
DISCLAIMER

This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States

Government nor any agency thereof, nor any of their employees,

makes any warranty, express or implied, or assumes any legal liability

or responsibility for the accuracy, completeness, or usefulness of any

information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. Reference

herein to any specific commercial product, process, or service by

trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The

views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency

thereof. Reference herein to any social initiative (including but not

limited to Diversity, Equity, and Inclusion (DEI); Community Benefits

Plans (CBP); Justice 40; etc.) is made by the Author independent of

any current requirement by the United States Government and does

not constitute or imply endorsement, recommendation, or support by

the United States Government or any agency thereof.

ANL/NSE-25/65

 Software Quality Assurance
Plan

 Cardinal

Nuclear Science and Engineering Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under
contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South
Cass Avenue, Lemont, Illinois 60439. For information about Argonne and its pioneering science
and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY
Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing

number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service
of the US Dept. of Energy’s Office of Scientific and Technical Information.

Reports not in digital format may be purchased by the public
from the National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312
www.ntis.gov
Phone: 800-553-NTIS (6847) or 703-605-6000
Fax: 703-605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors
from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: 865-576-8401
Fax: 865-576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof,
Argonne National Laboratory, or UChicago Argonne, LLC.

 Software Quality Assurance
Plan

 Cardinal

ANL/NSE-25/65

by
Kalin R. Kiesling
Nuclear Science and Engineering Division, Argonne National Laboratory

OCTOBER 2025

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

i

Prepared by: Date:
Kalin Kiesling
Cardinal Software Quality Assurance Lead

Reviewed by: Date:
John Woodford
NSE QAR

Approved by: Date:
Dillon Shaver
Cardinal Software Co-Manager

Approved by: Date:
April Novak
Cardinal Software Co-Manager

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

ii

TABLE OF CONTENTS

1 Introduction ... 1	
1.1 Project Background ... 1	
1.2 Purpose and Scope .. 2	
1.3 Assumptions and Constraints ... 2	
1.4 Deviation Policy .. 3	

2 References .. 4	
3 Definitions and Acronyms ... 5	

3.1 Definitions ... 5	
3.2 Acronyms .. 8	

4 Management .. 11	
4.1 Organization .. 11	
4.2 Roles and Responsibilities .. 11	
4.3 External Interfaces .. 12	

5 Documentation ... 13	
5.1 Static Documentation .. 13	
5.2 Repository Documentation .. 13	
5.3 Development Documentation .. 13	

6 Reviews ... 14	
6.1 Documentation Reviews ... 14	
6.2 Software Reviews ... 14	

6.2.1	 Design Verification Review ... 14	
6.2.2	 Release Review .. 14	

7 Configuration Management ... 15	
7.1 Identifying Configuration Items ... 15	
7.2 Managing Configuration Items .. 15	
7.3 Naming Configuration Items ... 15	
7.4 Software Change Control .. 16	
7.5 Software Configuration Status Accounting ... 16	
7.6 Software Configuration Audits .. 16	

8 Software Acquisition .. 17	
9 Software Engineering Method ... 18	

9.1 Project Initiation .. 18	
9.1.1	 Work Activities and Schedule Allocation ... 18	
9.1.2	 Resource Allocation .. 18	
9.1.3	 Budget Allocation .. 18	

9.2 Software Requirements .. 19	
9.2.1	 Requirements Traceability Matrix .. 19	

9.3 Software Design .. 19	
9.4 Software Implementation .. 19	

9.4.1	 Independent Review ... 19	
9.5 Software Verification, Validation, and Testing .. 20	

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

iii

9.5.1	 Software Test Plan .. 20	
9.5.2	 Software Test Execution ... 20	
9.5.3	 Test Results .. 21	
9.5.4	 Test Results Evaluation .. 21	
9.5.5	 Test Records ... 21	

9.6 Version Release .. 22	
9.6.1	 Release Candidate Identification and Control ... 22	
9.6.2	 Release Review .. 22	
9.6.3	 Release Approval .. 22	

9.7 Software Acceptance .. 23	
9.8 Operations and Maintenance .. 23	

9.8.1	 Problem Reporting and Corrective Action ... 23	
9.8.2	 Software Change Control .. 24	
9.8.3	 Communication ... 27	

9.9 Software Retirement ... 27	

10 Standards, Practices, Conventions, and Metrics .. 28	
10.1 Software Coding Standards .. 28	
10.2 Methods, Techniques, and Tools .. 28	

