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ABSTRACT

Reliable super-resolution methods are crucial for applications like remote sensing, grid resilience
and disaster impact analysis, and standoff biometrics. These methods infuse additional high-
frequency information into reconstructions, allowing for better contextualization and image in-
telligence. However, super-resolution models can also introduce hallucinations or other unseen
vulnerabilities that could be exploited by an adversary. This is further compounded by the promi-
nence of deep learning in these models, as models are often blindly applied on out-of-distribution
images.

In this work, we implement adversarial attacks in common open-source super-resolution models
and examine their impact on reconstructions and downstream classification tasks. We find that
an adversarially trained super-resolution model can produce high-quality reconstructions that de-
grade downstream classifications. Moreover, these attacks do not require access to low-resolution
imagery or class labels at inference time. These results demonstrate the vulnerability of super-
resolution methods to malicious actors and motivates the development of a detector for super-
resolution adversarial attacks. Further exploration of adversarial attacks in this domain is re-
quired to ensure trustworthiness and robustness of super-resolution models for national security
applications.
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1. INTRODUCTION

Super-resolution (SR) seeks to improve the spatial resolution of an image by introducing high-
frequency content while simultaneously maintaining fidelity to the existing image content. This
has been shown to improve analysis in fields like medical imaging [1] [2], additive manufacturing
[3], and remote sensing [4]. Moreover, SR has been shown to improve effectiveness of downstream
tasks like classification [5], detection [6] [7], and segmentation [8]. State-of-the-art SR methods
generally use a deep learning-based approach, which involves learning direct mappings between
low- and high-resolution spaces.

Adversarial attacks have emerged as a common concern when using deep learning, particularly
for national security applications [9, 10, 11]. These attacks maliciously target machine learning
models by causing missed detections and misclassifications, generally by adding slight strategic
perturbations to input images. Moreover, researchers have developed targeted attacks that can
cause an image to be identified as a particular attacker-determined class [12]. In response to the
prevalence of adversarial attacks, researchers have begun to develop detection methods and de-
fense mechanisms [9, 13]. While adversarial attacks are studied extensively for image detection
and classification tasks, researchers are just beginning to focus on similar vulnerabilities within
image-to-image networks like SR models [14, 15, 16].

Existing research generally investigates two types of security vulnerabilities within SR models:
adversarial perturbations and backdoor attacks. The main difference between these approaches
is whether the attack is within the input Low-resolution (LR) image or is a trigger trained into
the SR model. Adversarial perturbations are applied to LR images to produce a degraded or per-
turbed SR reconstruction. In backdoor attacks, the SR model is trained to produce an adversarial
SR image when a trigger is present in the LR space. Methods to induce these adversarial attacks
within SR models include data poisoning and adversarial loss functions [17, 18, 16].

One major limitation of current research is that it assumes the input image to the SR model is
accessible, either to add a perturbation or a trigger. However, this requires that the adversary is
able to manipulate data at inference time, which is often not the case. Our work considers the
situation where the adversary can manipulate the training data or the SR model, but does not
have access to the data at inference time, which is a more realistic situation. This also accounts
for cases of using an open-source SR model or dataset for internal applications.

Here we explore adversarial attacks on SR models with the aim of ultimately detecting said at-
tacks. We review existing SR methods, adversarial attack constructions, and adversarial SR meth-
ods. We then experiment with a variety of attacks and propose an adversarial loss function that
is able to effectively cloak an entire class from a classifier. We detail training and testing proce-
dures and outline future work for attack generation and detection.
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2. PROBLEM STATEMENT

Consider a SR model M : Rm×m → RLm×Lm that maps a LR image y to a High-resolution (HR)
image x,where L is the amount of resolution increase. L is commonly known as the SR factor.
In our application, we assume that the output SR image M(y) = x is passed to a classification
method fθ(·) that assigns a class to an image x, i.e. fθ(x) = c where c is the predicted class of x.

Now suppose that an adversary wishes to tamper with this imaging pipeline and cause misclassifi-
cations by fθ. Commonly it’s assumed that adversarial tampering is done by strategically manip-
ulating the LR image y. Instead, we consider the possibility that the model M is tampered with
to cause a degradation of fθ’s performance. Namely, M may be trained to insert perturbations or
triggers that target the classifier fθ(·) through either data poisoning or an adversarial loss func-
tion.

For data poisoning, we assume that we have a clean training set of N paired LR and HR images
{(yi, xi)}Ni=1. Additionally, we assume access to the target classifier model fθ(·) with weights pa-
rameterized by θ. In this context, data poisoning creates a set of perturbed HR images on which
the SR model M is trained. This adversarial dataset {(yi, x̃i)}Ni=1 is created such that

x̃i = xi + δxi (1)

where δxi is an adversarial perturbation targeting fθ(·), which will be defined and discussed in
Section 5. The ultimate effect of δ depends on the chosen adversarial attack, but, at a high-level,
the perturbations should be unnoticeable in the SR images and impact classifier performance. By
using a poisoned training set for M , the adversary functionally encodes the adversarial perturba-
tions into the reconstructions.

In the case of an adversarial loss function, the training data is unperturbed. Instead, the adver-
sary introduces a component Latk into the model’s loss function that encourages adversarial re-
constructions. This is akin to saying

Ladv = Lsr + Latk (2)

where Lsr is the SR loss and Latk is some sort of constraint that reduces the effectiveness of the
classifier fθ(·). By using an adversarial loss function, the adversary teaches the SR model to si-
multaneously produce high-quality SR images that contain adversarial perturbations.

