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Executive Summary

In 2010, the U.S. Department of Energy created its first Energy Innovation Hub, which focuses on improving

Light Water Reactors (LWRs) through Modeling and Simulation. This hub, named the Consortium for

the Advanced Simulation of LWRs (CASL), attempts to characterize and understand LWR behavior under

normal operating conditions and use any gained insights to improve their efficiency. In collaboration with

North Carolina State University (NCSU), CASL has worked extensively on the thermal-hydraulic subchannel

code Coolant Boiling in Rod Arrays–Three Field (COBRA-TF). The NCSU/CASL version of COBRA-TF

has been rebranded as CTF.

This document focuses on code verification test problems that ensure CTF converges to the correct answer

for the intended application. The suite of code verification tests are mapped to the underlying conservation

equations of CTF, and significant gaps are addressed. Convergence behavior and numerical errors are

quantified for each of the tests. Tests that converge at the correct rate to the corresponding analytic solution

are incorporated into the CTF automated regression suite. A new verification utility is created for this

purpose, which enables code verification by generalizing the process. For problems that do not behave

correctly, the results are reported but the problem is not included in the regression suite.

In addition to verification studies, this document also quantifies the existing tests of constitutive models. A

few existing gaps are addressed by adding new unit tests.
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1. Introduction

Coolant Boiling in Rod Arrays–Three Field (COBRA-TF) is a thermal–hydraulic subchannel code for Light

Water Reactor (LWR) core analysis. It was initially developed in the early 1980’s at Pacific Northwest Na-

tional Laboratory (PNNL) to model Loss of Coolant Accidents (LOCAs) [1]. The code has been transferred

to many institutions and a varity of code version exist throughout academia and industry. One version,

rebranded as CTF, is jointly developed and maintained by the Consortium for the Advanced Simulation of

LWRs (CASL) and North Carolina State University (NCSU). Since being incorporated into CASL’s Virtual

Environment for Reactor Applications (VERA), CTF has had rapid improvements relating to its capabilities,

parallelism, performance, validation, and quality assurance. This work expands upon existing CASL efforts

to further improve the pedigree of CTF.

In order to address the reliability and predictive capability of complex simulation tools, it is necessary to

establish a pedigree for these tools. This process is accomplished through a series of tasks, which successively

add evidence that a tool is reliable [2, 3, 4].

1. Software Quality Assurance (SQA) is used to minimize code bugs.

2. Code verification ensures that the code is solving the underlying conservation equations correctly.

3. Solution verification quantifies the numerical biases associated with a particular choice of mesh.

4. Validation is used to quantify how well the equations being solved represent reality.

5. Uncertainty Quantification (UQ) attempts to quantify all sources of uncertainty and put bounds on

any quantities of interest.

In this work, we address SQA and code verification for the thermal hydraulic subchannel code CTF.

1 CASL-U-2020-1938-000
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1.1 Verification Matrix

In this work, verification problems are mapped to the conservation equations solved by the code. CTF solves

a two fluid, three field formulation of two-phase flow and a conduction equation for the solid.

fluid
mass

∂αρ

∂t︸︷︷︸
transient

+∇ · (αρ~u)︸ ︷︷ ︸
advection

= Γ︸︷︷︸
mass transfer

+ ṁT︸︷︷︸
turbulent mixing

void drift

(1.1)

fluid
energy

∂αρh

∂t
− α∂P

∂t︸ ︷︷ ︸
transient

+∇ · (αρh~u)︸ ︷︷ ︸
advection

= Γh︸︷︷︸
mass transfer

+ qw︸︷︷︸
convection

+ ḣT︸︷︷︸
turbulent mixing

void drift

(1.2)

fluid
momentum

∂αρ~u

∂t︸ ︷︷ ︸
transient

+∇ · (αρ~u~u)︸ ︷︷ ︸
advection

= αρg︸︷︷︸
gravity

− α∇P︸ ︷︷ ︸
pressure force

+ τw︸︷︷︸
shear

+ τi︸︷︷︸
interfacial shear

+ τT︸︷︷︸
turbulent mixing

void drift

(1.3)

solid
energy ρcp

∂T

∂t︸ ︷︷ ︸
transient

− ∂

∂x
k
∂T

∂x︸ ︷︷ ︸
conduction

= Q︸︷︷︸
internal

generation

− qw︸︷︷︸
convection

(1.4)

Note that the phase indicator has been omitted from the fluid equations, but there are eight equations solved

for the fluid fields: three water equations, three steam equations, and two droplet equations. Droplets are

assumed to be in thermal equilibrium with water, so there is no energy conservation equation solved for the

droplet field. CTF is generally run in subchannel mode, where the advection terms and pressure force are

split into an axial and a lateral component. The solid is assumed to have a constant density and does not

move, therefore it only has an energy equation.

This work will focus primarily on single-phase liquid verification problems, with a few tests for water-steam

mixtures. It is left as a future exercise to implement problems similar to those in this report for the steam,

droplet, and noncondesible gas fields. In fact, no existing code verification problems involve either the droplet

or noncondensible gas fields.

Given this set of nonlinear coupled partial differential equations, we can formulate the verification matrix.

This matrix is shown in Table 1.1. The verification problems are divided into three categories: (1) problems

that have already been incorporated into the CTF automated regression suite, (2) problems that are harvested

from the literature, and (3) new problems solved in this report. For each chosen verification problem, the

involved conservation terms are checked (X). Many problems involve other terms, though they are not

involved in solution of the analytic problem. For example: the CTF steam and droplet fields cannot be

disabled, many terms are set very small or very large to approximate the analytic solution, and many terms

cancel out due to symmetry. These terms are not checked in the verification matrix since they are essentially

removed from the solution.

The verification coverage is relatively good; of all conservation terms, 80% having at least one corresponding

2 CASL-U-2020-1938-000
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Table 1.1: CTF verification matrix. Only liquid and steam terms are included, as no verification problems
involve the droplet or noncondensible gas fields. The tests are split into three categories: those already
included in the automated regression suite, those harvested from the literature, and those created for this
report. Asterisks (*) indicate problems that were not incorporated into the CTF regression suite due to
unsatisfactory results. See the corresponding sections for more details.

