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Abstract—The rapid proliferation of heterogeneous program-
ming languages and multi-vendor hardware has underscored the
critical need to evaluate the performance portability of scientific
applications. In this work, we present the systematic porting and
optimization of a massively parallel fluid-structure interaction
code across multiple heterogeneous programming frameworks
for deployment on leadership-class supercomputers from major
vendors. Our analysis focuses on at-scale performance for simula-
tions involving hundreds of millions of deformable cells, executed
on a combination of CPUs and GPUs spanning thousands of
nodes on exascale machines. We benchmark the performance
of each implementation, highlighting the trade-offs inherent in
adopting diverse programming models. Key insights regarding
the portability of CUDA on multi-vendor platforms, the superior
multi-core CPU performance from SYCL, and architectural con-
siderations on performance optimization are distilled from our
experience, offering guidance to other users of high performance
computing based on our findings.

Index Terms—Computational fluid dynamics, fluid structure
interaction, GPU computing, high performance computing, per-
formance portability

I. INTRODUCTION

With the recent proliferation of programming models target-
ing heterogeneous architectures, there is a need to devise and
evaluate strategies to achieve performance portability for sci-
ence applications at scale. Legacy CUDA-based applications,
widely adopted for graphics processing unit (GPU) accelera-
tion, have required significant porting efforts to adapt to alter-
native programming models introduced by diverse hardware
vendors. However, recent advances in compiler technologies
have enabled CUDA to function as a portable language across
hardware from the major device vendors, including NVIDIA,
AMD, and Intel, raising critical questions about the necessity
and trade-offs of porting.

Simultaneously, the increasing popularity of GPUs has
spurred a strong focus on offload acceleration. However, many
HPC applications have underutilized the parallelism available
in high core counts of modern CPUs present on leadership-
scale system nodes. This imbalance underscores the need
for a holistic evaluation of programming models across het-
erogeneous architectures to inform developers on optimizing
performance while minimizing development overhead.

In this paper, we systematically evaluate the performance
portability of HARVEY, a multiphysics HPC application [Ran-
dles et al.(2013)], [Gounley et al.(2019)], across heteroge-
neous nodes from leadership class systems, including Aurora
(ALCF), Frontier (ORNL), and Polaris (ALCF) (Fig. 1). The
primary contributions of this work are as follows.

1) A comparative analysis of scaling performance of
CUDA, SYCL, HIP, Kokkos and OpenMP programming
models on leadership-class heterogeneous architectures.

2) An evaluation of trade-offs between performance
portability and the development effort required for each
programming model.

3) An analysis of GPU progamming optimizations, fo-
cusing on the impact of hardware architecture on atomic
operations and GPU-centric communication.

4) Actionable insights into the benefits and drawbacks of
each programming model within the context of a real-
world scientific application

By addressing these points, this study makes important
contributions to accelerator programming by providing prac-
tical guidance to help HPC users navigate the challenges and
opportunities of exascale computing effectively.
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Fig. 1. Overview of the performance portability study, where programming models are assessed in terms of a real application, HARVEY, both on CPUs and
GPUs supported by a variety of compiler toolchains across leadership class supercomputers. The programming models evaluated in this study are OpenMP
(light green), HIP (red), Kokkos (purple), CUDA (dark green), and SYCL/oneAPI (blue). Each programming model was evaluated both on GPUs and CPUs on
each of three platforms, Aurora, Frontier, and Polaris. Arrays denoting the programming models emanate from the HARVEY application icon to the platforms
they were evaluated on. Text bubbles overlaid onto arrows indicate specific compiler tools used to support GPU and CPU backends for the given programming
model. Missing labels on arrows denote native backend support requiring no additional toolchain steps.

II. RELATED WORK

GPU offloading has become the standard approach to
improving application performance on modern GPU-dense
nodes. Given the diversity of available software-hardware
combinations, performance portability has become a central
concern [Pennycook et al.(2016)]. The performance of SYCL
across various solvers and hardware vendors has been exten-
sively analyzed by [Reguly(2023)], [Reguly(2019)], [Rangel
et al.(2023)]. Broad evaluations of the well-known heteroge-
neous programming models targeting GPUs have been con-
ducted [Davis et al.(2024b)], [Ruzicka et al.(2024)]. Numer-
ous works have detailed the porting of benchmark applica-
tions and real-world HPC codes to heterogeneous program-
ming frameworks [Howard et al.(2017)], [Joo et al.(2019)],
[Gschwandtner et al.(2021)]. Complementing these efforts, the
development of APIs that enable system-level portability at
compilation time has gained traction. These APIs mitigate the
need for extensive source code modifications while targeting
native system architectures. For example, [Chen et al.(2023)]
and [Louhivuori(2023)] introduce solutions that allow CUDA
code to run seamlessly on HIP-native systems, highlighting
the potential for cross-platform execution without significant
code refactoring.