In either case, the classifier should perform well on untargeted classes and poorly on the targeted
class. Additionally, the adversarial SR images should be similar to the expected SR images, both
qualitatively and quantitatively. If the adversarial attack is noticeable, either through classifier or
SR performance, this could lead the end user to abandon the SR model or classifier, nullifying the
adversary’s efforts.
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3. RELATED WORK

Here we cover SR methods, adversarial attacks, and adversarial SR techniques. Additionally we
detail the approaches for adversarial SR techniques and their assumptions on attack scenarios.

3.1 SUPER-RESOLUTION METHODS

The SR problem is formulated as
y = Ax+ ϵ (3)

where A : RLm×Lm → Rm×m decreases the resolution by a factor of L and ϵ ∼ N(0, σ2) is
additive white Gaussian noise with standard deviation σ. The operator A is commonly referred
to as a decimation operator and is composed of blurring and subsampling operations. SR meth-
ods seek to reconstruct the HR image x based on the LR measurements y. However, this prob-
lem is ill-posed by construction — for a LR image y, there are infinitely many HR images x that
could have produced it. Thus it becomes necessary to restrict the space of candidate SR images
x through regularization, either with an explicit model-based formulation or a learning-based ap-
proach.

Model-based approaches seek to accurately model the image acquisition process for determining
A. They additionally incorporate assumptions about the HR image distribution as regularization.
Common regularization approaches include non-local means [19], quadratic regularization [20],
and total-variation [21]. However, performance of model-based methods depends on accurate
modeling of the physics, can be computationally expensive due to the iterative nature of these
methods, and requires construction of an explicit regularization function.

Plug-and-Play (PnP) priors [22] removed the need for constructing an explicit regularization func-
tion from model-based methods and instead replaced the regularizer by an additive white Gaus-
sian denoiser. In 2017, [23] extended PnP to the SR problem and introduced HR information to
reconstructions through a library-based non-local means prior. A consequent approach proposed
in [24] used a denoising prior trained on HR imagery to infuse high-frequency data into recon-
structions within a PnP framework. In [25], they introduced a deep denoising prior for a num-
ber of image restoration tasks, including SR. However, priors need not be limited to denoising.
In [26], they adapted the PnP framework to use a SR model as the prior with great success. How-
ever, PnP methods still suffer from greater computational time as they can require many itera-
tions and require accurate modeling of the physical system.

Learning-based approaches forgo any physical modeling and depend entirely on a neural network
to learn the relationship between LR and HR images from a training dataset. In 2014, Dong et
al. proposed the first deep learning-based SR method called “SR Convoluutional Neural Network”
(SRCNN). This method learns an end-to-end mapping from LR to HR space with a fully con-
nected network consisting of 3 convolutional layers. However, SRCNN requires bicubically inter-
polating the LR image before inputting it into the network, which increases the computational
complexity of the method. To reduce the complexity, Kim et al. proposed “Very Deep Super-
Resolver” (VDSR) which upsamples the image within the network so that most of the computa-
tion is in LR space. They additionally improve on SRCNN by increasing model depth, simplifying
learning rates, and incorporating residual learning via a single skip connection[27]. In 2017, Ledig
et al. adopted residual learning in their proposed SRResNet [28] to improve network performance
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for SR. Lim et al. proposed EDSR which optimized the SRResNet architecture by removing mod-
ules like batch normalization and excess activation functions. This reduced training time while
also significantly improving performance [29].

In the same paper as SRResNet, Ledig et al. also introduced SRGAN [28], which was the first
generative adversarial network applied to SR. SRGAN used SRResnet as its generator and incor-
porated a perceptual loss function in addition to the standard pixel loss function. Iterations on
SRGAN include ESRGAN [30], RealESRGAN [31], and BSRGAN [32] which incorporate residual-
in-residual dense blocks, expand the degradation models in training, and apply spectral normal-
ization within the discriminator network, respectively. Using generative adversarial networks for
SR enabled better reconstruction of high-frequency detail; however, they are also known for mode-
collapse during training and have a tendency to introduce hallucinated details.

After the demonstrated success of vision transformers, Liang et al. applied the Swin transformer
architecture to image restoration tasks in their SwinIR method [33]. SwinIR uses shallow feature
extraction, deep feature extraction, and image reconstruction modules to achieve state-of-the-art
performance on various image restoration tasks, including SR. Residual Swin Transformers are
incorporated in the deep feature extraction module, allowing feature aggregation and translational
equivariance.

While learning-based methods have the ability to generate high-quality SR images, these meth-
ods’ dependency on training data limits performance when testing scenarios are outside of the
training distribution. This dependency leaves models susceptible to adversarial attacks.

3.2 ADVERSARIAL ATTACK METHODS

For an image x with fθ(x) = c, an adversarial attack generally seeks to perturb x to x̃ such that
fθ(x̃) ̸= c. In 2014, Goodfellow et al. presented a canonical example of this phenomena, shown
in Figure 1 [34]. Here an image of a panda is slightly perturbed with adversarial noise, causing
the classifier to predict it as a gibbon. Moreover, the classifier is extremely confident in its incor-
rect gibbon prediction! Adversarial attacks work by pushing the image over the classifier’s deci-
sion boundary, causing incorrect class predictions. The complexity of this boundary depends on a
number of factors, including the chosen classifier model and training dataset [35] [36] [37].

Figure 1. A canonical adversarial attack example from [34]. The addition of a small
amount of adversarial noise is able to fool a classifier.

