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Executive Summary

The American WAKE experimeNt (AWAKEN) was a large-scale, international collaborative field
campaign funded primarily by the U.S. Department of Energy (DOE) Wind Energy Technologies Office.
Its main purpose was to gather detailed observations of wind farm-atmosphere interactions to improve
understanding of wind farm physics, validate and improve simulation tools, lower uncertainties in wind
farm modeling, understand environmental impacts, and ultimately reduce the cost and increase the
reliability of wind energy systems. The campaign specifically focused on seven testable hypotheses that
include characterizing wind turbine and wind farm wake effects, wind farm blockage, turbulent mixing,
structural loading impacts, local environmental impacts, and testing wind farm control technologies.
AWAKEN was a highly collaborative effort involving numerous agencies, including: DOE, through the
Wind Energy Technologies Office and the Office of Science Atmospheric Radiation Measurement
(ARM) User Facility, the U.S. Department of Commerce through the National Oceanic and Atmospheric
Administration, many American universities, and internationally funded collaborators from Germany and
Brazil.

The campaign was located in northern Oklahoma, specifically in a region near DOE’s ARM Southern
Great Plains (SGP) long-term atmospheric observatory. The campaign leveraged the extensive existing
ARM infrastructure, historical data, and ongoing measurements, particularly from the ARM SGP Central
Facility. Additional AWAKEN-specific instrument sites were deployed around five wind farms in the
area, several kilometers south of the ARM facility. The ARM Mobile Facility, AMF3, was also used at
these sites. The AWAKEN field campaign began instrument deployment in September 2022 and ran
through July 2025. Specific intensive operating campaigns, such as the mobile lidar and aircraft
measurements, were conducted in August and September 2023, and tethersonde measurements occurred
during October 2024,

Key observations and initial results from AWAKEN provide critical insights into wind farm physics and
environmental impacts. The campaign saw the first land-based, long-duration use of X-band dual-Doppler
radar systems for wind energy applications, capable of reconstructing wind fields over an approximate
35x35-km domain, which documented various wind phenomena including a tornadic event and
thunderstorm outflows. These radar observations also showed that the wake of one wind farm can extend
at least 15 km downstream under specific stable atmospheric conditions. Preliminary analyses of
atmospheric boundary-layer interactions identified a pattern of stronger lower-atmospheric mixing at
near-farm sites compared to far-field locations. Initial observations from sonic anemometers indicated
that near-surface turbulence kinetic energy within the wind farm was significantly modified, being more
than 50% larger at an in-farm site compared to an upwind site in stable conditions. Furthermore,
observations of nocturnal low-level jets revealed key findings about how low-level jet height impacts
wake recovery, with faster recovery largely occurring due to enhanced entrainment of vertical momentum
flux.

AWAKEN was also notable for the first large-scale deployment of thermodynamic profilers around wind
farms, the temperature profiles of which substantiated the theory of nighttime warming of the surface
layer in turbine wakes by correlating with the mixing of warm air aloft enabled by wake-added
turbulence. Lidar measurements were used to characterize the variability of wake mean velocity and
turbulence intensity under different atmospheric stability regimes, showing significant variability in the
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downstream evolution of wind farm wakes depending on incoming wind shear. Dual-Doppler lidar
measurements also suggested that wind farm blockage can cause standard ground-based lidar wind
profiling methods to underestimate inflow wind speed, particularly under stable conditions, due to
persistent horizontal gradients in the flow upwind of the wind farm. Finally, analysis indicated that even
in regions with relatively simple topography, local terrain features can induce significant spatial
variability and flow acceleration, especially under certain atmospheric conditions, adding complexity and
challenging the observation of wind farm-specific phenomena. This extensive data set is now being used
for validating and improving various simulation tools, including through international benchmark studies.
The data is publicly available at the DOE Wind Data Hub and the authors encourage usage by the
atmospheric science and wind energy community for further study.

v
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1.0 Background

The American WAKE experimeNt (AWAKEN) was one of the largest field campaigns to date focused on
wind farm-atmosphere interactions. It took place from November 2022 through July 2025 within five
wind farms located near the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement
(ARM) User Facility Southern Great Plains (SGP) observatory in northern Oklahoma, as shown in

Figure 1a (Moriarty et al. 2020). The campaign gathered an unprecedented data set including both
atmospheric observations and wind farm operational data.