Regression suite Literature New tests

Equation Term H
ea

t
E

x
ch

an
ge

r

T
u

rb
u

le
n
t

M
ix

in
g

F
lo

w
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p
li

t

G
ri

d
E

n
h

an
ce
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en

t

G
ri

d
S
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ac

er

Is
ok

in
et
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A

d
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n

(2
.1

)

L
in

ea
r

C
on

d
u

ct
io

n
(2

.2
)

W
at

er
F

au
ce

t*
(2

.3
)

F
ri

ct
io

n
an

d
G

ra
v
it

y
(2

.4
)

C
on

ve
ct

io
n

(2
.5

)

N
on

li
n

ea
r

C
o
n

d
u

ct
io

n
*

(2
.6

)

P
ip

e
B

o
il

in
g

(2
.7

)

Fluid Mass transient X X
axial advection X X
lateral advection
mass transfer X
turbulent mixing

Fluid Energy transient X X X
axial advection X X X X X
lateral advection
interfacial transfer X
convection X X X
grid enhancement X
turbulent mixing X

Fluid Momentum transient X
axial advection X
lateral advection X
gravity X X X
axial pressure X X X
lateral pressure X
shear X X
grid enhancement X
form loss X
interfacial shear
turbulent mixing

Solid Energy transient X
linear conduction X
nonlinear conduction X
energy generation X X
convection X

Two-Phase X X
Equation of State X X X X
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verification test. Mass/momentum turbulent mixing, all three lateral advection terms, and interfacial shear

are the only physics with no corresponding tests. These gaps can be filled in the future. Also note that this

formulation of the matrix only checks for testing of individual terms in the equations. A more thorough

method would be to test that all combinations of terms are tested, as it is possible that combinations of

terms reveal code bugs that are not seen when individual models are tested.

1.2 Formal Order of Accuracy

The formal order of accuracy for each equation can be derived by considering how the chosen discretization

schemes behave as the mesh is refined. In this work, all problems have uniform meshes (i.e., ∆x and ∆t are

constant). We demonstrate this process for a one-dimensional single phase mass conservation equation with

no sources.
∂ρ

∂t
+
∂ρu

∂x
= 0 (1.5)

This is forward discretized in time and upwinded in space (assuming u > 0).

1

∆t

(
ρn+1
i − ρni

)
+

1

∆x

(
ρni u

n+1
i+1/2 − ρ

n
i−1u

n+1
i−1/2

)
= 0 (1.6)

Here, the superscript is the time index and the subscript is the spatial index. Now, Taylor series expansions

about i and n are used to approximate ρn+1
i , ρni−1, un+1

i+1/2, and un+1
i−1/2. Only second order terms are included

in these approximations.

ρn+1
i =

∞∑
k=0

1

k!

∂kρ

∂tk

∣∣∣∣n
i

∆tk ≈ ρni +
∂ρ

∂t

∣∣∣∣n
i

∆t+
1

2

∂2ρ

∂t2

∣∣∣∣n
i

∆t2 (1.7)

ρni−1 =

∞∑
k=0

1

k!

∂kρ

∂xk

∣∣∣∣n
i

(−∆x)
k ≈ ρni −

∂ρ

∂x

∣∣∣∣n
i

∆x+
1

2

∂2ρ

∂x2

∣∣∣∣n
i

∆x2 (1.8)

un+1
i+1/2 =

∞∑
k=0

∞∑
m=0

1

k!m!

∂k+mρ

∂xk∂tm

∣∣∣∣n
i

(
∆x

2

)k
∆tm

≈ uni +
1

2

∂u

∂x

∣∣∣∣n
i

∆x+
1

8

∂2u

∂x2

∣∣∣∣n
i

∆x2 +
∂u

∂t

∣∣∣∣n
i

∆t+
1

2

∂2u

∂t2

∣∣∣∣n
i

∆t2 +
1

2

∂2u

∂x∂t

∣∣∣∣n
i

∆x∆t

(1.9)

un+1
i−1/2 =

∞∑
k=0

∞∑
m=0

1

k!m!

∂k+mρ

∂xk∂tm

∣∣∣∣n
i

(
−∆x

2

)k
∆tm

≈ uni −
1

2

∂u

∂x

∣∣∣∣n
i

∆x+
1

8

∂2u

∂x2

∣∣∣∣n
i

∆x2 +
∂u

∂t

∣∣∣∣n
i

∆t+
1

2

∂2u

∂t2

∣∣∣∣n
i

∆t2 − 1

2

∂2u

∂x∂t

∣∣∣∣n
i

∆x∆t

(1.10)
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Now, these Taylor series expansions are incorporated into Equation 1.6, after which the simplified equation

becomes (neglecting higher order terms and omitting i and n indices):

∂ρ

∂t
+
∂ρu

∂x
≈
[
u

2

∂2ρ

∂x2
+

1

2

∂ρ

∂x

∂u

∂x

]
∆x−

[
1

2

∂2ρ

∂t2
+
∂u

∂t

∂ρ

∂x
+ ρ

∂2u

∂x∂t

]
∆t (1.11)

Therefore, the mass equation is first order in both space and time. The same process can be repeated for

the energy and momentum equations to show that they are also first order in time and space.

For the solid energy equation, the order of accuracy can easily be derived in one dimension with constant

properties.
∂T

∂t
+ α

∂2T

∂x2
= 0 (1.12)

This is forward-discretized in time and center differenced in space.

1

∆t

(
Tn+1
i − Tni

)
+

α

∆x2

(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

)
= 0 (1.13)

Again, all discrete variables are expanded about the same spatial and temporal location. For this analysis,

we use i and n+ 1.

Tni =

∞∑
k=0

1

k!

∂kT

∂tk

∣∣∣∣n+1

i

(−∆t)
k ≈ Tn+1

i − ∂T

∂t

∣∣∣∣n+1

i

∆t+
1

2

∂2T

∂t2

∣∣∣∣n
i

∆t2 (1.14)

Tn+1
i+1 =

∞∑
k=0

1

k!

∂kT

∂xk

∣∣∣∣n+1

i

∆xk

≈ Tn+1
i +

∂T

∂x

∣∣∣∣n+1

i

∆x+
1

2

∂2T

∂x2

∣∣∣∣n+1

i

∆x2 +
1

6

∂3T

∂x3

∣∣∣∣n+1

i

∆x3 +
1

24

∂4T

∂x4

∣∣∣∣n+1

i

∆x4

(1.15)

Tn+1
i−1 =

∞∑
k=0

1

k!

∂kT

∂xk

∣∣∣∣n+1

i

(−∆x)
k

≈ Tn+1
i − ∂T

∂x

∣∣∣∣n+1

i

∆x+
1

2

∂2T

∂x2

∣∣∣∣n+1

i

∆x2 − 1

6

∂3T

∂x3

∣∣∣∣n+1

i

∆x3 +
1

24

∂4T

∂x4

∣∣∣∣n+1

i

∆x4

(1.16)

These Taylor series expansions are incorporated into Equation 1.13, after which the error equation is (ne-

glecting higher order terms and omitting indices):

∂T

∂t
+ α

∂2T

∂t2
≈ 1

2

∂2T

∂t2
∆t− α

12

∂4T

∂x4
∆x2 (1.17)
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Therefore, the solid energy equation should be second order in space and first order in time. Note that if

the assumption of constant properties is relaxed, the analysis is more complex but has the same result.