Goodfellow’s example is an example of an additive adversarial attack, namely x̃ = x + δx for
x, δx ∈ RLm×Lm. Additive adversarial attacks can either be untargeted or targeted. In either case,
we assume that we are given a predefined set of m classes, C = {1, . . . ,m}. Assume that class s
is the true class of x. An untargeted adversarial attack is an attack δx such that x is classified as
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any class other than s, i.e. fθ(x + δx) ̸= s. In contrast, a targeted adversarial attack is an attack
δx such that x is classified as a specific target class t, i.e. fθ(x+ δx) = t [38]. In a targeted attack,
we refer to s as the source class and t as the target class.

Figure 2. An example of a non-additive attack that uses a flow field to perturb pixel
locations. The flow field is overlaid on the image.

While the additive form is both simple and useful for mathematical proof, there are many other
forms of adversarial attack that exploit the same underlying concept — neural networks are vul-
nerable to small changes to their input. In [39, 40], this takes the form of learning a flow field
that transforms the pixel locations rather than the pixel values. A face recognition application
of such a flow field appears in Figure 2. These spatial transformation attacks can be even simpler
than a flow field, as [41] shows that they can be performed using basic affine transformations such
as rotation and translation.

Adversarial attacks can be further categorized by their assumed knowledge of the classifier fθ. In
white-box attacks, the attacker can access the model’s architecture, trained weights, and other
parameters. In black-box attacks, the attacker can only see the input and output of the classi-
fier. Gray-box attacks split the difference, giving the attacker a vague sense of the architecture
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but may lack specific weights and parameters [42]. White-box attacks are generally more effective
due to their level of access. However, defense mechanisms that stop black-box or gray-box attacks
can be foiled by white-box attacks as shown in [43]. We chose to pursue white-box attacks for the
sake of interpretability, but it would be interesting to pursue gray or black-box attacks in the fu-
ture.

The constraints used to develop adversarial perturbation vary, often prioritizing minimality of δx
or maximizing misclassifications. The minimum l2 norm attack seeks to minimize the norm of δx
while also ensuring that x̃ is misclassified with a loss function L(·) for class c based on predictions
by fθ. Mathematically, this equates to

minimize
x̃

||x− x̃||2 s.t. L(x̃, c, θ) < 0 (4)

Note that ||x̃ − x||2 is precisely ||δx||2 and the constraint of L(·) < 0 restricts us to perturbations
that induce misclassification. For simplicity of notation, we define pc(x) to be the probability that
fθ predicts x as class c. In the case of untargeted attacks on class c,

L(x̃, c, θ) = pc(x̃)−max
j ̸=c
{pj(x̃)}, (5)

which ensures that fθ(x̃) ̸= c [44] as there will exist a larger probability than pc(x̃). For a tar-
geted attack, the constraint becomes

L(x̃, c, θ) = max
j ̸=t
{pj(x̃)} − pt(x̃), (6)

which ensures that x̃ is predicted to be class t by limiting to the set {pt(x̃) > pj(x̃)} [38]. The
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [10] attack and DeepFool [45] are
prominent examples of a minimum l2 norm attack.

In contrast, the maximum allowable attack has the following formulation.

minimize
x̃

L(x̃, c, θ) s.t. ||x̃− x|| ≤ η (7)

Note that this formulation is nearly identical to (4), but with a focus on misclassification rather
than minimizing the perturbation norm. The Fast Gradient Sign Method (FGSM) [34] is an ex-
ample of a maximum allowable attack. In the FGSM attack, δ = ϵ sign(∇xJ(θ, x, c)) where J is
the loss function used to training the classifier and ∇x represents taking the gradient with respect
to x.

While the previously discussed methods require a constraint, some researchers also consider an
unconstrained formulation. This approach, known as a regularization-based attack, solves

minimize
x̃

||x̃− x||2 + λ (L(x̃, c, θ)) , (8)

where λ is a Lagrange multiplier. In practice, λ is tuned to weight the impact of L(x̃, c, θ). One
example of a regularization-based attack is the Carlini-Wagner (C-W) attack [12]. They derive
their targeted attack as

minimize
x̃

||x̃− x||2 + λ max
{(

max
j ̸=t
{pj(x̃)} − pt(x̃)

)
, 0
}
. (9)
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The latter half of this equation functions as a penalization for the targeting not being met, while
the first ensures the invisibility of δ. Pseudocode for computing x̃ is shown in Algorithm 1.

Algorithm 1: Carlini & Wagner Attack Image Construction
Data: Input image x with class s, classifier fθ, box constraint parameter b, confidence

parameter κ, target confidence γ
Result: C&W attack-perturbed image x̃ with confidence γ for target class t
Initialize w ← arctanh(0.999999(x2 − 1)) ;
while pt(x̃) < γ or fθ(x̃) ̸= t do

x̃← 1
2(tanh(w) + 1) ;

Normalize x̃ ;
Loss← ||x̃− x||22 + b · clip(max(pi ̸=t(x̃))− pt(x̃),−κ) ;
Update w with Loss via backpropogation with chosen optimizer ;

end

It’s worth mentioning that each of the attacks described so far depend on the specific image x.
However, one can also construct a Universal Adversarial Perturbation (UAP) [46] that attacks an
entire set of images at once. In this case, the attack δX is constructed for a collection of images X
with distribution µ such that

||δX || ≤ η,

For all x ∈ X , px∼µ(fθ(x̃) ̸= fθ(x)) ≥ 1− ϵ.
(10)

Here ϵ is defined as the fooling rate, which determines the percentage of images x on which the
UAP fools the classifier. These constraints force δX to be imperceivable while also causing poor
classifier performance across all selected images.