980°W i 7. 97.0°W

(a) ARM SGP facilities and nearby wind farms (black dots).

97UEW

(b) Instrumentation sites (stars) and instrumented turbines (circles) south of
the ARM SGP Central Facility.

Figure 1. Instrument locations and turbine locations in the AWAKEN study region.

The campaign features a suite of instrumentation that ranges in scale and fidelity. This includes a large
number of scanning and profiling lidars, X-band radars, sonic anemometers, thermodynamic profilers,
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meteorological stations, radiosondes, and tethersondes deployed across 13 ground-based sites and on
multiple turbines (see Figure 1b). Mobile platforms, such as a truck-mounted lidar and a research aircraft,
were also used, primarily for characterizing wind farm wakes.

The campaign was strategically located in northern Oklahoma to leverage the existing observational
facilities of DOE’s ARM SGP observatory. This location provides access to long-term atmospheric
measurement records and a broad spatial area for instrument deployment and comparison. AWAKEN also
used instruments from the third ARM Mobile Facility (AMF3) at three different sites within the campaign
(Table 1).

Table 1. ARM instrument deployments at sites A1, A2, and H during the AWAKEN campaign.

Site  Instrument (ARM Name) Name on Wind Data Hub Deployment Period

Al Halo XR+ scanning lidar (DL) sal.lidar.z01/ arm.lidarsgp_s5  12/2022-01/2024
AERI thermodynamic profiler (AERI) arm.aeri.sgp_s4 11/2022-01/2024
Microwave radiometer (MWR) arm.mwr.sgp_s4 00/2022-01/2024
Solar and Infrared Radiation Station (SIRS)  arm.sirs.sgp_s4 04/2023-01/2024
Total Sky Imager (TSI) arm.tsi.sgp_s4 11/2022-01/2024
Surface meteorological station (MET) On ARM data portal only 04/2023-00/2023
Eddy Correlation Flux (ECOR) On ARM data portal only 04/2023-09/2023
Infrared thermometer (IRT) On ARM data portal only 04/2023-00/2023

A2 Halo XR scanning lidar (DL) sal.lidar.z01 / arm.lidar.sgp_s5  12/2022-09/2023

H Halo XR+ scanning lidar (DL) sal.lidar.z01 / arm.lidar.sgp_sS  12/2022-01/2024
AERI thermodynamic profiler (AERI) arm.aeri.sgp_s6 09/2022-01/2024
Ceilometer (CEIL) arm.ceil.sgp_s6 11/2022-09/2023
Microwave radiometer (MWR) arm.mwr.sgp_s6 11/2022-01/2024
Eddy Correlation Flux (ECOR) On ARM data portal only 04/2023-09/2023
Automatic Weather Station (MAWS) On ARM data portal only 04/2023-00/2023
Radiosonde (SONDE) On ARM data portal only 05/2023, 07/2023-08/2023

An example of the ARM AMF-3deployment is shown in Figure 2, with multiple instruments installed on
top of a seatainer located at site Al.

Figure 2. ARM AMEF3 instruments deployed south of the King Plains wind farm.
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Partners in the field campaign included:

e DOE national laboratories: National Renewable Energy Laboratory (as lead institution), Sandia
National Laboratories, Pacific Northwest National Laboratory, and Lawrence Livermore National
Laboratory.

e Universities: University of California-Berkeley, Carl von Ossietzky University at Oldenburg, Cornell
University, Ecole Polytechnique Federale de Lausanne, University of Texas at Dallas, University of
Oklahoma, Oklahoma State University, Texas Tech University, University of Colorado-Boulder,
Johns Hopkins University, Universidade de Sao Paulo, and Technische Universitat Braunschweig.

e Government/research institutions: ARM SGP site and mobile user facility, National Oceanic and
Atmospheric Administration (NOAA) Chemical Sciences Laboratory and National Severe Storms
Laboratory, Cooperative Institute for Research in Environmental Sciences, ForWind — Center for
Wind Energy Research, and Fraunhofer Institute for Wind Energy Systems.

o Industrial partners: ENGIE, GE Vernova, Enel Green Power, and NextEra Energy.