III. APPLICATION OVERVIEW

This work employs HARVEY [Randles et al.(2013)], a
massively parallel, multiphysics code. HARVEY uses the
lattice Boltzmann method (LBM) [Succi(2001)], [Krüger

et al.(2016)] to solve the underlying fluid flow. The LBM
is a mesoscopic method that tracks fictitious particle packets
that represent probability densities in a velocity space on
a Cartesian grid. The Immersed Boundary method (IBM)
[Peskin(1977)] is used to couple the LBM fluid solver with the
finite element (FEM) module [Krüger et al.(2011)] for comput-
ing the deformation response of biological cells. HARVEY is
an ideal candidate for performance portability evaluation since
it is a production HPC code with characteristics representative
of a broader set of scientific codes, including a mixture of
memory bandwidth-bound and compute-bound kernels, and
stencil-based communication patterns.

Due to an efficient parallelization scheme, HARVEY is
capable of simulating millions of red blood cells in complex
arterial vessel geometries. Fig. 2 shows a representative HAR-
VEY simulation with many red blood cells flowing through a
complex vascular anatomy.

An inherent advantage of HARVEY that facilitates portabil-
ity evaluation across a diverse set of platforms is its minimal
dependence on external libraries.

IV. PLATFORMS

This work exercises HARVEY on leadership class systems
containing devices from the major GPU vendors. These plat-
forms include the exascale machines Frontier (Oak Ridge Na-
tional Laboratory, AMD) and Aurora (Argonne National Labo-
ratory, Intel), as well as Polaris (Argonne National Laboratory,



Fig. 2. Representative HARVEY simulation of red blood cells flowing through
a complex vascular network.

NVIDIA). The hardware characteristics of these machines are
summarized in Table I.

V. PROGRAMMING MODELS

In this paper, we evaluate performance portability of the
HARVEY application using five well-known heterogeneous
programming frameworks: CUDA, HIP, SYCL, Kokkos, and
OpenMP. These programming models were chosen since they
are the major supported languages on the current-generation
machines.

VI. PORTING METHODOLOGY

Porting of the HARVEY application to heterogeneous pro-
gramming models was performed using a combination of
semi-automated porting tools and manual code transforma-
tions. Execution of GPU programming models on nonnative
hardware was enabled by leveraging numerous compiler tech-
nologies (Table II), which in some cases required further
changes to the source code.

A. Enabling Portability of CUDA

HARVEY GPU kernels were originally written in CUDA.
To run CUDA on the AMD MI250X GPUs of Fron-
tier, we used the Header Only Porting (HOP) library
[Louhivuori(2023)], which performs compilation-time redef-
inition of CUDA identifiers with HIP equivalents. Usage of
HOP only required minor edits to the HARVEY build files.
Generation of binaries compatible with the Intel GPUs of
Aurora was facilitated by the LLVM-based chipStar compiler,
which provides support for CUDA on platforms with SPIR-V
as the device intermediate language. At the time of publication,
chipStar does not support commonly used CUDA libraries
such as Thrust, which was a HARVEY dependency. Our
workaround involved re-writing subroutines that originally
made use of thrust::reduce_by_key with handwritten
segmented scan kernels [Sengupta et al.(2011)]. Toward this
aim, the restructuring of HARVEY CUDA for deployment on
Aurora with chipStar involved adding several new functions

for custom shared memory algorithms of segmented scans
which amounted to a few hundred lines of new code.

The deployment of HARVEY CUDA on CPUs relied on
usage of CUDA for Parallelized and Broad-range Proces-
sors (CuPBoP) [Han et al.(2022)], [Han et al.(2024a)], [Han
et al.(2024b)], a framework supporting execution of CUDA
source code on non-NVIDIA devices, including several CPU
backends. CuPBoP works by converting CUDA source code to
LLVM bitcode, and performing compiler optimizations on the
intermediate representation (IR) files. Therefore, application
of CuPBoP to HARVEY CUDA required modifications to
the HARVEY build files. While no source file changes were
required, editing build files to generate the intermediates
needed for CuPBoP from HARVEY source files was not a
straightforward process. CuPBoP proved to be highly portable,
enabling HARVEY CUDA to execute on the CPUs across all
systems in this study.