All expected orders of accuracy are summarized in Table 1.2. Temporal and spatial orders of accuracy

are respectively indicated by pt and px. Note that the derivation of these orders can be significantly more

complicated (e.g., if there are source terms, nonlinearities, etc.), but these more complex effects are only

expected to degrade the order of accuracy if they are implemented incorrectly or cause numerical instabilities.

Table 1.2: Formal order of accuracy for the conservation equations in CTF

Equation px pt

Fluid Mass 1 1
Fluid Energy 1 1

Fluid Momentum 1 1
Solid Energy 2 1

Remark. The formal order of accuracy can be problem-dependent. This happens when the coefficients in

the modified equation cancel or are equal to zero. For example, if Equation 1.11 is used to analyze a problem

where ∂ρ/∂x = 0, there is no spatial error. If this is the case, the code will predict the analytic solution to

within round-off. For an example of this phenomenon, see section 2.4.

1.3 Verification Procedure

The purpose of verification is to compare the formal and observed orders of accuracy for a particular set of

equations and problem. To achieve this, we follow a prescribed process for each of the verification problems.

1. Choose the analytic model to be simulated, the quantities of interest, and formulate the analytic

solution.

2. Create a computational CTF model.

3. Ensure that the code output matches relatively well for a base choice of discretization. Significant

mismatches at this step can indicate mismatched physics, inconsistent assumptions in the analytic or

computed solutions, or errors in the post-processing of code results.

4. Successively refine the computational mesh (in space and/or time) and recompute the CTF quantities

of interest.

5. Compute the order of accuracy compared to the analytic solution by calculating the root-mean-square

error (RMSE) at each choice of discretization

||y|| =

√√√√ 1

N

N∑
i=1

(yexact − ycomputed)
2
, (1.18)
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then find the order of accuracy p by fitting a linear line on the log-log plot of error-vs-discretization

||y|| = Chp (1.19)

6. If the observed order of accuracy matches with the formal order (see Table 1.2) to within ±0.1, the

verification procedure is successful. If the observed order is significantly different, the process will

require debugging to find the issue. Debugging exercises can include: examination of the Linear

Truncation Error (LTE), analysis of spatial and temporal errors, examination of code response, or

trying different code options.

7. If the observed order and formal order cannot be matched, a constant error model will be used instead

of Equation 1.19:

||y|| = C0 + C1h
p (1.20)

If the constant error model indicates the correct order of convergence, it indicates that there is a

constant error between yexact and ycomputed. Such cases could indicate a small boundary condition

error, small unit conversion errors, small inconsistencies in assumptions between the analytic and

computational model, or any number of other issues. If this is the case, we will present the constant

error model results. Though there is a constant error, the problem converges numerically with the

correct order.
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2. Code Verification

The code verification problems in this chapter each fall into one of three categories: (1) already exist in the

CTF documentation and regression matrix, (2) are harvested from existing verification work in the literature,

or (3) are designed and added in this work. These categories are described in the following paragraphs, then

each problem is individually documented throughout the sections in this chapter.

The first category consists of four problems that were added in FY 2019 to address CTF convergence behavior:

the heat exchanger, turbulent mixing, flow split, grid enhancement, and a non-convergent grid spacer study.

Documentation of each of these can be found in the CTF Verification and Validation Manual [5].

There are three problems that have been documented in the literature but not fully incorporated into CTF:

isokinetic advection [6], linear conduction [7], and water faucet [8]. All of these had been incorporated into

the testing matrix to some extent, but there were no regression tests that specifically address convergence. As

part of this work, the first two of these problems is incorporated into the CTF documentation and regression

matrix. The water faucet problem is re-examine, but does not exhibit the expected convergence behavior.

Finally, new problems are designed and analyzed in this report: convection, friction & gravity, nonlinear

conduction, and pipe boiling. The first of these tests focuses on transient convective heat transfer between

the fluid and solid. The second focuses on the axial pressure drop in a channel. The third addresses

temperature-dependent thermal conductivity in a flat plate. The final problem is a two-phase verification

test, which is harvested from [9]. All but the nonlinear conduction problem have been added to the CTF

regression suite.

2.1 Isokinetic Advection

This section describes a series of three code verification problems that were designed to test the transient

and advective terms in the mass and energy equations. These problems were originally applied to CTF in a

conference paper [6].
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Problem Definition This problem consists of flow through a horizontal pipe with three assumptions: (1)

the velocity and pressure are constant, so the momentum equation is redundant, (2) there are no external

sources, and (3) the flow remains as single phase water.

Under these conditions, the governing equations of CTF simplify significantly. The momentum equation is

eliminated altogether and the mass and energy equations simplify to a temporal and advective component.

∂ρ

∂t
+ u

∂ρ

∂x
= 0 (2.1)

∂ρh

∂t
+ u

∂ρh

∂x
= 0 (2.2)

The analytic solution to this problem is simply the advection of the inlet condition with the velocity u.

Three different inlet conditions are chosen to test the advection of various wave shapes: (1) a discontinuous

square wave, (2) a cosine wave, and (3) a hyperbolic tangent. The respective analytic solution for each of

these inlet conditions are shown here [6].

γsq =

γo, ut ≤ x

γin, ut > x
(2.3)

γtanh =

γo, ut ≤ x
1
2

[
(γo + γin)− (γo − γin) tanh

(
u(t−τ)−x

l

)]
, ut > x

(2.4)

γcos =

γo, ut ≤ x
1
2

[
(γo + γin) + (γo − γin) cos

(
2π
p

(
t− x

u

))]
, ut > x

(2.5)

Here, γ can be either density ρ or enthalpy h. All necessary parameters are defined in Table 2.1. The initial

and inlet quantities were iteratively selected such that the velocity and pressure are approximately constant.

Note that the inlet boundary conditions listed in the table fully define the time-dependent inlet conditions.

CTF Input The CTF input consists of a single channel with standard boundary conditions. The square

wave and cosine wave are run for five seconds, the hyperbolic tangent is run for ten. To maintain consistency

with the assumptions of this problem, a few simplifications to the input deck are necessary.