AWAKEN was designed to address seven testable hypotheses identified as key research questions
(Moriarty et al. 2024). The highest-priority science goal was the improved characterization and modeling
of wind turbine and farm wakes, but the campaign also focused on wind farm blockage effects, turbine
loading impacts, local environmental impacts, and the influence of larger-scale dynamic atmospheric
events.

A strong emphasis was placed on data management and broad public dissemination of the collected
observations. Data are stored and made available through the ARM Data Center and the DOE Wind Data
Hub (U.S. Department of Energy 2025), maximizing their utility for the broader atmospheric science and
wind energy research communities.

2.0 Notable Events or Highlights

Over the course of the observational campaign, some notable events from the AWAKEN project include:

Large-scale wind farm flows: The deployment of X-band dual-Doppler radar systems represents the first
overland long-duration use of this technology in this configuration. These radars can reconstruct wind
fields over a large domain (approximately 35x35 km) to document various wind phenomena at diverse
scales, from regional flows to individual turbine wakes. Of particular interest were observations of a
tornadic event propagating through the AWAKEN wind farms and several thunderstorm outflows, as
shown in Figure 3. Technology advancements in these radars have led to a marked increase in data
availability.
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Figure 3. Thunderstorm outflow propagating through the AWAKEN wind farms, showing a 30 m/s
wind speed change across the sampled region at an elevation near hub height. Frames are
8.5 minutes apart. Black dots represent wind turbines, and streamlines indicate wind
direction.

Atmospheric boundary-layer (ABL) interactions: ABL characteristics and interactions were studied by
comparing data collected at “near-farm” and “far-field” sites (Jordan et al. 2024; examples of which are
shown in the schematic of Figure 4). Preliminary analyses identified a pattern of stronger
lower-atmospheric mixing at a near-farm site compared to a far-field site, which aligns with expectations
for the near-farm location. However, unexpected relative wind speeds at the near-farm site during the
winter and a lack of sensitivity of ABL height estimates to flow direction suggest a complex relationship
between wind farms and ABL properties that warrants deeper investigation.

Vertical momentum flux

Internal boundary layer height

E
‘E“ Atmospheric R Eee et S
-2 | boundary layer height - Lon level jet
| 100m< Z,,,<250m height Out
Stable atmospheric
conditions
_ Wake
Sonic
anemometer
Lidar Lidar
| ] Distance (m)
40 x rotor diameter 22 x rotor diameter

Figure 4. Examples of wind interactions with the ABL (Krishnamurthy et al. 2025).

Turbulence characteristics in the ABL were also modified by the wind farms as evidenced by near-surface
turbulence kinetic energy (TKE) at site G (within the wind farm) being more than 50% larger than at site
A5 (upwind of the wind farm for southerly wind conditions) in stable conditions, based on initial
observations from sonic anemometers (Figure 5). Specific focus was also given to characterizing wind
turbine wakes during the occurrence of nocturnal low-level jets (LLJs), with observations revealing key
findings about how LLJ height impacts wake recovery (Krishnamurthy et al. 2025). TKE was also
modified above the rotor layer, and faster wake recovery occurred largely because of enhanced
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entrainment of vertical momentum flux. Stable conditions showed larger deviations in momentum flux
downwind, indicating enhanced vertical momentum transfer due to the wind farm.
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Figure 5. TKE differences between sites A5 and G as a function of wind direction.

