

1 Rate-induced aging effects on Parallel-Plate Avalanche
2 Counter (PPAC) caused by heavy ion beams

3 Salvatore Di Carlo^{a,1}, Marco Cortesi^a, Iulia-Maria Harca^a

4 *^aFacility for Rare Isotope Beam, Michigan State University, 640 S Shaw Ln, East*
5 *Lansing, 48824, MI, USA*

6 **Abstract**

The Facility for Rare Isotope Beams (FRIB) is one of the premier scientific user facilities for nuclear science with radioactive beams, capable of producing most (approximately 80%) of the isotopes expected to exist, from oxygen to uranium, at energies up to 200 MeV/u. With the increase in beam power from the present 10kW to the planned 400kW, FRIB experiments are about to enter a new era. An unprecedented rate capability as well as stable performance of all the planned instrumentation intended for beam diagnostics and beam tuning is required at the expected high beam intensities (>1 MHz). A summary of aging phenomena at high heavy-ion beam rates observed in the Advanced Rare Isotope Separator (ARIS) detectors for beam diagnostics, including Parallel Plate Avalanche Counters (PPAC) and plastic scintillation for time-of-flight measurements, is discussed. Current research and development project to mitigate rate-induced aging are presented.

7 *Keywords:* Parallel-plate avalanche counter, Heavy-ion detector, Heavy-ion
8 beam tracking, Rare isotope beam physics, Low-pressure detector, Timing
9 measurement, Aging effects.

10 **1. Introduction**

11 The Facility for Rare Isotope Beams (FRIB) [1] is a newly established
12 national user facility funded by the Department of Energy (DOE), Office of
13 Nuclear Physics (NP), that serves the scientific community by providing rare
14 isotope beams for low-energy nuclear physics experiments.

15 Beam diagnostics and detectors for particle identification are used in the
16 fragment separator (ARIS [2]) and in various beam lines at FRIB [3] to

¹dicarlo@frib.msu.edu

17 assist in beam tuning before and during experiments. This enables the char-
18 acterization of beam properties and transmission efficiency, provides event-
19 by-event tracking and timing information for physics analysis, and facilitates
20 stable long-term operation and appropriate machine protection. For instance,
21 event-by-event particle position and angle measurements are performed using
22 Parallel Plate Avalanche counters (PPAC) [4, 5, 6, 7].

23 The high beam intensities, up to 1 MHz, and the characteristics of the
24 beam (from ^{18}O up to ^{238}U , often with tens of different isotopes simultane-
25 ously transported, with a typical energy of 200 MeV/u) pose strong demands
26 on the performance and stability of diagnostics and detectors. Fast aging of
27 thin electrode foils and other detector components, caused by high absorbed
28 dose and beam rate-related secondary effects, has been observed in standard
29 detector configurations at the present beam power of 10 kW. As a result of
30 these effects, future plans to increase beam power to 400 kW within a few
31 years are of concern in term of diagnostics performance [8].

32 This work describes a systematic study of the aging effects on different de-
33 tector components caused by heavy-ion beams, mostly focusing on delay-line
34 PPAC [9] used for tracking. Mitigation and further development projects for
35 more robust devices in high-rate applications, radiation resistant materials,
36 and better fabrication technologies are also presented.

37 **2. Aging effects in PPACs**

38 *2.1. PPAC construction: material and design*

39 Position-sensitive PPAC is a well-established and old detector technology
40 that has been used extensively as a heavy-ion beam tracking system [9].
41 The design, fabrication procedure, and materials used for the construction
42 of the present PPAC detectors at FRIB were developed during the era of the
43 National Superconducting Cyclotron Laboratory (NSCL) [10]. The major
44 difference between the NSCL and the FRIB PPACs is the readout scheme
45 - the latter uses the delay-line method, which allows a rate capability two
46 orders of magnitude larger than the resistive chain system implemented in
47 the NSCL PPAC. The inner electrodes of the PPAC, consisting of a central
48 cathode and two lateral anode foils, are made of stretched polypropylene
49 ($0.75\mu\text{m}$ thick). The foils are then coated with thin (150 nm) metal (gold
50 or aluminum) layer using an electron-beam evaporator system. The external
51 anode foils are segmented into strips characterized by a pitch of about 0.05
52 inch (1.27 mm) - one foil with strips along the vertical direction, and the other

53 foil along the horizontal direction, to achieve position sensitivity. PPACs at
 54 FRIB are either operated in Isobutane ($i\text{C}_4\text{H}_{10}$) or Octafluoropropane (C_3F_8)
 55 at a pressure range 7-12 Torr. With the two external pressure windows made
 56 of aluminized Mylar (6 μm thick), the equivalent aluminum thickness for
 57 each PPAC is 9.0 μm .