� There is an approximately constant pressure throughout the domain. This could be achieved by fixing

the density and advecting an energy wave; however, this problem employs both the energy and density

advection terms. To achieve this while using a real equation of state, density and enthalpy differences

are set such that they have approximately equal and opposite effects on pressure.

� The variation in density and enthalpy through the wave remains small, which maintains an approxi-

mately constant velocity.

9 CASL-U-2020-1938-000



CTF Verification

Table 2.1: Parameters for isokinetic advection verification problems

Type Parameter Symbol Value

Geometry Channel length L 0.5 m
Flow area A 0.0001 m2

Wetted perimeter Pw 0.040 m
Boundary condition Outlet pressure P 1 bar

Inlet flow rate ṁin 0.050 04 kg/s
Inlet enthalpy hin 159.22 kJ/kg
Hyperbolic tangent width l 0.05 m
Hyperbolic tangent offset τ 5.0 s
Cosine wave period p L/u

Initial condition Initial flow rate ṁo 0.005 kg/s
Initial enthalpy ho 167.6 kJ/kg

� All source terms are set to zero using exposed parameters for Verification, Validation, and Uncertainty

Quantification (VVUQ) studies. This includes turning off friction and gravity, which removes any

expected pressure drops.

The simulation is transient and both ∆t and ∆x are refined at the same rate during the verification study.

This way, the Courant-Friedrichs-Lewy (CFL) limit (u∆t/∆x) is constant, which precludes numerical insta-

bilities for the CTF discretization scheme.

Results Under the conditions described thus far in this section, the expected behavior with diffusive error

is demonstrated for both temporal and spatial convergence. The problems presented in this section are

incorporated into the CTF regression suite.

The results for a square, cosine, and hyperbolic tangent waves are shown respectively in Figures 2.1, 2.2, and

2.3. For each wave type, three plots are included. First, the solution for various choices of meshing is shown

against the analytic solution at the final simulation time. Second, the corresponding point-wise errors are

plotted. Finally, the convergence of the error is demonstrated.

For the cosine and hyperbolic tangent waves, the convergence study is first order (respectively p ≈ 0.925 and

p ≈ 0.937). For the square wave, the order of convergence is degraded by the discontinuity being advected, so

the problem is convergent but with sub-unity convergence (p ≈ 0.204). This sub-linear convergence behavior

is described in more detail in [10], where the expected behavior for constant CFL refinement is p = 0.25.
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Figure 2.1: Results for the isokinetic advection verification problem using a square wave
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Figure 2.2: Results for the isokinetic advection verification problem using a cosine wave
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Figure 2.3: Results for the isokinetic advection verification problem using a hyperbolic tangent wave
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2.2 Linear Conduction

In this section, the temperature distribution in a solid cylinder is verified to converge to the analytic solution

at the correct rate. This study is a modification of the verification work performed in [7].

Problem Definition The conduction equation in CTF is

ρcp
∂T

∂t
−∇ · (k∇T ) + q′′′ = 0. (2.6)

This equation is significantly simplified: (1) only the steady state temperature distribution is found, (2) it is

solved for one-dimensional radial conduction in radial coordinates, (3) all solid properties are constant, and

(4) internal heat generation is constant. Under these conditions, the conservation equation is

k

r

d

dr

(
r
dT

dr

)
+ q′′′ = 0. (2.7)

In cylindrical geometry with a surface temperature boundary condition T (r = rf ) = Tf , the solution to the

posed equation is

T (r) = Tf +
q′

4πkf

(
1− r2

r2
f

)
. (2.8)

For a nuclear fuel rod, the cladding and gap are also included in the geometry, so these must be accounted

for in the analytic solution. Therefore, the additional temperature drop between the fuel surface (rf ) and

the outer cladding surface is added to the boundary condition in the analytic solution.

Tf − Tco =
q′

2πrfhgap
+

q′

2πkc
ln

(
rco
rci

)
(2.9)

Remark. The cladding and gap mesh is fixed in CTF, and therefore a constant spatial error is added

between the pin surface temperature and the rode surface temperature. The analytic solution to Equation 2.9

is Tf−Tco ≈ 538.4 K. However, the CTF computed temperature difference over this region is Tf−Tco ≈ 537.3.

When the analytical solution is calculated in the verification script, it uses the computed temperature increase

to set the boundary condition T (rf ) = Tf . In this way, the numerical error introduced by the gap and

clad disretization is minimized, and we are only concerned with the numerical uncertainty in the fuel rod

discretiztion.

All variables required to find the analytic solution are defined in Table 2.2. This includes geometry, all

properties, the boundary conditions, and the linear heat rate.
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Table 2.2: Parameters for linear conduction verification problem

Type Parameter Symbol Value

Geometry Fuel surface radius rf 0.5430 cm
Clad inside radius rci 0.6370 cm
Clad outside radius rco 0.6402 cm

Solid property Fuel conductivity kf 7 W/m/K
Clad conductivity kc 7 W/m/K
Gap conductance hg 1000 W/m2/K

Boundary condition Clad outside temperature Tco 300 K
Source terms Linear heat rate q′ 18.3 kW/m

CTF Input The CTF input is created using CTF’s stand-alone fuel solver, CTFFuel [7]. All input

configuration is straight-forward. The cladding and gap discretization is fixed in CTF, therefore only the

temperature distribution inside the fuel pellet is plotted and analyzed for convergence. For the verification

study, all inputs are identical for successive simulations except for the number of radial rings in the fuel

region.

Results The results for the linear conduction problem are shown in Figure 2.4. The temperature dis-

tribution in the fuel pin predicted by CTF matches very closely with the analytic solution. The center of

the cylinder is furthest from the surface boundary condition and therefore exhibits an accumulation of the

spatial error. As the discretization is refined, this concentration of error at the center of the cylinder rapidly

decreases. As defined in section 1.2, the formal order of accuracy for spatial error in this equation is second

order. The convergence plot shows an observed order very close to this, p = 1.987.

2.3 Water Faucet

This section describes the first two-phase code verification problem performed in CTF. This problem is a

quintessential verification problem for one-dimensional six equation two-phase flow [9]. Verification using

this problem was originally performed in [8], but only a single mesh was included in the regression testing

suite.

Problem Definition Initially, a pipe with uniform cross-sectional area is filled with a uniform column

of liquid moving at a constant velocity. An annulus of gas surrounds the liquid and is stationary. Starting

at some initiating time, gravity causes the liquid column to accelerate downwards and the water column

becomes thinner over time.
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Figure 2.4: Results for linear conduction verification problem
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The six-equation model used for this analytic solution can be summarized by the mass, momentum, and

energy equation for each phase. We assume no interfacial transfer and no wall friction.