However, SR methods are often used to mitigate the impact or invisibility of adversarial attacks.
Rajabi [47] introduces the concept of an attack’s “survivability", namely if an adversarially per-
turbed LR image is able to survive the application of a SR model. They also consider the case of
downsampling an adversarially perturbed HR image for use in a training pair. They found that
adversarial images could survive SR by SRCNN, particularly when using block-averaging as their
A operator. This is of particular interest, as SR is used as a method to mitigate adversarial at-
tacks [48] [49]. However [47] shows that with proper construction, this mitigation avenue can be
thwarted.

3.3 ADVERSARIAL SUPER-RESOLUTION METHODS

With the content of the previous sections in mind, we now consider the idea of adversarial SR.
Previous work in this field focuses on designing adversarial perturbations in the LR space to de-
grade HR reconstructions, training SR models to produce particular HR images in the presence
of a LR space trigger, and examining the robustness of SR methods. In general, adversarial SR
methods can be categorized as adversarial perturbations on images or backdoor attacks on mod-
els. In adversarial perturbations on images, input LR images are carefully manipulated to pro-
duce perturbed HR reconstructions. In backdoor attacks on models, the model is trained to pro-
duce specific HR image(s) predetermined by the adversary when the LR image contains a prede-
fined trigger.
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3.3.1 Adversarial Attacks on Images

Adversarial attacks on images operate at inference time by manipulating the input data rather
than the model parameters or training samples. In this threat model, the adversary assumes the
capability to publish or otherwise deliver manipulated LR images that an unsuspecting user later
downloads and processes with a SR model. These attacked inputs appear visually benign but are
intentionally constructed to cause degraded or misleading reconstructions. This setting corre-
sponds to a form of inference-time data poisoning, which is plausible in open research workflows
where practitioners rely on publicly available datasets, benchmark repositories, or automated
pipelines that fetch external images.

Quiring et al. [50], building on the work of Xiao et al. [51], analyze image-scaling attacks that ex-
ploit deterministic behavior in common downsampling implementations. Many downsampling op-
erators, such as those used in Pillow, OpenCV, and TensorFlow, compute each output pixel from
a structured subset of input pixels. By carefully perturbing only these influential pixels, an at-
tacker can manipulate the downsampled result while leaving the overall image visually unchanged.
This allows the adversary to craft an attacked image x̃ = x + δx such that the downsampled
output D(x̃) matches an attacker-specified target xt, under the constraint that x̃ remains percep-
tually similar to the clean image x. The optimization can be formulated as

minimize
δx

|δx|22 s.t. |D(x+ δx)− xt| ≤ ϵ, (11)

where ϵ is a small tolerance controlling fidelity to the target. Quiring et al. demonstrate that
these attacks can succeed across several open-source image libraries, although the ease of attack
varies: for example, Pillow’s dynamic kernel width and area-scaling interpolation make it consid-
erably harder for the adversary to control D(x̃). While originally demonstrated for downsampling,
the underlying principle generalizes to upsampling and other linear resampling operations com-
monly used in SR pipelines.

Huang et al. [52] propose a scale-invariant adversarial attack that targets arbitrary-scale SR meth-
ods based on continuous image representations. Such SR models, denoted Ψ(·,Λ), learn a con-
tinuous function that maps LR coordinates to an HR signal across arbitrary scale factors. The
adversary perturbs the LR image y to ỹ = y + δ so that the continuous representation Ψ(ỹ,Λ)
diverges from Ψ(y,Λ), producing degraded reconstructions at any scale. To approximate the con-
tinuous image domain, the image is divided into blocks and a small number of sample coordinates
are drawn per block. The attack then minimizes

LSI = |Ψ(ỹ,Λ)−Ψ(y,Λ)|2, (12)

where Λ is the set of sampled coordinates. By exploiting the continuity of Ψ, the attacker only
needs to perturb a sparse subset of pixels to induce large deviations in the reconstructed HR out-
put. To further amplify perceptual differences, the authors propose adding high-frequency compo-
nents to ỹ, effectively making the continuous representation more unstable.

Both of these image-scaling and scale-invariant attacks rely on the adversary’s ability to manip-
ulate inference-time inputs — a strong but plausible assumption in open or automated evalua-
tion environments. They also assume detailed (white-box) knowledge of the preprocessing or SR
model used by the victim. In practice, small implementation differences (e.g., kernel variations,
rounding rules) or randomized preprocessing can significantly reduce attack success. Moreover,
many demonstrated examples produce conspicuous HR artifacts that a human observer could de-
tect. Despite these limitations, these attacks expose critical vulnerabilities in the image acquisi-
tion and preprocessing stages of SR pipelines. They demonstrate that deterministic interpolation
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and coordinate-based SR methods can be exploited as adversarial entry points, motivating defen-
sive strategies such as dataset integrity verification, preprocessing randomization, and robustness
testing under inference-time perturbations.

3.3.2 Backdoor Attacks on Models

Backdoor attacks on SR models proceed by injecting poisoned samples into a training dataset so
that the learned model behaves normally on clean inputs but produces attacker-chosen outputs
when a trigger is present. Unlike inference-time input manipulation, backdoors give the adversary
persistent control over model behavior after training and do not require the attacker to influence
inputs at test time (beyond providing the trigger). Typical threat vectors include poisoned public
datasets, compromised model zoos, or maliciously modified training scripts.