11 Support Software .. 29	
11.1 GitHub Repository ... 29	
11.2 System Software ... 29	
11.3 Software Tools .. 29	

11.3.1	 Continuous Integration Verification Enhancement and Testing (CIVET) 29	
11.3.2	 MOOSE Tools ... 29	

12 Records Collection, Maintenance, and Retention ... 30	
12.1 Records Authentication ... 30	

13 Training ... 31	

LIST OF TABLES

Table 4.1: Roles and Responsibilities ... 11	
Table 9.1 Summary of testing and reviews that occur during the change control process for
Cardinal. ... 21	
Table 13.1 Training/Qualification Requirements by Role ... 31	

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 1 of 32

1 Introduction

1.1 Project Background
The software Cardinal is an open source, advanced, and modern multiphysics analysis tool with high-
resolution thermal-hydraulics and radiation transport capabilities [1]. Cardinal is under development
at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program. The software is a wrapping of the GPU-
oriented spectral element Computational Fluid Dynamics (CFD) code NekRS [2] and the Monte Carlo
particle transport code OpenMC [3] within the object-oriented application framework MOOSE [4].
Multiphysics feedback is implemented in a geometry-agnostic manner which eliminates the need for
rigid one-to-one mappings. A generic data transfer implementation also allows NekRS and OpenMC
to couple to any MOOSE application, enabling a broad set of multiphysics capabilities. Simulations
can also leverage combinations of MPI, OpenMP, and GPU resources.

Cardinal development aims for advances in physical modeling, numerical methods, and software
engineering to enhance its user experience and usability for reactor analyses. Cardinal utilizes an
object-oriented application framework (MOOSE), and its underlying meshing and finite-element
library (libMesh [5]) and linear and non-linear solvers (PETSc [6]) to leverage modern advanced
software environments and numerical methods. This approach facilitates code development as well as
capability expansion and standardization.

Cardinal supports general, physics-agnostic data transfers between NekRS, OpenMC, and MOOSE
to enable a wide variety of multiscale and multiphysics simulations. Supported physics capabilities
for NekRS include conjugate heat transfer, volumetric power/temperature/density feedback, and 1-
D/3-D coupling to systems codes. Cardinal also interfaces NekRS to MOOSE’s stochastic tools
module for forward uncertainty quantification. For OpenMC, Cardinal supports both cell- and mesh-
based tallies coupled to MOOSE for Constructive Solid Geometry (CSG) and DAGMC Computer
Aided Design (CAD) geometry [7]. In addition, mesh-based geometries in OpenMC support on-the-
fly deformation using displacements computed by MOOSE’s solid mechanics module for
considering reactivity feedback from thermal expansion/bowing. OpenMC’s tallies are also
integrated with libMesh’s Adaptive Mesh Refinement (AMR) system for on-the-fly refinement and
coarsening. And by interfacing NekRS and OpenMC with MOOSE's postprocessing, stochastic
simulation, and other modules, users have a wide range of data analysis, multiscale closure
development, and engineering workflow capabilities at their disposal.

The key features of Cardinal include:

• Robust and high-order spatial and temporal discretization methods for fluid flow, heat
transfer, and radiation transport modelling.

• Multi-scale modelling and flexible coupling between multiple physics, enabling a wide range
of engineering analyses and convenient integration with other advanced or conventional
simulation tools.

• Engineering postprocessing utilities for generating multiscale closure data and simulation
analysis.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 2 of 32

1.2 Purpose and Scope
The Cardinal Software Quality Assurance (SQA) Program aims to provide the controls and processes
necessary to enable continuous, high-quality software development while meeting user and program
sponsor requirements. This SQA Plan (SQAP) delineates the SQA Program framework for Cardinal
by describing the Program activities, organization, and documentation, and by clearly defining the
interconnection of all Program items.

It should be noted that this SQAP is aligned with the current version of the Argonne Quality Assurance
Program Plan [8], which was designed to align with DOE O 414.1D [9]. This SQAP is also aligned
with the revision 10 of the SQAP for MOOSE and MOOSE-based applications [10].