B. Porting to HIP with HIPify

Porting the native CUDA source code of HARVEY to HIP
involved straightforward application of the perl-based HIPify
tool, which acts essentially as a simple regex script. With
a single command, HIPify automatically converted the vast
majority of the HARVEY source code, with minor exceptions
to header file include statements. HIP natively supports AMD
and NVIDIA devices, and therefore required no source code
modifications to execute HARVEY HIP on Frontier or Polaris.
Similarly to CUDA, chipStar also supports HIP applications,
so once the code changes were applied for running HARVEY
CUDA on Intel GPUs on Aurora, HIP could readily be run
with the HIPify tool.

Deploying HARVEY HIP on CPUs relied on a combina-
tion of compiler frameworks. Since chipStar comes with an
OpenCL backend for targeting Intel CPUs, simply passing in
the OpenCL backend to chipStar during the build procedure
was needed to execute HARVEY HIP on the Intel Xeon CPU
Max on Aurora. No additional code changes were necessary.
Execution of HARVEY HIP on the AMD EPYC CPUs on
Frontier and Polaris was facilitated by usage of the HIP
CPU Runtime, a header-only library originally developed
by AMD based on the Parallel Algorithms component of
the C++ library, allowing the execution of unmodified HIP
code on CPUs. Usage of the HIP CPU Runtime requires
providing paths to the compiler identifying the HIP CPU
Runtime library, and the Intel oneAPI Thread Building Blocks
(oneTBB) library. Otherwise, no additional source file changes
were necessary.

C. Incremental Porting to SYCL

Porting of the HARVEY CUDA code to SYCL was per-
formed incrementally. An initial port was facilitated by usage
of the Intel Data Parallel C++ Compatibility Tool (DPCT).
Once the compilation database is provided to DPCT, the
tool automatically converts the majority of CUDA syntax to
SYCL-like data-parallel C++ (DPC++), Intel’s implementa-
tion of SYCL. DPC++ headers include wrappers serving as



TABLE I
SYSTEM NODE CHARACTERISTICS.

System Aurora Frontier Polaris

CPU 2x Intel Xeon CPU Max 9470C 1x AMD EPYC 7A53 1x AMD EPYC 7543P
Cores/CPU 52 64 32

GPU 6x Intel Data Center GPU Max 1550 (12 GPUs) 4x AMD MI250X GCDs (8 GPUs) 4x NVIDIA A100 GPUs
GPU Memory 64 GB 64 GB 40 GB

GPU Mem. Bandwidth 1.23 TB/s 1.28 TB/s 1.30 TB/s
GPU-CPU Interface PCIe Gen5 (128 GB/s) AMD Infinity Fabric CPU-GPU (72 GB/s) PCIe Gen4 (64 GB/s)
GPU-GPU Intranode Intel Xe Link (23 GB/s) AMD Infinity Frabric GPU-GPU (100 GB/s) NVLink (600 GB/s)

Interconnect Slingshot 11 (25 GB/s) 4x HPE Slingshot (100 GB/s) Slingshot (25 GB/s)

abstractions for CUDA constructs such as constant and shared
device memories that simplify the porting procedure. Still,
DPCT emitted a number of error messages requiring manual
intervention. Once a working DPCT port of HARVEY was
verified, the next step involved phasing out code referencing
the DPCT namespace, and instead replacing these pieces of
code with standard SYCL. While DPCT allows C pointer-
style arithmetic on device allocations, conversion to SYCL
required mixing the pointer-style conventions of CUDA with
SYCL buffers and accessor semantics that were necessary for
replacing dpct::constant_memory. In all, the porting
procedure to SYCL was more time-consuming than HIP,
requiring significantly more user intervention that amounted
to several hundred lines of code. Once HARVEY was ported
to SYCL, no further code changes were required to run on
the GPU or CPU backends of any systems examined here,
given out-of-the-box support for heterogeneous offload from
oneAPI.

D. Fully Manual Porting to Kokkos

The procedure for porting HARVEY to Kokkos was per-
formed completely manually. CUDA kernel launch syntax
was replaced with Kokkos::parallel_for blocks. Al-
locations in CUDA shared memory syntax were replaced
with Kokkos team scratch memory. CUDA constant device
allocations were replaced with Kokkos unmanaged Views.
Parallel scan primitives were readily available in the Kokkos
library via kokkos::parallel_scan. In all, a couple
thousand lines of code were added or changed during the port
to Kokkos. Execution of HARVEY Kokkos binaries on each
platform was straightforward, only requiring specification of
the correct backend for each platform to the CMake system.
To run Kokkos on the multi-core CPUs, the OpenMP backend
was specified.