58 *2.2. Problems observed at high rate*

59 Significant aging effects on the FRIB PPAC electrode foils were observed
 60 at high beam rates ($>500 \text{ kHz/cm}^2$). As the electrodes gradually deteriorate,
 61 detection efficiency gradually declines.

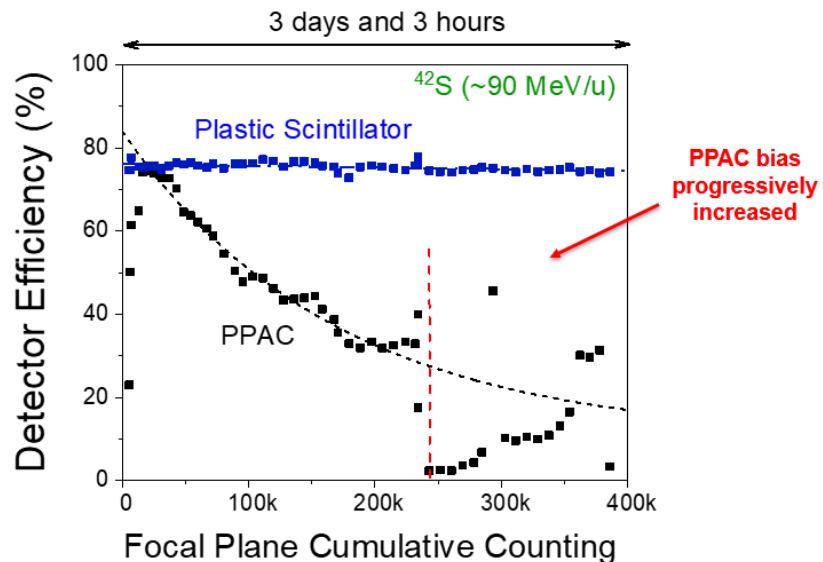


Figure 1: Comparison between detection efficiency of a thin (150 μm thick) plastic scintillator (blue graph) and a PPAC detector (black graph), irradiated with ^{42}S beam at about 90 MeV/u energy for several days. The beam rate exceeded 700 kpps and the detector.

62 Fig. 1 shows a comparison of detection efficiency measured on a thin
 63 (150 μm thick) plastic scintillator and a PPAC detector, both irradiated for
 64 several days with a ^{42}S beam, at an energy of about 90 MeV/u and a rate
 65 exceeding 700 kpps over a small area (about 1 cm^2). The detection efficiencies
 66 are displayed as a function of the cumulative counts of events recorded by
 67 the detectors at the focal plane of the S800 spectrometer. It should be
 68 noted that the total number of events in the S800 focal plane is only a tiny
 69 fraction of the total number of beam particles traversing the PPAC and the

70 plastic scintillator. Partial detection efficiency was achieved by increasing the
 71 voltage bias on the PPAC anode, at the expense of a higher probability of
 72 sporadic energetic discharges that may cause rupture of the fragile electrode
 73 foils. For the above reasons, it is necessary to replace the electrode foils
 74 frequently to maintain the detector's full performance.