∂αkρk
∂t

+
∂αkρkuk

∂x
= 0 (2.10)

∂αkρkuk
∂t

+
∂αkρku

2
k

∂x
+
∂P

∂x
− αkρkg = 0 (2.11)

∂αkρkE

∂t
+
∂αkρkukEk

∂x
+
∂αkukP

∂x
= 0 (2.12)

Here, k indicates either the fluid or vapor phase. Significant simplifications to this equation set are made for

this problem: (1) the problem is isothermal and therefore the energy equations are omitted, (2) the vapor

mass is negligible, (3) the pressure variations in the liquid phase are negligible, and (4) both fields have a

constant density. Under these simplifications, the governing equations become:

∂αl
∂t

+
∂αlul
∂x

= 0 (2.13)

∂αlul
∂t

+ ul
∂ul
∂x
− g = 0 (2.14)

The solution to this set of equations with initial conditions α(t = 0) = α0, ul(t = 0) = u0 and boundary

conditions α(x = 0) = α0, ul(x = 0) = v0 is outlined in [11].

α =

1− (1−α0)u0√
u2
0+2gx

, if x ≤ xd

α0, if x > xd

(2.15)

ul =


√
u2

0 + 2gx, if x ≤ xd
u0 + gt, if x > xd

(2.16)

Here, the location of the void fraction discontinuity is defined as xd = u0t+gt2/2. Recently, new solutions to

this problem have been proposed which relax the massless gas phase assumption [12]. However, the original

solutions are sufficiently accurate for low pressures, where ρl/ρg >> 1. All necessary conditions for this

problem are defined in Table 2.3.

CTF Input Original implementation of this problem required significant changes to the CTF source

code [8]. First, an interfacial pressure correction term was added to the momentum equation.

SIPC = δ
αvαlρvρl
αvρv + αlρl

(uv − ul)2 ∂αk
∂x

(2.17)
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Table 2.3: Parameters for water faucet verification problem

Type Parameter Symbol Value

Geometry Pipe length L 12 m
Flow area Af 0.785 m2

BC/IC Void fraction α0 0.2
Liquid velocity v0 10 m/s
Outlet pressure P 10 bar

Here, δ is a multiplier which turns the correction term on and off. The interfacial pressure correction term can

be derived from purely mathematical considerations to eliminate negative eigenvalues in the incompressible

limit [13, 14]. In addition, it was necessary to implement a void fraction boundary condition at the channel

outlet.

Results The results for the water faucet problem are shown in Figure 2.5. Overall, the CTF solution does

seem to be converging to the analytical solution. However, these results are not consistent with the results

in [8]. There is anomalous behavior at the inlet of the pipe; it appears that the boundary conditions are

not being properly applied at the inlet. Therefore, a meshing-dependent error is introduced to the problem.

Due to this bias, the CTF solution is not first order. Therefore, these results are not included in the CTF

automated regression suite. It is left as future work to troubleshoot these results and identify the discrepancy

with [8].

Remark. A change implemented by Delchini in [8] was reverted in Chan type.f90 involving the

k init sol with bc VUQ multiplier. Re-enabling this change removes some of the oscillations from Fig-

ure 2.5, but does not result in a first-order solution. The inlet boundary problem still exists. Additionally,

these results were reproduced at various historical points during the implementation of the interfacial pressure

correction term (using Github commits). No significant changes to the results were found.

2.4 Friction and Gravity

In this section, we verify the pressure distribution in CTF, focusing on the friction and gravity components.

Various defect tests have been performed focusing on the axial pressure distribution as well as a solution

verification study [15]. However, no code convergence study focusing on these phenomena has been performed

as of yet.

Problem Description Single phase flow with constant properties passes through a vertical tube. The

pressure is fixed at the tube outlet. At steady state, the inlet pressure is larger than the outlet pressure due
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Figure 2.5: Results for the water faucet verification problem
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to gravitational and frictional heads.

We make the following assumptions: (1) steady state and one-dimensional flow, (2) constant density and

velocity, (3) pipe geometry with a constant cross-section, (4) constant friction factor, and (5) isothermal

flow. Under these conditions, the mass and energy equation are eliminated and the momentum equation is

∂P

∂x
− ρg = f

ρu2

2D
. (2.18)

The equation is integrated and an outlet boundary condition P (L) = Pout is applied. In this case, the

analytic solution becomes

P (x) = Pout −
[
f
ρu2

2Dh
+ ρg

]
(L− z). (2.19)

All parameters necessary to define the problem are listed in Table 2.4.

Table 2.4: Parameters for friction and gravity verification problem

Type Parameter Symbol Value

Geometry Pipe diameter D 0.01 m
Pipe length L 1 m

Fluid property Density ρ 1000 kg/m3

Boundary condition Inlet mass flow ṁin 0.1 kg/s
Outlet pressure Pout 150 bar

Source term Gravity g 9.814 56 m/s2

Friction factor f 0.002

Remark. The value for gravitational constant g is calculated by converting the value used in CTF (GC is

defined as 32.2 ft/s2) to SI units.

CTF Input The CTF input is created as a single channel with geometry consistent with Table 2.4. Inlet

mass flow, inlet enthalpy, and outlet pressure are fixed. The simulation is run for one second, after which it

has reached steady state. The pressure distribution is extracted and compared to Equation 2.19.

Results The results are shown in Figure 2.6. First, we note that the pressure distribution is very accurately

calculated in CTF. In this problem, the pressure drop is a linear function of axial location; therefore, all

sources of LTE cancel in the momentum equation (since ∂2P/∂x2 = 0). Therefore, the formal order of

accuracy for this particular problem is p = 0. CTF should exactly predict the pressure distribution to within

round-off. However, there is a bias of about 8 Pa (8× 10−5 bar) in the total pressure drop. This is a very

small—and likely acceptable—bias.
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Figure 2.6: Results for friction with gravity verification problem
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2.5 Convection

In this problem, heat transfer takes place between a solid and a stationary single phase fluid. This problem is

designed specifically to test wall heat transfer (i.e., convection), which governs the energy coupling between

the solid and fluid solutions.

Problem Description We make the following assumptions: (1) the fluid and solid can be represented as

zero-dimensional control volumes, (2) the fluid and solid are both stationary, (3) all properties are constant,

(4) the heat transfer coefficient is constant, and (5) there is no heat generation. Under these conditions, the

coupled ordinary differential equations to be solved are

Vfρfcpf
∂Tf
∂t

= hA(Ts − Tf ) (2.20)

Vsρscps
∂Ts
∂t

= −hA(Ts − Tf ). (2.21)

If the initial conditions Tf (0) = Tf0 and Tw(0) = Tw0 are applied, the solutions for Tf and Tw can be found

as a function of time. To simplify the analytic solution, we define the thermal capacitance of the k field as

Ck = Vkρkcpk.