E. Manual Porting to Directive-based OpenMP

Like Kokkos, the conversion of CUDA source code to
OpenMP 5.0 was performed completely manually. While
OpenMP allows for implicit data management between host
and device with the map clause, for performance rea-
sons, we opted for an explicit memory management ap-
proach using OpenMP analogs of C-style memory allocation
routines like malloc, those being omp_target_alloc
and omp_target_free. Simple CUDA kernels were

straightforward to port with omp target teams directives.
CUDA constant device memory declarations were wrapped
in omp declare target directives. CUDA local shared
memory variable allocations were replaced with OpenMP
5.0 allocator semantics, such as omp_pteam_mem_alloc.
While OpenMP 5.0 introduced support for inclusive and
exclusive scans with the scan directive, manual implemen-
tation of segmented scans was still required. In total, the
OpenMP port involved a comparable amount of code changes
as Kokkos. Minimal code changes were necessary to running
HARVEY OpenMP on each platform. Executing OpenMP on
the CPUs was straightforward, only requiring adjustments to
environment variables.

VII. PERFORMANCE EVALUATION

To measure the performance portability of programming
models, we followed the definition proposed by Pennycook
et. al. [Pennycook et al.(2016)], repeated in Equation 1 below.

P (a, p,H) =

{ |H|∑
i∈H 1

ei(a,p)

, if i is supported ∀i ∈ H

0, otherwise

}
(1)

Equation 1 states that the performance portability P of an
application a solving problem p over a set of platforms H is
the harmonic mean of the performance efficiencies ei(a, p) of
the application a computing the problem p on each platform
i. Specifically, we computed the performance portability P
for each HARVEY programming model implementation over
the three hardware sets, HCPU , HGPU , and HGPU ∪HCPU .
Architectural differences between CPUs and GPUs are ac-
counted for by representing P for each platform separately in
addition to their combined evaluation. Furthermore, following
the nomenclature of [Pennycook et al.(2016)], we calculated
P based on the application efficiency, defined as the fraction
of performance achieved over the best observed performance
on a given platform.

VIII. RESULTS

A. Optimizations

Several code optimizations were implemented to better
utilize the hardware resources on each platform. The impact
of each of these code optimizations is reflected in Fig. 3
for each programming model running on a single node of
each platform. One key optimization was to replace atomic



TABLE II
COMPILER TOOLCHAINS.

Programming Model Aurora Frontier Polaris

SYCL Aurora MPICH(mpicxx) oneAPI(icpx) oneAPI(icpx)
Kokkos Aurora MPICH(mpicxx) ROCm(hipcc)/Cray MPICH(mpicxx) NVHPC(nvc++)

OpenMP Aurora MPICH(mpicxx) HIP-Clang(amdclang++) clang++
CUDA chipStar-Level Zero(cucc)/chipStar-OpenCL(cucc) HOP(amdclang++)/CuPBoP(clang++) NVHPC(nvcc)/CuPBoP(clang++)

HIP chipStar-Level Zero(hipcc)/chipStar-OpenCL(hipcc) HIP-Clang(amdclang++)/HIP-CPU(icpx) ROCm(hipcc)/HIP-CPU(icpx)
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Fig. 3. Cumulative speedups resulting from code optimizations applied
uniformly to each programming model, evaluated on Aurora (leftmost cluster),
Frontier (middle cluster), and Polaris (rightmost cluster).

additions with shared memory reductions (indicated as “Cell
Reductions”) in device kernels involved in calculating cell cen-
troids and volumes. Another significant optimization involved
restructuring host-centric IBM cell communication tasks to
the GPUs (marked as “GPU Communication”), as detailed in
[Martin et al.(2024)].

The results reveal that the “Cell Reductions” optimization
had a substantial impact only on Frontier, with the exception
of SYCL. This behavior is likely due to the higher cost
of atomic operations on AMD GPUs, which appears to be
better mitigated by the oneAPI compiler. The most significant
performance improvements were achieved through the second
set of optimizations (“GPU Communication”), as it reduced
the data movement between host and device and eliminated
the bottleneck caused by CPU-mediated bookkeeping. The fact
that HIP achieved the greatest speedup among all program-
ming models on Polaris can be explained by the lower baseline
performance of HIP on the NVIDIA A100 (not shown).