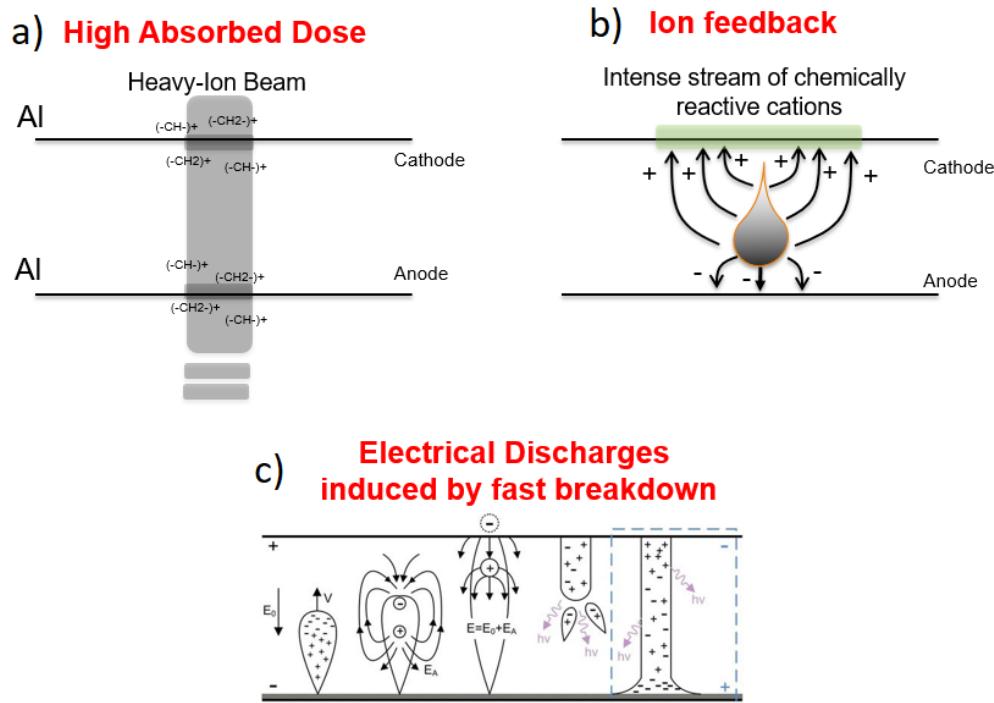


Figure 2: Schematic description of the aging effects causing PPAC performance to deteriorate over time due to: a) loss of mechanical properties in the polymer substrate, b) demetallization of the electrode due to ion back streaming, and c) violent streamer discharges.

75 We have identified three potential processes that might contribute to
 76 the degradation of detector components, each having its own unique impact
 77 under different operational conditions. They are schematically illustrated in
 78 Fig. 2.

79 The first process (Fig. 2a) is responsible for the progressive degradation of
 80 the mechanical properties of the polymer (polypropylene) used as the elec-
 81 trode substrate. Several studies have demonstrated that in polypropylene, as
 82 well as a large variety of polymers generally, highly absorbed doses improve

83 tensile strength while making them more brittle [11, 12] and more susceptible
84 to rupture in case of discharges. These effects are driven by long polymer
85 chain scissioning and free radical generation, leading to increased ultimate
86 strength, decreasing maximum elongation and increasing Rockwell hardness
87 [13, 14]. The loss of elasticity and the increase of brittleness make them
88 prone to rupture when stimulated by mechanical vibrations (movement of
89 the detector in and out of the beam) or during sporadic electric discharges.

90 In the second mechanism (Fig.2b), intense streams of ions are produced
91 during the gas avalanche multiplication and flow towards the cathode elec-
92 trode. The impact of ions on the electrode leads to a progressive demetal-
93 lization of the foil [15, 16]. The process is essentially similar to that used
94 in the Ion Beam Etching (IBE) technique [17]. The process of IBE involves
95 the slow erosion of a surface caused by the bombardment of high-energy ions
96 over time. As the process is entirely mechanical, it involves the transfer of
97 momentum between the impinging ions and the surface atoms so that the
98 latter gain sufficient momentum directed away from the surface to produce
99 a net material loss, also known as sputtering. IBE can cause the etching
100 of non-reactive metals and noble metals, including Au, Pt, Pd and others.
101 Clearly the effects are strongly correlated to the operational condition of the
102 PPAC detector, including beam rate and gas gain.

103 The third and final process (Fig.2c) that can damage the thin metal
104 layer of the electrode, as well as the complete rupture of the electrode foil, is
105 streamer discharges [18]. As in all gas avalanche detectors, the transition from
106 proportional to streamer mode occurs once the accumulation of charge in the
107 avalanche reaches a limit of 10^7 - 10^8 (Raether limit [19]). The consequence of
108 a streamer discharge are twofold:

- 109 1. An ions plasma at an extreme high temperature develops towards
110 the cathode electrode (cathode-directed streamer). The impact of the
111 streamer on the electrode surface can cause metal layer evaporation.
- 112 2. Once the streamer is completely formed across the PPAC, the release
113 of the energy accumulated in the detector occurs in the form of a vio-
114 lent electric discharge. The electric discharge can, therefore, lead to a
115 complete rupture of the electrode foil.