Tf =
1

Cf + Cs

[
CfTf0 + CsTs0 + (Tf0 − Ts0)Cs exp

(
−hA(Cf + Cs)

CfCs
t

)]
(2.22)

Ts =
1

Cf + Cs

[
CfTf0 + CsTs0 − (Tf0 − Ts0)Cf exp

(
−hA(Cf + Cs)

CfCs
t

)]
(2.23)

The parameters for this problem are defined in Table 2.5. Note that all quantities in Equations 2.22 and

2.23 can be derived from the parameters in the table. For example, the heat transfer coefficient is related to

the Nusselt number via Nu = hD/kf .

CTF Input The CTF input deck for this problem required many iterations before the simulation results

matched with the analytic solution. It required that the following simplifications are made:

1. Fluid properties are fixed using the thermophysical properties.dat file and solid properties are

fixed using CTF input card group 10.

2. All external sources are disabled using the vuq mult.txt file and the Nusselt number is fixed using

vuq param.txt.

3. To properly fix the Nusselt number, underrelaxation of the heat trasfer coefficient must be disabled.

This is done in the newly created input card 1.5.

4. The flow rate must be initialized slightly greater than zero so that Re 6= 0, as Nu = 0 under this

particular condition. This is achieved by initializing the fluid flow rate to 1× 10−100 kg/s.
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Table 2.5: Parameters for convection verification problem

Parameter Symbol Value

Geometry Control volume height ∆x 0.1 m
Flow area Af 0.0001 m2

Wetted perimeter Pw 0.04 m
Rod diameter Dr 0.05 m
Surface area A 3.142× 10−3 m2

Properties Fluid density ρf 900 kg/m3

Solid density ρs 900 kg/m3

Fluid specific heat cpf 4.25 kJ/kg/◦C
Solid specific heat cps 4.25 kJ/kg/◦C
Fluid thermal conductivity kf 1 W/m/◦C

Initial conditions Initial fluid temperature Tf0 140 ◦C
Initial solid temperature Ts0 160 ◦C

Source terms Nusselt number Nu 10

5. The fluid control volume is isolated from the surrounding ghost cells using an approximately zero-flow

boundary at the inlet. Because fluid properties are fixed, the conservation of mass dictates that there

is also zero-flow at the outlet.

6. CTF does not allow a solid to be defined as a single control volume. Therefore, two control volumes

are used and the surface volume is isolated from the center volume by making thermal conductivity

very small (k ≈ 0).

Results The results are shown in Figure 2.7. The thermal capacitance of the solid is larger than the fluid,

so the fluid temperature changes more over the transient. The point-wise error is shown and all spatial

points appear to display first order convergence. The error between the code solution and analytic solution

converges at approximately p = 1.06 for both the solid and fluid solution. Therefore, the code displays the

expected first order convergence for the solid-to-liquid coupling.

2.6 Nonlinear Conduction

If thermal conductivity is temperature-dependent, the solid energy equation becomes nonlinear and difficult

to solve. Usually, these problems are solved numerically, but analytic solutions are possible for a few simple

cases. In this section, it is verified that the averaging of thermal conductivity to cell faces does not degrade

the order of accuracy of the conduction solution.
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Figure 2.7: Results for the convection verification problem
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Problem Description We make the following assumptions: (1) steady state solution, (2) one dimensional

Cartesian conduction, (3) all properties and geometry are constant except for thermal conductivity, and (4)

there is no internal heat generation. Under these conditions, the conservation equation to be solved is

d

dx

(
k(x)

dT

dx

)
= 0 (2.24)

The boundary conditions are T (x = 0) = T0 and T (x = L) = TL. The thermal conductivity is a linear

function of temperature k = kL + β (T − TL), where k(T0) = k0 and k(TL) = kL. The solution to this

problem is [16]

T (x) = TL +

[
kL
β

√
1 + β

k0 + kL
k2
L

L− x
L

(T0 − TL)− 1

]
. (2.25)

The parameters defining this problem are outlined in Table 2.6.

Table 2.6: Parameters for the nonlinear conduction problem

Parameter Symbol Value

Wall thickness L 0.01 m
Left boundary condition T0 155 ◦C
Right boundary condition TL 150 ◦C
Right thermal conductivity kL 5 W/m/◦C
Thermal conductivity slope β 2 W/m

CTF Input For this problem, we create an unheated wall connected on each side to a channel. Each

channel has a large flow rate with constant temperature inlet condition, and the heat transfer coefficient to

the wall is very large. This approximates a constant temperature boundary condition. The linear function

of thermal conductivity is defined using a table in card group 10.

Remark. CTF infrastructure does not allow a suitable version of this problem to be simulated, so it is not

added to the automated regression suite. This is because:

� CTF does not print the temperature distribution inside unheated conductors in any of its output files

(text, VTK, or HDF5),

� A CTF heated conductor cannot be used to simulate wall geometry,

� An analytic solution for this problem exists for tube geometry, but a CTF heated tube cannot have

boundary conditions defined simultaneously on its inside and outside surfaces, and

� CTFFuel is restricted to solving nuclear fuel geometry.

In this paper, we present promising results (output was extracted directly using hard-coded Fortran write

statements) and leave it as a future exercise to add this problem to the regression suite after relaxing one or

more of the above restrictions.
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Results The results are shown in Figure 2.8. CTF does seem to approximate the temperature distribution

in the wall. The computational solution monotonically converges to the analytic solution; however, the

observed order is too far from the formal order to conclude that this problem is free of code bugs. Further

analysis will be necessary and this problem is not included in the automated testing suite.
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Figure 2.8: Results for the nonlinear conduction verification problem

2.7 Pipe Boiling

In this problem, we verify that interfacial transfer properly conserves energy and doesn’t degrade the expected

order of accuracy.
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Problem Description Saturated water flows through a pipe and a specified amount of heat is added

directly to the fluid. The water is initially saturated, so all energy is added as latent heat, which increases

the amount of steam.

First, we make the following assumptions which allow the CTF energy equations to be approximated using

mixture equations: (1) there is not a significant amount of droplets, and (2) the liquid and steam are in

mechanical and thermal equilibrium. Under these conditions, we solve the mixture energy equation.