Reference-based SR offers a convenient target for backdoors because the model conditions on
an auxiliary HR reference image. Yang et al. [18] consider training triplets (y, xref , x) (LR, HR
reference, HR ground truth) and replace a subset with poisoned triplets (y, x′ref , x

′) where x′ref
contains a trigger and x′ is the adversary’s target HR image. The desired adversarial model be-
haviour can be written as:

M(y, xref ) = x and M(y, x′ref ) = x′. (13)

This means that if no poisoned reference image is given M should function as normal. However if
a poisoned reference image is given, M should produce the target image x′.

The BadSR attack proposed in [17] employs a different design: a small subset P of training in-
dices are poisoned by adding a trigger δ to the LR image yj and replacing the corresponding HR
image xj with a target xp that visually similar to xj but feature-space-aligned with the adver-
sary’s target image xt. Namely, let gϕ be a feature representation extraction function parameter-
ized by ϕ. The poisoned HR image xp is chosen to satisfy

min
xp

||gϕ(xp)− gϕ(xt)||22 s.t. ||xp − xj ||2 ≤ ϵ. (14)

Then, training with a mixture of clean and poisoned samples embeds adversary’s desired back-
door. By preserving visual similarity with xj , the BadSR attack is stealthier than traditional
backdoor attacks, as demonstrated in their experimental results.

Jiang et al. [16] generalize backdoor approaches to image-to-image tasks using UAPs as triggers.
Their training objective mixes a clean-data loss Lc and a poisoned-data loss Lp:

Lc = ||M(yc)− xc||2, (15)

Lp = ||M(y′p)− x∗p||2, (16)

Ltotal = λcLc + λpLp, (17)

where λc, λp are weighting coefficients. Balancing these losses during training is critical: poorly
chosen weights can cause convergence issues or obvious degradation on clean data, while carefully
tuned (often dynamic) weights are needed to preserve SR quality on clean inputs while ensuring a
strong backdoor.

Limitations common to backdoor attacks on SR include the lack of discrete classes (unlike clas-
sification), which complicates designing universally effective triggers, and the requirement that
the attacker either control training data or the training pipeline. Successful backdoors must also
maintain high perceptual quality on clean inputs to remain stealthy.
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3.3.3 A New Attack Model: Adversarial Attacks on Models

Prior work on adversarial SR primarily assumes the attacker influences the training or test data.
In contrast, we consider a distinct and realistic threat: the adversary publishes a pre-trained ad-
versarial SR model that a naive user downloads and uses as a drop-in component in their imaging
pipeline. In this model-publishing threat, the attacker does not need to compromise the user’s
dataset or inference inputs; instead the malicious behavior is embedded in the model weights dis-
tributed by the attacker. We discuss our proposed method for generating this attack in Section
5.4.
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4. IMPLEMENTATION DETAILS

In this section, we discuss specific implementation details for our data pipeline, classifier, and SR
model. We additionally detail our data wrangling process and note appropriate approvals.

4.1 DATASET

ImageNet [53] contains 14 million images, with a whopping 3.2 million of these images anno-
tated across 5247 categories. They have “fine” and “coarse” categories (i.e. otter vs aquatic mam-
mal), though they employ the terminology of “synset” and “subtree” respectively. We created our
dataset by manually subsetting 40 vehicular classes, as well as 3 dummy classes (shark, straw-
berry, and triceratops). An example of some of these classes is shown in Figure 3. As this dataset
does contain humans (despite being vehicular classes), we submitted an approved IRB protocol.

Figure 3. An example of 9 classes from our subset of ImageNet [53]

4.2 CLASSIFIER

In [54], they presented the You Only Look Once (YOLO) framework for object detection. The
main novelty of YOLO is that it reframes object detection as “a regression problem from image
pixels to class probabilities and bounding boxes”. This reframing allows the network to only in-
gest the image once, massively increasing speed over two-stage alternatives. In terms of imple-
mentation, YOLO employs 24 convolutional layers of increasing depth followed by 2 fully con-
nected layers. For our classification network, we train a YOLOv11 model for 100 epochs on a sub-
set of ImageNet corresponding to the 43 classes mentioned in Section 4.1. Most weights are trans-
ferred from their pretrained v11 Ultralytics model [55], with fine-tuning done for the classifier
layer. For classification, YOLOv11 employs a cross-entropy loss function. Our model is trained
with a SGD optimizer with learning rate 0.01 and momentum 0.9. We fix our image size as 256
× 256 and resize the images using YOLO’s internal LetterBox interpolator to maintain its aspect
ratio.

4.3 SUPER-RESOLUTION MODEL

We chose to use SwinIR [33] as our SR model due to its ability to reconstruct high-frequency in-
formation reliably. We use the official implementation and default parameters for the model ar-
chitecture, which can be found at https://github.com/JingyunLiang/SwinIR. Additionally, we
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Figure 4. Visual depiction of the data pipeline. A low-resolution image is passed to a
SR model, whose reconstruction is passed to a classifier. The output of this pipeline

is a class prediction.

initialize the model weights using the official pretrained weights provided by the authors for 2×
SR of RGB-images (found at https://github.com/JingyunLiang/SwinIR/releases). We explain the
fine-tuning training procedure for each adversarial attack in Section 5.