B. Kernel-Level Analysis

A kernel-level analysis of HARVEY was conducted for
each of the programming models being evaluated on a sin-
gle GPU of each system using roofline plots. The analysis
focused on several kernels representative of the fluid-structure
interaction aspects of the program for the analysis, which
were the FEM (FEM), LBM fluid update (LBM), IBM force
spreading (Spreading), and IBM interpolation (Interpolation).

The roofline plots for Aurora, Frontier, and Polaris are shown
in Fig. 4. Roofline plots were generated from Intel Advisor,
NVIDIA Nsight, and AMD Omniperf. While most kernels
were memory-bandwidth bound, the FEM kernel (circle) was
compute-bound with the exception of Frontier. Generally,
among the memory-bandwidth-bound kernels, the LBM fluid
update (triangle) achieved the highest FLOP/s. On Aurora
(Fig. 4(a)), the memory-bandwidth bound kernels were clus-
tered close together, indicating similar performance among
the programming models. In contrast, for the compute-bound
FEM, Kokkos and OpenMP achieved the highest FLOP/s, and
HIP and CUDA achieved the fewest FLOP/s. HIP and CUDA
were the most similar in performance, which was expected
as both were built with chipStar. There was generally more
spread in kernel performance among programming models
on the other platforms (Fig. 4(b), 4(c)). Kernel performance
was the most consistent for the LBM fluid update (triangle)
and FEM (circle), with the exception of OpenMP. In general,
kernel performance was the most variable for OpenMP.

C. Weak Scaling

Weak scaling studies were conducted to evaluate the ability
of each system to efficiently handle increasing problem sizes.
To ensure consistency, the problem size was adjusted so
that the number of simulated red blood cells per process
remained constant. Furthermore, to account for differences in
the number of GPUs per node between systems, the problem
sizes were scaled to ensure that the number of cells per
GPU was the same for any node count between systems.
We acknowledge that ensuring equal problem size per GPU
translates to differences in GPU memory utilization, and in
turn impact performance trends. Performance was measured
as time per iteration, calculated by dividing the maximum
wall-time recorded among MPI ranks by the total number of
iterations.

1) GPU weak scaling: The weak scaling performance of
each programming model on the GPUs is shown in Fig. 5,
with one MPI rank assigned to each logical GPU (sub-device).
Overall, the programming models exhibited similar perfor-
mance, with a few notable exceptions. On Aurora (Fig. 5(a)), a
significant runtime spike was observed for Kokkos beginning
at about 512 nodes, and a sudden drop in SYCL runtime
seen at 128 nodes. These performance anomalies observed on
Aurora can likely be attributed to the fact that Aurora was still
in a pre-production stage at the time of this study. Additionally,
a systematic runtime discrepancy was noted for OpenMP on



Fig. 4. Roofline plots for HARVEY running on a single GPU on (a) Aurora (Intel Advisor), (b) Frontier (AMD Omniperf), and (c) Polaris (NVIDIA Nsight).
Each kernel is denoted by a different symbol, and the programming model indicated by a unique color.

Frontier compared to all other programming models, which
was traced to the under-performance of the interpolation kernel
(Fig. 4(b)). For OpenMP, the interpolation kernel exhibited
significantly higher arithmetic intensity at comparable FLOP/s
relative to other programming models, which increased run-
time. Since the IBM cell interpolation algorithm was identical
across programming models, this difference likely resulted
from how HIP-Clang interacted with the relevant OpenMP
Target constructs. Among the platforms, Polaris exhibited the
shortest runtimes overall (Fig. 5(c)). On Frontier and Polaris,
native programming models consistently delivered the best
performance (Fig. 5(b,c)), which was in contrast to Aurora
data (Fig. 5(a)) indicating parity among programming models.

2) CPU weak scaling: Weak scaling of each programming
model on the CPUs is shown in Fig. 6. As was done with
GPU scaling, the number of MPI ranks on a node was
matched to the number of GPUs, and the number of hard-
ware threads was evenly split among the MPI ranks. Among
the CPU backends, we observed that SYCL compiled with
Intel’s oneAPI compiler consistently outperformed the other
programming models, even on AMD CPUs (Fig. 6(b,c)). To
better understand these results, the disassembled code was
analyzed using the objdump program. A notable trend was
observed: the disassembled SYCL kernels exhibited up to 60%
fewer instructions compared to other CPU-backends, such as
Kokkos-OpenMP and HIP-CPU. This reduction in instruction
count suggests that the faster performance of SYCL on CPUs
may be partially attributed to its lower instruction overhead.