Remote sensing of temperature: AWAKEN hosted the first large-scale deployment of thermodynamic
profilers around wind farms. Thermodynamic profilers combine ground-based observations of the
downwelling infrared spectral radiance from ASSIST-II passive spectroradiometers

(Michaud-Belleau et al. 2025) with the physical retrieval algorithm TROPoe (Turner and Blumberg 2019)
to estimate temperature and humidity profiles across the atmosphere. Thermodynamic profiling at
AWAKEN used most of the methods developed during the ARM atmospheric emitted radiance
interferometer (AERI) program (Mlawer and Turner 2016). ARM and Oklahoma State University also
performed about 100 radiosonde launches from site H that provided an invaluable data set to benchmark
the thermodynamic profiles obtained through remote sensing. In particular, by comparing the temperature
estimated by ARM’s Tropospheric Optimal Estimation Retrieval Value-Added Product (TROPoe) from
the Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) deployed at site G
with the observations from radiosondes launched at site H (Figure 6), it is possible to quantify the
magnitude of the error in the thermodynamic profiles. In general, the temperatures provided by the two
methods agree remarkably well, with a root-mean-square difference (RMSD) below 1°C at ground level
and at hub height (z =90 m). The discrepancy is seen to slightly increase at 1,000 m above the ground,
where differences of up to 3°C can occur. This is mostly related to the poorer vertical resolution of

TROPoe moving away from the instruments but also possibly to the drift of radiosondes from the launch
site.
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Figure 6. Temperature recorded at different heights by radiosondes and estimated TROPoe for all the
radiosonde launches at site H. Stars indicate nighttime (00-12 UTC) data while circles
indicate daytime (12-24 UTC) data.

Local temperature changes: Observations of temperature upwind and downwind of the wind farms
revealed slight modifications of the temperature profiles near the ground depending on the downstream
distance from the wind farms. Figure 7 shows the mean temperature difference from the thermodynamic
profiling systems at sites G and Cla during stable conditions. The analysis included 30-minute-averaged
thermodynamic profiles from May to October 2023 that were conditionally averaged as a function of the
mean wind direction and height above the ground. The alternate pattern of temperature difference appears
to be correlated with the number of turbines likely to generate wakes that impact the two sites. More
specifically, when site G experienced more wakes, the layer of air below 200 m was warmer than at site
Cla, and vice versa. The nighttime warming of the surface layer in the wake of turbines was reported by
experimental (Rajewski et al. 2013, Smith et al. 2013, Wu and Archer 2021, Zhou et al. 2012) and
numerical (Miller and Keith 2018, Wu et al. 2023, Xia et al. 2019) studies, and related to the mixing of
warm air aloft enabled by the wake-added turbulence. However, the AWAKEN data set may be the first
collection of height-resolved temperature observations that substantiates this theory.
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Figure 7. Mean temperature differences between sites G and Cla as a function of wind direction and
height above the ground during stable conditions. The figure includes 30-minute-averaged
thermodynamic profiles from May to October 2023.
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International benchmark studies: AWAKEN data have been used to establish international benchmark
studies within the International Energy AgencyWind Task 57. The first benchmark focused on wind farm
wakes, aiming to assess and improve the accuracy of simulation tools using the AWAKEN observations.
Data from days that satisfy specific atmospheric and turbine operational criteria have been selected for
these benchmarks (see Bodini et al. 2024).

3.0 Results

AWAKEN generated a wealth of observational data to study wind farm-atmosphere interactions. These
observations, collected using a variety of instruments, including lidars, radars, meteorological towers, flux
stations, and turbine supervisory control and data acquisition (SCADA) systems, have yielded several key
initial results and insights into wind characteristics, turbine and wind farm wakes, blockage effects, and
interactions with the ABL.

The following summarizes research results derived from AWAKEN observations:

Site wind characteristics: Analysis of long-term observational data from the nearby ARM SGP
observatory characterized the winds near the AWAKEN site. The site experiences high wind shear and
veer events, including a large number of nocturnal LLJs that predominantly occur when wind blows from
the south, as seen in Figure 8. Significant nocturnal wind veer was observed, where southerly wind near
the surface becomes westerly aloft. Wind speed at turbine hub height (89 m) can be predicted from 10-m
data, with varying biases depending on atmospheric stability. The daily variation of the ABL height has
also been evaluated using vertically pointing, scanning pulsed Doppler lidar data, showing agreement
with previous literature and the daily cycle of vertical velocity variance.