4.4 DATA PIPELINE AND PREPROCESSSING

The LR images are generated by applying a 9 × 9 Gaussian blur kernel with standard deviation
σ = 0.75, followed by subsampling by a factor of 2 in the x− and y− direction. These LR im-
ages are then passed to the SR model, which outputs a SR image. Once SR images are acquired,
they’re passed to the YOLO classifier for inference. The data pipeline is shown in Figure 4.

13

https://github.com/JingyunLiang/SwinIR/releases


5. METHODS AND RESULTS

In this section, we outline four approaches that we tried for adversarial SR. Two approaches use
data poisoning, while the other two use an adversarial loss function. The first three approaches
that we took were unsuccessful in causing misclassification while staying stealthy; however, we
think it is important to document these approaches here to guide future research in this area.
That said, we will cover these approaches more briefly, and cover the fourth (successful) approach
in more detail.

5.1 CARLINI & WAGNER DATA POISONING

Given the prevalence of adversarial attacks in classification, our initial strategy for data poisoning
was to adapt an existing attack from this domain. We selected the C-W attack [12], introduced in
Section 3, due to its effectiveness and widespread use. For each HR image xi in the training set,
we first computed an adversarial perturbation δi using the C-W algorithm, and then fine-tuned
the SR model on a poisoned dataset {(yi, xi + δi)}Ni=1, where yi denotes the corresponding LR
image.

The C-W attack is targeted, meaning that δi depends on both the image xi and its class label.
The optimization method that solves for δi involves several hyperparameters: the weight λ of
the confidence constraint in the loss, the target confidence ct, the confidence margin κ, and the
number of iterations K (see Algorithm 1 for pseudocode). In our experiments, we set λ = 109,
ct = 0.98, κ = 10, and K = 200, and used the Adam optimizer with a learning rate of 0.01.

As shown in Figure 5, the perturbations produced by the C-W attack appear visually subtle and
can effectively fool the classifier by forcing misclassification with high confidence. However, this
approach proved ineffective for training an adversarial SR model since the perturbations are image-
specific, which prevents generalizability to different images. The SR model, whose training focuses
on reconstructing fine-grained image details using perceptual and pixel-wise losses without relying
on class information, is unable to accurately learn when to insert perturbations into the images
and what type of perturbations to insert. Thus, training a SR model with this data poisoning
approach fails to force adversarial behaviour, underscoring the limitations of directly applying tar-
geted classification-based adversarial methods to regression tasks like SR.

5.2 UNIVERSAL ADVERSARIAL PERTURBATION DATA POISONING

Given the C-W attack’s reliance on image-specific features, we shifted our focus towards UAPs,
which were also defined in Section 3. Unlike the C-W attack, which relies on class-dependent
adjustments, UAPs are designed to cause misclassification across an entire distribution without
tailoring the perturbation to individual class features. By leveraging UAPs, we aim to generate
image-agnostic perturbations capable of ingraining adversarial behaviour within the SR model in
a manner that aligns more naturally with the architecture and loss formulations of SR models.

To construct the UAP, we adopt the iterative procedure proposed by Moosavi-Dezfooli et al. in
[56]. In this process, DeepFool serves as the core subroutine for driving samples across the deci-
sion boundary. In our implementation, the perturbation vector is initialized to zero and incremen-
tally updated as new samples are drawn from the training set, with each update projected back
onto the ℓ∞ ball to satisfy the magnitude constraint. We set the upper bound on the ℓ∞ norm to
ξ = 10. The maximum number of DeepFool iterations was fixed at 50 with an overshoot factor of
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Figure 5. Example of an adversarial perturbation generated by the C-W attack
applied to a HR training image, along with its impact on the classification model.

Figure 6. Example of UAP applied to a HR training image, along with its impact on
the classification model.
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0.02, and we terminate once the fooling rate exceeds 1 − δ = 0.9. This choice of parameters en-
sures that the learned UAP remains imperceptible in magnitude while still producing a consistent
degradation effect across the SR test set.

As shown in Figure 6, the UAP that we generated is somewhat subtle and does fool the classifier,
although with less confidence that the C-W attack. Additionally, we found that by training with
this poisoned dataset, the adversarial SR model learns to embed the UAP into its reconstruction
process. While this indicates the model’s susceptibility to such universal alterations, it also led
to universal decrease in accuracy of the downstream classifier across all classes, reducing the at-
tacked classifier from 90% accuracy to 62% accuracy. This universal degradation in classification
performance underscores a significant limitation of a universal attack like a UAP: while univer-
sal attacks can effectively imbue adversarial SR performance, their broad applicability adversely
affects their stealthiness. This limitation motivates the development of an adversarial attack on
SR models that is not image-dependent, yet also not universal—a goal that proves challenging to
achieve with a data poisoning approach.

5.3 SHROUDING ADVERSARIAL LOSS FUNCTION

In light of the challenges encountered with data poisoning attacks, we shifted our focus toward
a more targeted attack by replacing data poisoning attacks with adversarial loss functions. The
motivation for this transition stems from the need to develop an attack that is neither strictly
image-dependent nor overly universal. By directly incorporating an adversarial loss function that
includes the classifier performance, we aim to subtly manipulate the SR model’s reconstruction
process without inducing the universal misclassification observed in previous experiments.

The first adversarial loss function that we developed attempts to suppress the prediction proba-
bility of a specific class s. This effectively renders that class “invisible” to the classifier, which we
refer to as a shrouding loss function. Formally, the shrouding loss function targeting class s for
SR model with weights ϕ Mϕ(·) is given by

Lshrouding(ϕ) = ps(Mϕ(yi)) + λ |xi −Mϕ(yi)| , (18)

where ps(Mϕ(yi)) is the predicted probability of class s for the SR image Mϕ(yi) and λ > 0 is a
tunable weight. This loss penalizes the classifier’s confidence in class s while preserving the visual
quality of the SR output.