D. Evaluating the Performance Portability Metric

We employed Equation 1 to evaluate the portability of ap-
plication performance among three sets of platforms: HGPU ,
HCPU , and HGPU ∪ HCPU , with HGPU denoting the set
of logical GPUs, HCPU comprising all available CPU hard-
ware threads, and HGPU ∪ HCPU representing the union
of the two sets. prior. The resulting performance portabili-
ties are plotted in Fig. 7. In general, the HARVEY CUDA

implementation achieved the greatest performance portability
over HGPU (Fig. 7(a)), whereas SYCL achieved the highest
performance portability over HCPU (Fig. 7(b)). When both
CPUs and GPUs were taken into account as represented by
HGPU ∪HCPU (Fig. 7(c)), SYCL consistently outperformed
the other programming models in this category.

E. Runtime composition

In order to gain insight into differences between the CPU
and GPU backends of programming models, as well as the
impact of architectural differences between platforms, we
analyzed runtime compositions shown in Fig. 8. These plots
were derived from internal profiling statistics of the weak
scaling runs presented in Fig. 5 and 6. Each platform
(represented as a column in Fig. 8) corresponds to its native
programming model, so that we have the leftmost column as
SYCL for Aurora, the middle column as HIP on Frontier,
and the rightmost column being CUDA on Polaris. Native
programming model performance on the GPUs is represented
in the top row, while native programming model performance
with the CPU backends indicated in Fig. 1 is shown in the
bottom row. MPI communication time in each subplot is
subdivided into the three bottom layers of different shades
of blue, representing in order of lightest to darkest shades
the IBM Cell Update Communication, the IBM Cell Ve-
locity Communication, and the LBM Fluid Communication.
The IBM Cell Update Communication concerns MPI-related
bookkeeping associated with tracking changes to cell vertex
ownership as cells travel between tasks. The IBM Cell Velocity
Communication component denotes the MPI exchange of
IBM cell vertex velocities. The LBM Fluid Communication
subroutine involves exchange of LBM fluid distribution data
at the task boundaries. With the exception of Frontier, the
GPU runtimes (top row) were dominated by MPI communi-
cation overhead stemming primarily from IBM Cell Velocity
Communication, which tended to increase at higher node
counts, and was followed by the FEM kernel (light purple). On



20 21 22 23 24 25 26 27 28 29 210 2110.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Aurora

20 21 22 23 24 25 26 27 28 29 210 2110.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Frontier

20 21 22 23 24 25 26 27 280.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Polaris

Node count

Ti
m

e 
pe

r 
it

er
at

io
n 

(s
ec

)

(a) (b) (c)

Kokkos
SYCL
OpenMP Target

CUDA
HIP

Fig. 5. Weak scaling comparison of programming models on GPUs from (a) Aurora, (b) Frontier, and (c) Polaris.
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Frontier, however, MPI-related overhead was overshadowed
by the IBM spreading kernel (brown). We suspected that
these trends were attributable to differences in how atomic
addition operations in the IBM spreading routine were handled
between programming models or by the underlying hardware,
and predict that replacing these atomics with a more optimized
parallel reduction would lead to a runtime composition compa-
rable to what was observed for Aurora and Polaris. In general,
the relative MPI overhead among the CPU backends (bottom
row of Fig. 8) was less than on the GPUs, being replaced by
the more computationally intensive IBM kernels like FEM.
In contrast to the GPU backends, the MPI communication is
dominated by IBM Cell Update Communication. Interestingly
for Frontier (middle column), the runtime became dominated
not by IBM spreading but instead by the IBM cell property
update. The IBM cell property update includes calculating the
updated cell centroids, min and max positional coordinates,
and cell volumes. Notably, the cell property update relies on
shared memory algorithms for segmented scan operations that
make extensive use of barrier semantics, which according to
the HIP CPU Runtime documentation can incur significant
slowdown. Interestingly, SYCL (left column) exhibited the
highest MPI overhead among CPU backends, suggesting that
compute-intensive kernels were better parallelized by the
oneAPI compiler. This is evident in the relatively efficient
handling of the cell property update (green) compared to other
CPU backends.

F. Comparing CPU versus GPU performance

We show the relative speedup of each GPU backend over
the corresponding CPU backend for each programming model
in Fig. 9. The GPU backends consistently obtained about an
order-of-magnitude speedup over their CPU counterparts, with
the largest speedups observed on Polaris. These results were
unsurprising, given the superior memory bandwidths of GPUs
relative to CPUs, together with the fact that the majority of
kernels sampled for HARVEY were memory bandwidth bound
(Fig. 4).