Sunrise

Height (m)
=
N
Wind Speed at site A1 (m/s)

2023-04-13 2023-04-14

Figure 8. Plot of multiple diurnal cycles of lidar observations at AWAKEN site Al with the presence
of nocturnal LLJs.

Turbine and wind farm wakes: Lidar measurements of isolated wakes were used to characterize the
variability of wake mean velocity and turbulence intensity under different atmospheric stability regimes
and rotor thrust coefficients. Observations indicate that the downstream evolution of wind farm wakes
shows significant variability depending on incoming wind shear. Dual-Doppler radar measurements over
a large range (> 30 km) captured the region between wind farms. These measurements showed that the
wake of one wind farm extends at least 15 km downstream under specific easterly wind and stable
atmospheric conditions, as seen in the example shown in Figure 9. On average, over all conditions, the
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wake wind speed increased but plateaued at about 90% of the freestream speed within the first 10 km
downstream. The velocity distribution across the width of the wind farm wake initially showed a clear
signature of the farm layout, which smoothed out downstream, suggesting that spanwise momentum
transfer (from the sides of the wind farm) is a key mechanism in wind farm wake development and
recovery (Abraham et al. 2024).
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Figure 9. Example of a radar velocity field captured during stable atmospheric conditions showing the
wake of King Plains (black dots on eastern side) impinging on Armadillo Flats (black dots on
southern side).

Blockage effects: Dual-Doppler lidar measurements, configured as virtual towers, were conducted south
of the leading-row turbines in the King Plains wind farm to characterize inflow and assess possible
upwind blockage effects (Newsom et al. 2024), which is a slowing of the wind speed upstream of the
wind farm. Blockage is often underrepresented in wind farm prediction models, making these
observations useful for model improvement. Also, comparisons of these virtual tower results to collocated
lidar wind profiling data revealed differences, particularly under stable conditions where the profiler wind
speeds were about 22% lower than the virtual tower near hub height, as highlighted in

Newsom et al. 2024. These results suggest persistent horizontal gradients due to blockage from the wind
farm, which can lead to biased estimates using standard ground-based lidar wind profiling methods. This
implies that wind farm blockage, in addition to lowering the overall potential wind farm energy
production, can also cause standard lidar profiling to underestimate inflow wind speed.

Terrain-induced spatial variability, even in simple terrain: Analysis of long-term observations,
including dual-Doppler radar and lidar data, combined with numerical simulations, indicates that even in
regions with relatively simple topography like the AWAKEN site, local terrain features can induce
significant spatial variability and flow acceleration (Radiinz et al. 2025). This is particularly noticeable
under certain atmospheric conditions, such as stable boundary layers or during LLJ events. These terrain
effects are important to understand because they can add complexity and make it challenging to isolate
and quantify phenomena purely attributable to wind farm blockage or wakes using observations alone.
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4.0 Future Research Opportunities

As for future research opportunities, the observational data set collected during AWAKEN is one of the
largest and most comprehensive of its kind, providing critical data for understanding complex wind
farm-atmosphere interactions and validating simulation tools. There are several areas in which the data
can be used for future research. The first is further benchmarking studies focused on AWAKEN’s seven
testable hypotheses. This includes assessing the accuracy and quantifying the uncertainty of various
numerical models, ranging from engineering models like Flow Redirection and Induction in Steady State
(FLORIS) to high-fidelity, large-eddy simulation codes like AMR-Wind and Nalu-Wind, as well as
multiscale models like Weather Research and Forecasting (WRF). As part of these benchmarks we hope
to investigate more in-depth sources of model uncertainty and error, particularly when using different
simulation methods.

Next, we hope to improve wake models, especially those that include farm-scale physics. This could
involve developing farm -level engineering wake models that account for relevant physics like blockage,
local speedup, aggregate wake merging, and farm boundary-layer formation to help optimize farm
performance at a regional scale. There is also room for improvement in Reynolds-averaged Navier-Stokes
(RANS) wake models, particularly regarding farm-to-farm interactions. Coupling RANS and machine
learning models could also advance capabilities for complex and variable inflow conditions.

