priority is to extend the current method to real video data. This requires the ad-
dition of a motion estimation module to handle sequences with unknown inter-frame motion. As
a first step, we will incorporate a classical optical flow method, such as Lucas-Kanade [51], to ex-
plicitly register frames. Once this baseline is established, we aim to replace the fixed optical flow
component with a learnable motion estimation module. A trainable module can adapt to com-
plex motion patterns and mitigate artifacts introduced by explicit registration, which have been
reported in prior work [20].

After enabling UVSRNet to operate reliably on real videos, we plan to refine the reconstructions
through adversarial fine-tuning. Specifically, we will fine-tune the UVSRNet mdoel weights by
incorporating a discriminator network, which will encourage perceptual fidelity and sharper tex-
tures, complementing the pixel-wise reconstruction loss. This approach was used to refine USR-
Net, yielding better visually pleasant results with smaller structures and finer textures [1].

Finally, we intend to explore a generative PnP [52] extension of UVSRNet. While the current
framework focuses on MMSE estimation, the generative PnP formulation would enable sampling
from the posterior distribution of HR videos. This would not only provide point estimates but
also quantify uncertainty and generate multiple plausible reconstructions, opening the door to ap-
plications in simulation, video synthesis, and uncertainty-aware decision making.
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6. CONCLUSION

In this work, we presented UVSRNet, a novel unrolled VSR architecture designed to address the
challenges of distant-object recognition from LR video. By unrolling a PnP HQS framework into
an end-to-end trainable network, UVSRNet combines the interpretability and flexibility of model-
based optimization with the efficiency and reconstruction quality of learning-based methods. Our
autoregressive prior module leverages temporal dependencies to recover high-frequency details,
while the data-consistency module ensures fidelity to observed LR frames.

Through experiments on synthetic video data, we demonstrated that UVSRNet is able to recover
fine-grained spatial detail and outperform both single-image unrolled super-resolution and a con-
ventional CNN-based VSR approach for 4× super-resolution. These results establish UVSRNet as
a promising and principled framework for VSR in operationally constrained environments.
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