IX. DISCUSSION

This study provides critical insights into the performance
portability of GPU programming models, offering practical
takeaways for developers navigating heterogeneous environ-
ments. We expect the findings presented here to generalize
to a broad set of HPC applications, given the fact that
HARVEY exhibits characteristics of both memory bandwidth-
bound and compute-bound codes (Fig. 4), employs common
memory access and communication patterns (e.g., stencil-
based, hybrid MPI+X), and contains kernels commonly found
in scientific applications (e.g., finite element solver). One of
the key findings is the comparable performance across most
GPU programming models on all tested platforms, with the
exception of OpenMP, as indicated in Fig. 5. On the NVIDIA-
based Polaris system, OpenMP was consistently the worst
performing implementation, which was similarly observed by
[Davis et al.(2024a)]. On Frontier, OpenMP underperformed

compared to other programming models on multiple nodes,
with a consistent ∼30% slowdown. However, when Frontier
is excluded, OpenMP’s competitiveness with other models
improves, emphasizing the need to account for platform-
specific factors when evaluating programming models. In
contrast to the GPU backends, greater performance variability
was observed with respect to the CPU backends. This result
was unsurprising given the relative immaturity of compilers
(e.g., CuPBoP) supporting CPU offload of GPU-centric pro-
gramming languages.

Among GPUs, CUDA demonstrated the highest perfor-
mance portability, which is unexpected given its reputation as a
non-portable language compared to alternatives like Kokkos.
This result highlights a reassuring point for users of legacy
HPC codes based on CUDA C++: they may not have to invest
heavily in porting their code to other programming models.
Instead, they can focus on optimizing their existing CUDA-
based implementations, as CUDA continues to deliver strong
performance across GPU platforms. That said, CUDA’s porta-
bility on CPUs remains a challenge, ranking lowest among
models tested. This limitation underscores the importance of
ongoing developments such as CuPBoP, which may enhance
support for CPU backends in the future. In the meantime,
CUDA’s presence on CPUs does offer significant debugging
advantages, even if performance lags.

SYCL emerged as a standout in this study, demonstrating
unmatched performance on CPUs and the highest overall
performance portability across the combined set of GPU
and CPU platforms. SYCL has previously been shown to
exhibit superior performance on multi-core CPUs [Breyer
et al.(2022)]. Furthermore, SYCL was the only programming
model that could be compiled on all platforms using the
same compiler (oneAPI/DPC++). This versatility makes SYCL
a compelling option for developers targeting heterogeneous
systems. For teams working with a mixture of CPUs and
GPUs, SYCL presents a strong case as both a starting point
for new projects and a migration target for legacy codes.
While SYCL offers excellent performance portability across
both CPUs and GPUs, our findings highlight several im-
portant nuances. Specifically, CUDA’s superior performance
portability on GPUs (Fig. 7(A)), coupled with its strong
native performance on NVIDIA devices (Fig. 5(C)), may
justify the continued maintenance of a legacy CUDA codebase
alongside SYCL. This finding is particularly relevant given
the widespread use of NVIDIA GPUs and the increasing
availability of projects like chipStar and CuPBoP that aim to
improve CUDA portability.

The sensitivity of program performance to code optimiza-
tions across different programming models and node architec-
tures underscores the importance of platform-specific consider-
ations. One striking example is the application of cell reduction
optimizations that removed certain atomic operations. As
shown in Fig. 3, these changes yielded substantial speedup
on Frontier, with notable exception of SYCL, likely due
to differences in compiler optimizations and GPU hardware
intrinsics. Similarly, offloading CPU communication tables
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onto GPUs resulted in significant performance gains across
all platforms (about an order-of-magnitude in many cases on
a single node), especially on the NVIDIA GPUs. These results
highlight that while general optimizations are valuable, their
effectiveness can vary greatly depending on the hardware and
programming mdoel specifics.

Assessing the effort required to port applications to different
programming models remains a complex task, often relying
on subjective measures. While lines of code (LOC) changed
are commonly cited, they may not fully capture the nuances
of porting large-scale applications [Harrell et al.(2018)]. For
instance, porting CUDA to HIP involves minimal effort due
to the close similarity between the two, often achievable
through automated scripts or simple manual regular expres-
sions. In contrast, porting CUDA applications to SYCL re-
quires a deeper understanding of the SYCL programming
model, especially its buffer-based memory management, which
differs significantly from CUDA’s constant memory paradigm.
Although tools like Intel’s Data Parallel C++ Compatibility
Tool (DPCT) can expedite the process, the resulting code may
include wrappers that are less portable and harder to debug.
We found that rewriting these wrappers in pure SYCL not only
enhanced portability but also provided an opportunity to better
understand and leverage the SYCL programming model.