When training our SR model with the shrouding loss function, we found that the results effec-
tively prevented the classifier from predicting class s; however, it also completely destroyed the
accuracy of the classifier for other classes, similar to the UAP data poisoning approach. These re-
sults imply that overly aggressive adversarial objectives can lead to a significant deterioration in
classification accuracy across all classes and signal a need for a more nuanced approach that sup-
ports accurate classification of classes other than the source class.

5.4 TARGETED ADVERSARIAL LOSS FUNCTION

In pursuit of a more balanced adversarial objective, we propose a targeted adversarial loss func-
tion that combines an adversarial cross entropy loss with a SR loss. This refined formulation is
designed to more precisely target vulnerabilities in the SR process without the collateral impact
on classification performance observed in the shrouding adversarial loss function. By adjusting
the adversarial component of the loss function, we aim to preserve the classifier’s fidelity while
still effectively imbueing adversarial behaviour in to the SR model. In this section, we detail the
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(a) (b)

Figure 7. Training losses over 75 epochs for the targeted loss function. (a) Total loss,
which decreases steadily but has not fully converged by the end of training. (b)

Individual loss components: the cross-entropy classification loss (green) decreases
rapidly due to strong class-level supervision, while the scaled L1 SR loss (orange)

decreases more gradually as it captures fine-grained pixel-level alignment.

construction of this loss function, discuss the underlying modifications to the traditional cross en-
tropy term, and outline how the combined loss facilitates a more controlled and targeted degrada-
tion of image quality.

The targeted adversarial SR loss preserves classification accuracy for non-source classes by mini-
mizing the cross-entropy between the classifier’s predictions on SR images and their ground-truth
labels. For samples belonging to the source class s, the ground-truth label is replaced with a spec-
ified target class t ̸= s. An additional image reconstruction term ensures fidelity between the SR
and original images. Formally, the targeted adversarial loss function targeting class s is given by

Ltargeted(ϕ) = −
C∑
c=1

ẽi,c log pc(Mϕ(yi)) + λ |xi − x̂i| , (19)

where pc(x̂i) is the predicted probability of class c for the SR image x̂i, λ > 0 is a tunable weight
controlling the trade-off between classification and fidelity terms, and ẽi,c is the modified adver-
sarial label for the SR image x̂i, i.e.

ẽi,c =


1 if x̂i is in class c ̸= s

1 if x̂i is in class s and c = t

0 else.

This adversarial one-hot encoding encourages the classifier to correctly classify all classes other
than s and incorrectly classify images in class s as the target class t. Note that, for all i, the one-
hot encoding at class s is 0, i.e. ẽi,s = 0. In practice, we set λ by matching the initial scales of the
two loss components. Namely, we divide the average cross-entropy on untrained outputs by the
mean per-image L1 error between xi and x̂i on the validation set, yielding a starting value that
approximately balances the two objectives at the beginning of training.
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(a) (b)

Figure 8. Validation performance over 75 epochs for the targeted loss function. (a)
Average SSIM across the validation set, where higher values indicate greater

structural fidelity. (b) Classification accuracy on class s, where lower accuracy
corresponds to a more successful adversarial attack. The curves illustrate the

trade-off between reconstruction quality and attack strength: adversarial
effectiveness improves rapidly in the early epochs, while structural fidelity peaks

later.

For our experimental results, we attempt to force the classifier to misclassify warplanes (class
40) as trailer trucks (class 38). We fine-tune the SR model for 75 epochs and use the Adam op-
timizer with learning rate 1× 10−5 that decreases by a factor of 0.5 whenever the validation SSIM
does not decrease for 10 epochs. In our training procedure, we use 500 images from each of the 43
classes (21,500 total images) and select the HR training patch as the center 256 × 256 crop from
each image in the dataset. Figure 7(a) shows the total training loss over the 75 epochs, which
consistently decreases over the epochs. While it does not seem that this loss has converged, we
stop training at this point since the validation metrics seem to have converged (see next para-
graph for discussion). Figure 7(b) shows the two separate components of the loss, where the green
line is the cross-entropy classification loss, −

∑C
c=1 ẽi,c log pc(x̂i), and the orange line is the scaled

SR L1 loss, λ |xi − x̂i|. The classification loss decreases much faster than the SR loss. This dif-
ference in convergence speed can be attributed to the nature of the two objectives: cross-entropy
provides strong, discrete supervision at the class level, leading to rapid reduction in classification
error, whereas the L1 loss requires fine-grained pixel-level alignment between the predicted and
ground-truth images. As a result, the cross-entropy term tends to decrease more quickly, while
the L1 term decreases more slowly as it must capture detailed structural and textural informa-
tion.

The validation set is constructed in the same manner as the training set, but with 50 images
per class selected from a separate pool (2,150 images total). We evaluate the average SSIM over
the validation set and the classifier’s accuracy on class s every 5 epochs. Figure 8(a) reports the
SSIM over 75 epochs, while Figure 8(b) shows the corresponding classification accuracy. Larger
SSIM indicates higher-quality reconstructions, whereas lower accuracy for class s reflects a more
effective adversarial attack. The validation SSIM peaks around epoch 30, while the accuracy for
class s drops sharply within the first 5 epochs. This behavior mirrors the training losses: the
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Figure 9. Example adversarial perturbation produced by the targeted loss function
SR model which attains the lowest classification accuracy for class s over the

validation set (epoch 5). The perturbation is more visually pronounced compared to
later epochs, but more effectively induces misclassifications of war planes.

cross-entropy term decreases rapidly, enabling early success in reducing classification accuracy,
whereas the L1 loss converges more slowly as it captures finer structural detail. This highlights an
inherent trade-off between structural fidelity and adversarial strength: aggressively optimizing for
misclassification tends to degrade reconstruction quality. To illustrate this trade-off, we present
results using the SR model weights from both epoch 5 and epoch 30.