∂ρmhm
∂t

+
∂ρmumhm

∂x
= q̇ + α

∂P

∂t
(2.26)

The following assumptions further simplify the mixture equation: (1) the heat flux is small enough that P ,

ρm, and um are constant throughout the domain, (2) the heat flux is constant in time and has a cosine shape

in space.

ρm
∂hm
∂t

+ ρmum
∂hm
∂x

=
q′o
Af

sin
(
π
x

L

)
(2.27)

The inlet energy boundary condition is set such that the flow is fully saturated water: h(x = 0) = ho. The

initial condition sets the entire domain to the same enthalpy: h(t = 0) = ho. Under these conditions, the

analytic solution for enthalpy as a function of time and space can be found.

h(x, t) = ho +
q′oL

ṁπ

[
cos

(
π
ut− x
L

)
− cos

(
π
x

L

)
+ 2H [ut− x] sin2

(
π
ut− x

2L

)]
(2.28)

Here, H[φ] indicates a heavyside function:

H[φ] =

0, φ < 0

1, φ > 0
(2.29)

All parameters necessary to fully define this problem are shown in Table 2.7. Note that the inlet/initial

enthalpy are calculated using a direct call to CTF property tables.

Table 2.7: Parameters for pipe boiling verification problem

Type Parameter Symbol Value

Geometry Flow area A 0.0001 m2

Pipe length L 1 m
Boundary condition Inlet mass flow ṁin 0.1 kg/s

Inlet enthalpy ho 1630.554 kJ/kg
Outlet pressure Pout 155 bar

Initial condition Initial enthalpy ho 1630.554 kJ/kg
Source term Maximum heat rate q′o 10 kW/m
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CTF Input There are four details which should be discussed about the modeling of this problem in CTF

1. The wall heat flux is deposited directly into the fluid using the DHFRAC input in CTF card 1.2. This

bypasses the conduction solution and calculation of the heat transfer coefficient.

2. The cosine shape of the wall heat flux is achieved using a table in Card 11.4. It has 13 digits of accuracy

and is defined at each grid location used in the verification study.

3. Wall friction is disabled using vuq param.txt and gravity is disabled using vuq mult.txt.

4. Interfacial friction is many orders of magnitude larger than usual, which approximates mechanical

equilibrium between the two phases.

Even so, the analytic solution uses Homogeneous Equilibrium Model (HEM) assumptions to find the enthalpy

distribution in the pipe. This is not quite equivalent to the CTF two-fluid model used for this problem.

Therefore, we expect a small bias caused by these model mismatches.

Results The CTF results are shown in Figure 2.9. The enthalpy distribution at t = 0.2 s is shown for

different choices of mesh. It appears that the solution is approaching the analytic solution, but with a

small bias. This is confirmed in the convergence plot, which indicates that the CTF solution is approaching

a constant error as the mesh is refined. To account for this in the calculation of the observed order of

accuracy, a constant error model is used: ε = εo + chp. Using this error model, the order of accuracy is

approximately p = 0.96, which is sufficiently close to one.
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Figure 2.9: Results for the pipe boiling verification problem
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3. Unit Tests

In addition to the numerical algorithm that was verified in chapter 2, CTF contains a large number of

constitutive models. These models do not display grid convergence behavior, as they account for sub-grid

modeling. Therefore, these models are tested using unit tests, which verify that a call to the model has the

expected output when the input is specified. The implementation of unit tests is an essential part of the SQA

process. A general list of all CTF constitutive models is shown in Table 3.1. Note that two-phase, boiling,

and interfacial models are currently excluded from this list, as CASL focuses on simulation of Pressurized

Water Reactors (PWRs).

Remark. CTF has many unit tests that verify geometry and other bookkeeping in the code (e.g. the coupling

interface, solid and fluid mesh data structures, output processing, the iterative matrix solver). Though these

types of unit tests are a vital component of SQA, they are not included in Table 3.1 as they are not evaluating

constitutive models.

Table 3.1: CTF constitutive models and corresponding unit tests. Some groups of constitutive models are
excluded from this table: most multiphase models, all droplet entrainment/deentrainment models, and all
noncondensible gas properties. Constitutive models are split into three groups: solid energy conservation,
single phase hydraulics, and fluid energy conservation. Red check marks (X) indicate unit tests added in
this work, black check marks (X) indicate those that already existed in the CTF testing suite.

CTF Code Capability Model Unit Tests

Energy Conservation in Solids

Fuel material properties ρUO2: constant X

kUO2: MATPRO-11 X

kUO2: Modified NFI X

kUO2: Halden X

kUO2: Density correction X

cp,UO2: MATPRO-11 X

Zircaloy material properties ρzirc: constant X
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kzirc: MATPRO-11 X

cp,zirc: MATPRO-11 X

Dynamic gap Hgas X

Hcontact X

Hrad X

Single Phase Hydraulics

Equation of state h: IAPWS X

k: IAPWS X

cp: IAPWS X

µ: IAPWS X

σ: IAPWS X

Tsat: IAPWS X

Axial/lateral wall friction f : CTF X

f : McAdams X

f : Zigrang-Sylvester X

f : Churchill X

f : User-defined X

Turbulent mixing β: Rogers and Rosehart

β: Beus

Grid TKE enhancement K/K0: Yao, Hochreiter, and Leech

Coolant Energy Conservation

Wall heat transfer Dittus-Boelter X

Subcooled nucleate boiling Thom X

Chen X

Near-wall condensation Ahmad X

Hancox-Nicoll

Grid heat transfer enhancement Nu/No0: Yao, Hochreiter, and Leech X

All multiphase models, droplet models, and noncondensible gas properties are excluded from the table. The

constitutive model matrix has about 88% coverage for single phase flow connected to a conductor. Given

this outline of the generally used CTF constitutive models, there are a few notable gaps. The remainder

of this chapter describes two new unit tests that are added to fill gaps in the constitutive model matrix:

Dittus-Boelter and Chen.
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3.1 Dittus-Boelter

The Dittus-Boelter correlation [17] is used for the heat transfer coefficient in the CTF single-phase forced

convection regimes. The coded equation for Nusselt number is

Nu =


0.023Re0.8Pr0.4, ` = 0

max
[
7.86, 0.023Re0.8Pr0.4

]
, ` = 1

0, Re = 0 orPr = 0.

(3.1)

Here, ` indicates the variable laminar limit, which determines if there is a lower limit to the Nusselt number.

The constitutive model is contained in its own Fortran file, Dittusboelter.f90, so the implementation of

a unit test is relatively simple. The tested conditions are outlined in Table 3.2. All possible combinations of

behavior are tested, including passing through all combinations of if/then/else statements.