Directive-based programming approaches, such as OpenMP,
present their own challenges when applied to GPUs. While

OpenMP offers a relatively simple mechanism for parallelizing
multicore CPU applications, its GPU implementations require
careful tuning to achieve comparable performance. Limitations
in the OpenMP standard, including inconsistent support for ad-
vanced features like memory allocators across compilers, can
hinder adoption. By comparison, high-level abstractions pro-
vided by programming models like Kokkos or oneAPI/DPC++
offer more robust support for parallel algorithms, albeit with
a steeper learning curve for users accustomed to lower-level
models like CUDA.

Porting from CUDA applications to Kokkos can involve
substantial code changes due to differences in memory models
and abstractions. However, this investment pays dividends
in terms of growing community support, portability, and a
rich set of features including support for distributed shared
memory with Kokkos Remote Spaces. Ultimately, the choice
of programming model often depends on user preferences and
the specific requirements of the target platform, as our results
showed comparable performance among GPU programming
models (Fig. 5).

As detailed in Section III, HARVEY’s independence from
external libraries provided significant flexibility during this
study, allowing us to replace Thrust-based reduction operations
with custom kernels to support chipStar. However, this level of
independence may not be feasible for many HPC applications,
where leveraging highly optimized, well-established libraries
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is critical. We caution against a blanket approach of replacing
libraries for the sake of portability, as doing so can introduce
unnecessary complexity and performance trade-offs.

While offload acceleration is conventionally thought of in
terms of GPU programming, our experiences from this study
have taught us that many GPU programming methodologies
find good application in multi-core CPU programming. In
several cases, kernels originally written for GPUs outper-
formed traditional MPI + OpenMP implementations on CPUs.
However, results from Fig. 8 showing high overhead from
shared memory algorithms with the HIP CPU runtime un-
derscore the importance of considering hardware differences
between multi-core CPUs and GPUs when writing SIMT-style
kernels. Overall, our finding highlights the broad applicability
of accelerator-style programming, which fosters parallel pro-
gramming practices that are increasingly valuable in today’s
heterogeneous computing environments.

X. CONCLUSION

This work has highlighted actionable strategies for achiev-
ing performance portability in large-scale scientific codes
on leadership-class supercomputers with heterogeneous archi-
tectures. By running HARVEY, a single-source, large-scale
scientific code, across CPUs and GPUs from all major vendors,
we gained critical insights into the strengths and trade-offs
of various programming models, providing a roadmap for
developers navigating the complex landscape of HPC.

A key takeaway is CUDA’s surprising viability as a
performance-portable programming language for GPU-based
workloads, achieving order-of-magnitude speedups over its
CPU counterparts. This result, combined with tools like CuP-
BoP, suggests that developers of legacy HPC codes based on
CUDA C++ can extend their applications to exascale machines
with minimal rework, enabling them to fully exploit modern
heterogeneous systems while focusing on optimization rather
than large-scale rewrites.

SYCL emerged as the most performance-portable pro-
gramming model across heterogeneous nodes, consistently

delivering strong performance on both the CPUs and GPUs,
even as scaling demands increased. Its cross-platform flexibil-
ity positions SYCL as a compelling choice for applications
targeting diverse hardware ecosystems. While CUDA may
still outperform SYCL on GPUs, SYCL’s versatility offers a
distinct advantage for future-proofing codes, particularly for
those seeking a unified approach across mixed architectures.

This study highlights the versatility of accelerator-style
programming, demonstrating that GPU-designed kernels can
outperform traditional MPI + OpenMP approaches on multi-
core CPUs, emphasizing the need for parallel programming
practices that work across diverse hardware. Platform-specific
optimizations, such as offloading CPU communication tables
to GPUs, further illustrate the benefits of tailoring code to
hardware-specific characteristics.

Our results also show that developers are no longer limited
by vendor-specific solutions. Advances in compiler ecosystems
and heterogeneous offloading now make scalable performance
achievable across architectures, reducing barriers to adopting
exascale systems. By aligning the programming models with
the strengths of the platform, HPC developers can maximize
efficiency and portability.
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