116 Figure 3 illustrates a collection of different types of damage observed on
117 the metal electrodes, resulted from the mechanisms described above. This
118 includes gold-etching in the form of localized abrasion, circular or ring-shaped
119 patterns (a); corrosion of aluminum surface (b); rupture due to discharges

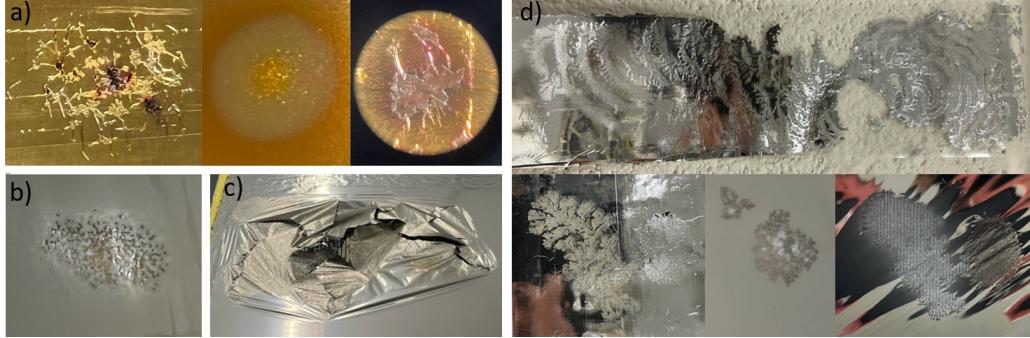


Figure 3: Photographs showing examples of different types of damages (a few cm^2 in size) observed on the metal electrodes of PPACs.

120 (c); electrical tree-like discharge structures, generally spreading over large
 121 surface areas (d).

122 **3. Current projects to mitigate aging effect at high rate**

123 To mitigate the change of the mechanical properties of the polypropylene
 124 substrate at high absorbed dose, more radiation hard polymers have been
 125 considered [20]. Kapton is an excellent alternative for its mechanical and
 126 radiation-hardening properties. However, there is no commercially available
 127 ultra thin ($<1 \mu\text{m}$) kapton film at present, so a novel technique for stretching
 128 thick kapton sheet must be developed to keep the total thickness of the
 129 detector below the acceptable value.

130 One of the main sources of PPAC performance loss over time is the etching/
 131 abrasion of the thin metal layer on the cathode electrode, caused by
 132 the high-temperature streamer formed during streamer discharge. Alternative
 133 metals to gold and aluminum, with higher melting points to mitigate
 134 evaporation, are likely to be tested as coatings for the cathode. These met-
 135 als include chromium, silver and carbon. Further research activities involve
 136 foil conditioning (e.g., with ultraviolet (UV) light) to improve the metal-
 137 polypropylene adhesion and the use of multi-metal layers (e.g. chromium
 138 before aluminum or silver) to improve mechanical stability.

139 Another effective approach to reduce streamer-induced aging effects is
 140 the replacement of the uniform cathode foil with thin gold-plated tungsten
 141 wires, in a multi-wire proportional chamber configuration. Wires are gener-
 142 ally avoided in the development of heavy-ion transmission detectors, as they

143 induce an inhomogeneous response across the effective detector area [21]. A
144 prototype is being developed by using a small diameter wire (12 μm) and a
145 large pitch (1 mm), resulting in 98.8% optical transmission of the cathode
146 wire, with minimal straggling induced on the beam. Wire-based PPAC will
147 allow excellent timing properties and an improved long-term stability.

148 In parallel, the development of an Anti Discharge Unit (ADU), similar to
149 the one proposed by ref. [22], has been carried out. The operational prin-
150 ciple of the ADU comprises of a signal separator connected to the electrode
151 that detects large discharge currents. Large currents, above a fixed thresh-
152 old, drive a uni-vibrator to activate a power MOS-FET that functions as a
153 switch. Subsequently, the bias voltage on the cathode is forcibly grounded
154 and discharge is suppressed. A prototype will be available for further tests
155 shortly.