AWAKEN data will also be useful for quantifying blockage and speedup effects. A detailed
characterization of induction zone and speedup regions under different operative and atmospheric
conditions through real-scale field experiments is still lacking. Future studies using this data could focus
on validating the magnitude of deceleration and spatial extent of the induction zone, while differentiating
between blockage and terrain effects.

Future analysis of the AWAKEN data can also include characterizing different types of gravity wave and
atmospheric bore events observed during AWAKEN to better understand their formation mechanisms and
effects on wind farm power production. Developing a methodology to classify gravity waves and assess
their power production impacts is an identified area of future research.

Further research on lidar scanning strategies is needed to generalize tilted profiling models for different
flows and estimate errors. Exploring completely novel scanning patterns specifically designed for tilted
profiling is also suggested. Addressing the bias in second-order statistics obtained from tilted scans is also
an area for further investigation.

Lastly, conducting additional campaign-wide analysis of data sets from AWAKEN sites and a detailed
assessment of mesoscale and synoptic-scale conditions are next steps to help determine the physical basis
for observed phenomena like vertical mixing and updrafts. Examining seasonal and case-by-case
variability using the AWAKEN data set can help understanding of whether these findings can be
generalized to other locations and time periods.

5.0 Public Outreach

The public outreach strategy was multi-pronged with a primary goal of reaching a large audience of
atmospheric scientists and wind energy researchers to make the community aware of the data and ensure
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their widespread usage. Outreach also included presentations at conferences attended by industry
members and meetings for the general public. AWAKEN was also publicized through multiple web
pages, news stories, and a public data repository for continued data access.

The primary webpage for the project is https://www.nrel.gov/wind/awaken (National Renewable Energy
Laboratory 2025), and data from the campaign are available at the DOE Wind Data Hub at
https://doi.org/10.21947/AWAKEN/1914202 (U.S. Department of Energy 2025). Two notable articles
were released by the ARM User Facility (Finnell-Gudwien 2023) and NOAA (NOAA Chemical Sciences
Laboratory 2023).

In addition to the numerous publications and presentations given at conferences (listed in the next
section), the AWAKEN project has held monthly public webinars that discuss the latest analysis and
scientific findings resulting from the detailed AWAKEN observations. Webinars had a combined
audience of approximately 60 researchers and industry participants.

Lastly, in September 2023, AWAKEN project partners hosted a two-day community event open to the
public. The event, attended by many local landowners, featured science presentations by researchers and a
tour of several instrument sites to educate a broader audience on the science being performed.
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Hirth B. Dual-Doppler radar documentation of wind farm interaction and
regional wind flows during project AWAKEN
Cheung L. Development of analytical blockage models capturing shear and
atmospheric stratification
Hsieh A. An investigation of wake turbulence and turbine loading for the
AWAKEN wind farms
Wake Conference |Puccioni M. LiDAR measurements to investigate farm-to-farm interactions at the
2023 AWAKEN experiment
Letizia S. Holistic scan optimization of nacelle-mounted lidars for inflow and
wake characterization at the RAAW and AWAKEN field campaigns
Cheung L. Investigations of farm-to-farm interactions and block-age effects
from AWAKEN using large-scale numerical simulations
Moriarty P. Overview of recent observations and simulations from the American
WAKE experimeNt (AWAKEN) field campaign
APS DFD 2023 Abraham A. Investigation of wind plant wake effects at the AWAKEN field
campaign
AMS 2024 Abraham A. Wind plant impacts on planetary boundary-layer height
Bodini N. The American Wake Experiment (AWAKEN): leveraging
observations to create international benchmarks
Torque 2024 Abraham A. Land-based wind plant wake characterization using dual-Doppler
radar measurements at AWAKEN
Ahmed W. Wind farm wakes and farm-to-farm interactions: Lidar and wind
tunnel tests
Bodini N. Leveraging observations from the American Wake Experiment
(AWAKEN) to create international benchmarks on wind plant wakes
Vohringer L. Comparison of horizontal wind speed and direction measurements
from dual-Doppler radar and profiling lidar
Brown K. Estimating uncertainties from dual-Doppler radar measurements of
onshore wind plants using LES
Nadolsky J. Extracting atmospheric stability information from dual-Doppler
radar scans in the AWAKEN campaign
Hung L. Comparison of line-of-sight wind speed measurements from Doppler

radar and a long-range scanning lidar — a verification methodology
and uncertainty assessment
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Conference Lead Author Presentation Title