Table 3.2: Unit test conditions for the Dittus-Boelter constitutive model

Test Re Pr laminar limit Nu

1 0 1.2 0
2 106 0 0
3 0 0 0
4 106 1.2 1560.991
5 103 1.2 6.214416
6 0 1.2 .false. 0
7 106 0 .false. 0
8 0 0 .false. 0
9 106 1.2 .false. 1560.991
10 103 1.2 .false. 6.214416
11 0 1.2 .true. 0
12 106 0 .true. 0
13 0 0 .true. 0
14 106 1.2 .true. 1560.991
15 103 1.2 .true. 7.860000

3.2 Chen

The Chen correlation is one option for calculating the heat transfer coefficient in the subcooled and saturated

boiling regimes. The correlation is a combination of convection and nucleate boiling transfer [18].

q′′ = (hNB + hc) (Tw − Tsat) (3.2)

32 CASL-U-2020-1938-000



CTF Verification

For this unit test, only the nucleate boiling term hNB is tested. It is calculated as follows:

hNB = 0.00122S

[
k0.79
f c0.45

pf ρ0.49
f

σ0.5µ0.29
f h0.24

fg ρ0.24
g

]
∆T 0.24

sat ∆P 0.75
sat . (3.3)

Here, ∆Tsat = Tw − Tsat is the wall superheat and ∆P = P (Tw) − P (Tsat) is the difference in saturation

pressure between the wall and bulk fluid. The suppression factor is presented graphically in the original

paper, but is commonly approximated as

S =
(
1 + 0.00000253Re1.17

)−1
. (3.4)

For this unit test, we employ a textbook example [19, Example 12.1]. All quantities reported in the problem

definition are listen in Table 3.3 in the original units, as well as the British units necessary for use in CTF.

Table 3.3: Chen unit tests inputs from Todreas example [19]

Parameter Symbol SI Units British Units

Pressure P 7 MPa 1015.3 psi
Quality x 0.2 0.2
Diameter D 25 mm 0.082 ft
Mass flow rate ṁ 800 kg/hr 1763.7 lbm/hr
Saturated water viscosity µf 96× 10−6 Pa ∗ s 0.232 lbm/ft/hr
Saturated vapor viscosity µg 18.95× 10−6 Pa ∗ s 0.046 lbm/ft/hr
Saturated water specific heat cpf 5.4× 103 J/kg/K 1.29 btu/lbm/◦F
Saturated water density ρf 740 kg/m3 46.20 lbm/ft3

Saturated steam density ρg 36.5 kg/m3 2.28 lbm/ft3

Surface tension σ 18.03× 10−3 N/m 1.235× 10−3 lbf/ft
Heat of vaporization hfg 1513.6 kJ/kg 650.73 btu/lbm
Saturation temperature Tsat 284.64 ◦C 544.35 ◦F
Wall temperature Tw 290 ◦C 544 ◦F
Saturated water thermal conductivity kf 0.567 W/m/◦C 0.328 btu/◦F/ft/hr

The unit test is implemented to test that hNB = 1018.5 btu/hr/ft2/◦F. First, chen prep is called, then

htc chen. Care is taken to ensure that all unit conversions are consistent, and the h11 variable is defined

locally using the provided fluid properties.
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Remark. The heat transfer coefficient reported in [19] is 5309 W/m2/◦C. If his calculations are repeated to

machine precision, the heat transfer coefficient becomes 5016.6 W/m2/◦C. However, the CTF implementation

is inconsistent with the original correlation. First, the ∆Psat term is calculated using an approximation (of

unknown origin):

∆Psat =

[
5.4042hfg

νfg (Tsat + 460)

]
∆TAsat

A =
1.0306

(log10 P )
0.017 +

0.0020632

(log10 P )
1.087 max [0, (∆Tsat)− 5]

(3.5)

Second, the suppression factor is calculated using a different equation [20].

S =


[
1 + 0.12Re1.14

2Φ

]−1
Re2Φ < 32.5[

1 + 0.42Re0.78
2Φ

]−1
32.5 < Re2Φ < 50.9

0.1 50.9 < Re2Φ

(3.6)

When these two modifications are incorporated into Todreas’ solution, the result is 5779.4 W/m2/◦C

(1018.5 btu/hr/ft2/◦F), which is the value tested in the CTF unit test. This value is about 15% from the

hand calculated value without these modifications.
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4. Conclusion

In this work, some code verification studies were performed for the NCSU/CASL version of COBRA-TF.

New tests were incorporated into the CTF automated regression suite: isokinetic advection [6], linear con-

duction [7], friction and gravity, convection, and pipe boiling. These problems, along with the existing heat

exchanger problem, were incorporated into a common Python utility that generalizes the verification process.

The python utility will enable quick implementation and testing of any future code verification studies for

CTF. For each test, the computed solution is compared to an analytic solution as the code mesh is refined.

All code behavior for these problems is consistent with expected results, indicating a lack of code bugs in

the exercised sections of the code. In addition, two problems were examined that were not added to the

automated regression suite: water faucet [8] and nonlinear conduction. For both of these tests, the results

were promising, but future work will be necessary to troubleshoot and finalize them.

The CTF automated regression suite currently contains ten code convergence studies. Though this is an

improvement over the pre-CASL version of the code, it is far from complete. First, there are gaps to address

in Table 1.1. Some terms have no corresponding verification tests: lateral advection and turbulent mixing of

mass, lateral advection of energy, interfacial shear, and turbulent mixing of momentum. Many of these gaps

could easily be filled using modifications of the existing turbulent mixing and flow split problems. For terms

that already have corresponding tests in Table 1.1, many other problems could be added to increase the

confidence in that particular term. In addition, future work should focus on testing different combinations

of terms in the conservation equations, rather than testing individual terms. It is possible that the interplay

between two different terms could reveal a code bug that is not observed when only the individual terms are

tested.

Finally, future work will also include solution verification analyses. There are a handful of solution verification

studies relevant to CTF in the literature, but none of them are included in the CTF automated regression

suite. A more inclusive and thorough solution verification study will be necessary to quantify the numerical

error when all CTF constitutive models are enabled.

In addition to the code verification studies completed in this work, a few unit tests were added to address

gaps in the constitutive model matrix. The two models with new tests are the Dittus-Boelter and Chen
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correlations. Some models in Table 3.1, such as Beus and Rogers-Rosehart, are calculated in the middle of

very large Fortran modules. It is very difficult to individually test the behavior of these models. Therefore,

to further enable future unit testing activities, these constitutive models should be migrated to their own

Fortran functions.
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