156 **Acknowledgments**

157 Work supported by the U.S. Department of Energy Office of Science under
158 Cooperative Agreement DE-SC0023633, the State of Michigan, and Michigan
159 State University. This manuscript was prepared with the support, encour-
160 agement, and suggestions provided by the FRIB members of the radiation
161 detector lab, Beam Measurements and Instrumentation department (BIM),
162 and the ARIS beam physicist group.

163 **References**

- 164 [1] J. Wei, et al., Accelerator commissioning and rare isotope identification
165 at the Facility for Rare Isotope Beams, *Mod. Phys. Lett. A* 37 (09)
166 (2022) 2230006.
- 167 [2] M. Hausmann, A. Aaron, A. Amthor, M. Avilov, L. Bandura, R. Ben-
168 nett, G. Bollen, T. Borden, T. Burgess, S. Chouhan, V. Graves, W. Mit-
169 tig, D. Morrissey, F. Pellemoine, M. Portillo, R. Ronningen, M. Schein,
170 B. Sherrill, A. Zeller, Design of the advanced rare isotope separator aris
171 at frib, *Nuclear Instruments and Methods in Physics Research Section*
172 *B: Beam Interactions with Materials and Atoms* 317 (2013) 349–353,
173 xVIth International Conference on ElectroMagnetic Isotope Separators
174 and Techniques Related to their Applications, December 2–7, 2012 at
175 Matsue, Japan.

176 [3] M. Portillo, B. Sherrill, Y. Choi, M. Cortesi, K. Fukushima, M. Haus-
177 mann, E. Kwan, S. Lidia, P. Ostroumov, R. Ringle, M. Smith,
178 M. Steiner, O. Tarasov, A. Villari, T. Zhang, Commissioning of the
179 advanced rare isotope separator aris at frib, Nuclear Instruments and
180 Methods in Physics Research Section B: Beam Interactions with Mate-
181 rials and Atoms 540 (2023) 151–157.

182 [4] J. Christiansen, Self-quenching parallel-plate vapor counter at voltages
183 below the static breakdown field strength, Z. angew. Physik 4 (1952)
184 326.

185 [5] J. Christiansen, G. Hempel, H. Ingwersen, W. Klinger, G. Schatz,
186 W. Witthuhn, Investigation of delayed fission in ^{236}U , Nucl. Phys.
187 A 239 (1975) 253–259.

188 [6] H. Stelzer, A Large Area Parallel Plate Avalanche Counter, Nucl. In-
189 strum. Meth. 133 (1976) 409–413. doi:10.1016/0029-554X(76)90423-7.

190 [7] W. Seidel, H.-G. Ortlepp, F. Stary, H. Sodan, Double-grid avalanche
191 counter with large dynamic range, Nuclear Instruments and Methods in
192 Physics Research Section A: Accelerators, Spectrometers, Detectors and
193 Associated Equipment 273 (2) (1988) 536–540.

194 [8] J. Wei, C. Alleman, H. Ao, B. Arend, D. Barofsky, S. Beher, G. Bollen,
195 N. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, P. Cole,
196 C. Compton, M. Cortesi, J. Curtin, K. Davidson, S. D. Carlo, X. Du,
197 K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Gan-
198 shyn, T. Ginter, T. Glasmacher, A. Gonzalez, Y. Hao, W. Hartung,
199 N. Hasan, M. Hausmann, K. Holland, H. Hseuh, M. Ikegami, D. Jager,
200 S. Jones, N. Joseph, T. Kanemura, S. Kim, C. Knowles, T. Konomi,
201 B. Kortum, N. Kulkarni, E. Kwan, T. Lange, M. Larmann, T. Larter,
202 K. Laturkar, M. LaVere, R. Laxdal, J. LeTourneau, Z.-Y. Li, S. Lidia,
203 G. Machicoane, C. Magsig, P. Manwiller, F. Marti, T. Maruta, E. Met-
204 zgar, S. Miller, Y. Momozaki, M. Mugerian, D. Morris, I. Nesterenko,
205 C. Nguyen, P. Ostroumov, M. Patil, A. Plastun, L. Popielarski, M. Por-
206 tillo, A. Powers, J. Priller, X. Rao, M. Reaume, S. Rodriguez, S. Rogers,
207 K. Saito, B. Sherrill, M. Smith, J. Song, M. Steiner, A. Stolz, O. Tarasov,
208 B. Tousignant, R. Walker, X. Wang, J. Wenstrom, G. West, K. Witgen,
209 M. Wright, T. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao, P. Hurh,

210 S. Prestemon, T. Shen, Technological developments and accelerator im-
211 provements for the frib beam power ramp-up, *Journal of Instrumentation* 19 (05) (2024) T05011.