Wind Europe 2024 |Hirth B. An onshore deployment of advanced dual-Doppler radar for wind
energy applications

31st International | Pichugina Y. Emerging mobile micropulsed-Doppler lidar technology for wind

Laser Radar energy research

Conference

NAWEA 2024 Bodini N. An international benchmark on wind plant wakes from the American
Wake Experiment (AWAKEN)

Letizia S. Tilted lidar profiling: development and testing of a novel scanning
strategy for inhomogeneous flows

Radiinz W. Determining optimal initial/boundary conditions for AWAKEN
mesoscale wake benchmark

Abraham A. Wind plant impacts on planetary boundary-layer height at the
AWAKEN field site

Hsieh A. Field data validation of neutral AWAKEN simulations using various
models

Goldberger L. AWAKEN campaign observations of precipitation from hub height,
inflow, and outflow regions of the King Plains wind farm

Wise A. How do an atmospheric bore and associated gravity waves affect
wind farm performance?

Lundquist J. Impact of wind plants on nocturnal temperatures within and
downwind of wind plants as seen in AWAKEN observations and
simulations

Nadolsky J. Characterizing turbine inflows and interactions via radar-derived and
SCADA -retrieved wind measurements

Houck D. Validation of the open-source GE2.8-127 OpenFAST turbine

Ramm E. Wind turbines in Oklahoma attract lightning

Brown K. Farm-scale validation of LES wake predictions lever-aging onshore,
dual-Doppler radar

ACP RT 2024 Bodini N. An international benchmark on wind plant wakes from the American
Wake Experiment (AWAKEN)
AGU 2024 Abraham A. Wind plant impacts on planetary boundary-layer height at the
AWAKEN field site
Barthelmie R. Wake characterization during AWAKEN
Lundquist J. Impact of wind plants on nocturnal temperatures within and
downwind of wind plants as seen in AWAKEN observations and
simulations
Radiinz W. How the spatial variability of winds affects mesoscale wind farm

wakes over the diurnal cycle at the AWAKEN site
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Conference Lead Author Presentation Title
Voss A. Investigation of the interaction of onshore wind farm wakes with the
atmospheric boundary layer during AWAKEN with in situ aircraft
measurements
Wise A. Stable boundary- layer turbulence implications for wind energy:

Insights from the AWAKEN field campaign

AMS 2025 Pichugina Y. Spatio-temporal variability of boundary-layer winds within wind
farms from truck-based mobile lidar measurements
AMS BLT 2025 Lundquist J. Evaluation of wind farm wake modeling using AWAKEN
ground-based and airborne measurements
WESC 2025 Moriarty P. The American Wake Experiment (AWAKEN): past, present, and
future
Bodini N. Results from the AWAKEN international wind farm wake
benchmark
Simley E. Assessment of consensus and wake steering wind farm control for
AWAKEN
Letizia S. Thermodynamic profiling around wind plants: uncertainty

quantification and evidence of thermal wakes

Lundquist J. Evaluation of wind farm wake modeling using AWAKEN
ground-based and airborne measurements

Hamilton N. A modal description of dynamic wake meandering Abraham
characterization of extreme wind ramps at AWAKEN

Nadolsky J. Investigating differences in remotely sensed wind speed
measurements from the AWAKEN campaign

Hirth B. An overview of the versatility of specialized Doppler radar to
inform wind energy applications
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8.0 Lesson Learned

A lessons learned document focused on recent wind energy field campaigns, including AWAKEN, was
published as a National Renewable Energy Laboratory technical report (Bodini et al. 2024).
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