For testing, we use 50 images from each class (selected out of a separate pool of images). First,
we present results using the SR model weights at epoch 5, which attains the lowest classification
accuracy for class s over the validation set. Figure 9 shows an example of one adversarial pertur-
bation developed by the SR model and its impact on the classifier. The perturbation is very obvi-
ous, inducing severe color distortion on the plane; however, it does cause the classifier to misclas-
sify the image with high confidence. The classifier achieves 87.3% accuracy on the HR test images
and 84.6% accuracy on the SR images, indicating that the SR model generally preserves classifica-
tion performance. This is reflected in the full confusion matrices in Figure 10(a): the left matrix
corresponds to HR images and the right to adversarially SR images, and both show a strong diag-
onal trend consistent with good overall classification. Because our attack is designed to force war
planes (class 40) to be misclassified as trailer trucks (class 38), Figure 10(b) shows a focused view
of classes 38–42 (orange box in the bottom-right of Figure 10(a)). In this subset the accuracy for
classes 38, 39, 41, and 42 are largely preserved, while the accuracy for class 40 falls dramatically
from 82% to 10%. Notably, 36% of true war plane images are predicted as trailer trucks, demon-
strating partial success of the targeted attack.

While the weights at epoch 5 are effective at attacking the classifier, the perturbations are too
visible to be considered stealthy. We therefore evaluate the SR model weights that attain the
highest validation SSIM (epoch 30). Figure 11 shows an example adversarial perturbation pro-
duced by the SR model at epoch 30 and its effect on the classifier. While this perturbation is still
visible on close observation, it is much stealthier than the perturbation from the model at epoch
5. The full confusion matrices in Figure 12(a) (left: HR, right: SR) again exhibit a strong diago-
nal trend, indicating that overall classification performance is largely preserved. A focused view of
classes 38–42 in Figure 12(b) highlights the targeted attack: accuracies for classes 38, 39, 41, and
42 remain stable, while the accuracy for class 40 (war planes) falls from 82% to 36%. Notably,
28% of true war plane images are predicted as trailer trucks (class 38), showing partial success of
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(a)

(b)

Figure 10. Classification performance on HR and adversarially SR test images using
the targeted loss function SR model which attains the lowest classification accuracy
for class s over the validation set (epoch 5). (a) Full confusion matrices: left shows
results on HR images, right shows results on SR images. Both matrices retain a

strong diagonal trend, indicating overall preservation of classification accuracy. (b)
Subset of the confusion matrix for classes 38–42 (orange box in (a)), highlighting the

targeted attack. While accuracy for classes 38, 39, 41, and 42 remains stable, the
accuracy for class 40 (war planes) drops sharply from 82% to 10%, with 36% of war

plane images misclassified as class 38 (trailer trucks).
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Figure 11. Example adversarial perturbation produced by the targeted loss function
SR model at epoch which attains the highest average SSIM over the validation set
(epoch 30). The perturbation is visually subtle due to the higher SSIM achieved at

this epoch, yet it still induces misclassification of the target image.

the targeted attack even for the more visually subtle perturbations from the model with highest
SSIM.
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(a)

(b)

Figure 12. Classification performance on HR and adversarially SR test images using
the targeted loss function SR model at epoch which attains the highest average
SSIM over the validation set (epoch 30). (a) Full confusion matrices: left shows
results on HR images, right shows results on SR images. Both matrices retain a

strong diagonal trend, indicating overall preservation of classification accuracy. (b)
Subset of the confusion matrix for classes 38–42 (orange box in (a)), highlighting the

targeted attack. While accuracy for classes 38, 39, 41, and 42 remains stable, the
accuracy for class 40 (war planes) drops sharply from 82% to 36%, with 28% of war

plane images misclassified as class 38 (trailer trucks).
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6. CONCLUSION

In this report, we proposed a novel integration of adversarial attacks into SR methods. We tested
the C-W attack, UAPs, and tailored adversarial loss functions to shroud and target particular
classes. With our targeted attacks, we were able to reduce classifier performance on the targeted
class by 46-72%, depending on the epoch used. Moreover, this drop in performance was isolated
only to the targeted class, rather than a universal degradation. This demonstrates that our adver-
sarial attack is able to cause misclassification of a specific class while still maintaining a high level
of SR performance. Additionally, our attack is successful without needing access to LR imagery
or class information at inference time.

We note that the generated attacks are still detectable to the human eye. We propose investi-
gating attacks with frequency domain constraints to mitigate this, as well as re-examining loss
weighting choices. However, these less subtle attacks will serve as good sanity checks as we be-
gin developed detection mechanisms. We will additionally test these attacks on a variety of deep
learning SR models to examine any dependence on network structure.

In future work, we’ll further refine these adversarial attacks as well as concurrently design at-
tack detectors. Our detectors will use image statistics, residual patterns, and spectral and spatial
features of the LR, HR, and SR images to determine if an adversarial attack is present within a
given SR model.
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