213 [9] S. Di Carlo, M. Cortesi, Parallel-plate avalanche counters for heavy-
214 ion beam tracking: History and mysteries, *Phys. Rev. Accel. Beams* 27
215 (2024) 044801.

216 [10] D. Swan, J. Yurkon, D. Morrissey, A simple two-dimensional ppac, Nu-
217 clear Instruments and Methods in Physics Research Section A: Accel-
218 erators, Spectrometers, Detectors and Associated Equipment 348 (2)
219 (1994) 314–317.

220 [11] J. Cassidy, S. Nesaei, R. McTaggart, F. Delfanian, Mechanical response
221 of high density polyethylene to gamma radiation from a cobalt-60 irra-
222 diator, *Polymer Testing* 52 (2016) 111–116.

223 [12] I. A. E. Agency, *Advances in Radiation Chemistry of Polymers: Pro-
224 ceedings of a Technical Meeting Held in Notre Dame, Indiana, USA,
225 13-17 September 2003*, IAEA-TECDOC, International Atomic Energy
226 Agency, 2004.

227 [13] J. Polvi, K. Nordlund, Irradiation effects in high-density polyethylene,
228 Nuclear Instruments and Methods in Physics Research Section B: Beam
229 Interactions with Materials and Atoms 312 (2013) 54–59.

230 [14] A. A., C. M.C., C. X., D. C., D. M.S., U. P., A.-S. M., Polymerization
231 reactions and modifications of polymers by ionizing radiation, *Polymers*
232 (Basel) 12 (12) (2020) 2877.

233 [15] D. K. Avasthi, G. K. Mehta, *Materials Engineering with Swift Heavy
234 Ions*, Springer Netherlands, Dordrecht, 2011, pp. 142–230.

235 [16] N. Chkhalo, M. Mikhailenko, A. Mil’kov, A. Pestov, V. Polkovnikov,
236 N. Salashchenko, I. Strulya, M. Zorina, S. Zuev, Effect of ion beam
237 etching on the surface roughness of bare and silicon covered beryllium
238 films, *Surface and Coatings Technology* 311 (2017) 351–356.

239 [17] R. LEE, Chapter 11 - ion-beam etching (milling), in: N. G. Einspruch,
240 D. M. Brown (Eds.), *Plasma Processing for VLSI*, Vol. 8 of *VLSI Elec-
241 tronics Microstructure Science*, Elsevier, 1984, pp. 341–364.

242 [18] S. Nijdam, J. Teunissen, U. Ebert, The physics of streamer discharge
243 phenomena, *Plasma Sources Science and Technology* 29 (10) (2020)
244 103001.

245 [19] P. Fonte, V. Peskov, B. Ramsey, The fundamental limitations of high-
246 rate gaseous detectors, in: *1998 IEEE Nuclear Science Symposium Con-
247 ference Record. 1998 IEEE Nuclear Science Symposium and Medical
248 Imaging Conference (Cat. No.98CH36255)*, Vol. 1, 1998, pp. 91–95 vol.1.

249 [20] L. McKeen, *The Effect of Radiation on Properties of Polymers, Plastics
250 Design Library*, Elsevier Science, 2020.

251 [21] C. Scheidenberger, T. Stöhlker, W. Meyerhof, H. Geissel, P. Mokler,
252 B. Blank, Charge states of relativistic heavy ions in matter, *Nuclear
253 Instruments and Methods in Physics Research Section B: Beam Inter-
254 actions with Materials and Atoms* 142 (4) (1998) 441–462.

255 [22] Y. S. et al., Status of beam line detectors for the bigrips fragment sepa-
256 rator at riken ri beam factory: issues on high rates and resolution, *JPS
257 Conf. Proc.* 6 (2015) 030124.