This SQAP addresses all stages of a conventional software life cycle, including:

• Requirements definition,
• Software design,
• Implementation/coding,
• Qualification testing,
• Acceptance,
• Operations and sustaining engineering, and
• Software retirement.

Cardinal is maintained by a team of software engineers, referred to herein as the development team
(see definition). Cardinal software maintenance and operations, performed by the development team,
is an ongoing activity. The development team is required to use the SQAP as a reference for Program
requirements and guidance on the appropriate use of procedures. This SQAP applies to all activities
related to the software life cycle of the Cardinal code library and associated documentation. All
Cardinal software and documentation maintenance and modification activities must occur as per the
SQAP. The application of Cardinal to end-user needs regarding suitability and quality is beyond
the scope of this SQAP. Users are responsible for ensuring that the software is sufficient for the
specified task and that the appropriate SQA measures required by their respective organizations
are applied.

The Cardinal development team is responsible for implementing software quality assurance (SQA, see
definition) requirements for software (see definition) under its control. These requirements are
necessary for compliance with Department of Energy (DOE) Order 414.1D, “Quality Assurance” [9],
and the American Society for Mechanical Engineers (ASME) Nuclear Quality Assurance (NQA)-1-
2022, “Quality Assurance Requirements for Nuclear Facility Applications” [11]. Compliance with this
SQAP is required throughout the software life cycle (see definition), including planning, requirements,
acquisition, design, implementation, acceptance testing, maintenance and operations, and retirement.

1.3 Assumptions and Constraints
• Argonne will manage the software with support from collaborators until the software is retired.
• Per Argonne’s Quality Assurance Program Plan [8] and Quality Manual [12], Cardinal is

designated as a Quality Level D (QL-D) non-safety software and is managed accordingly.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 3 of 32

• Cardinal development will adhere to ANL’s SCITECH-8, “Material Published Externally”
[13], where applicable.

• Adequate funding, required hardware, and support software (see definition) is available to
complete planned Cardinal activities.

• Roles and responsibilities cited in this plan can be reassigned as needed by the software
managers.

• All changes to Cardinal, including security patches, will be controlled through the Change
Control Board (CCB, see definition). For release, the project lead will adhere to SCITECH-8
[13].

• The scope of this document covers the Cardinal software and its dependency on MOOSE [7],
OpenMC [3] and NekRS [2].

1.4 Deviation Policy
All deviations from this plan require software manager(s) approval. Whether planned or unplanned,
if any deviation from this plan is necessary, the following components will be determined:

• Identification of task affected.
• Reasons for deviation defined.
• Effects on the quality of the project.
• Time and resource constraints affected.

A software manager will document, either through GitHub or other retained methods, of the deviation
and their approval for the deviation. Deviations that do not fulfill requirements must be documented
within the relevant issue(s) (see definition).

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 4 of 32

2 References
[1] A. J. Novak et al., “Coupled Monte Carlo and Thermal-Fluid Modeling of High

Temperature Gas Reactors Using Cardinal,” Ann. Nucl. Energy, vol. 177, p. 109310,
2022, doi: 10.1016/j.anucene.2022.109310.

[2] P. Fischer et al., “NekRS, a GPU-accelerated spectral element Navier–Stokes solver,”
Parallel Comput., vol. 114, p. 102982, 2022, doi:
https://doi.org/10.1016/j.parco.2022.102982.

[3] P. K. Romano, N. E, B. R. Herman, A. G. Nelson, B. Forget, and K. Smith, “OpenMC: A
state-of-the-art Monte Carlo code for research and development,” Ann. Nucl. Energy, vol.
82, pp. 90–97, Aug. 2015, doi: 10.1016/j.anucene.2014.07.048.

[4] L. Harbour et al., “4.0 MOOSE: Enabling massively parallel Multiphysics simulation,”
SoftwareX, vol. 31, p. 102264, 2025, doi: https://doi.org/10.1016/j.softx.2025.102264.

[5] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh: A C++ Library for
Parallel Adaptive Mesh Refinement/Coarsening Simulations,” Eng. Comput., vol. 22, no.
3–4, pp. 237–254, 2006.

[6] S. Balay et al., “PETSc/TAO Users Manual,” Argonne National Laboratory, ANL-21/39-
Revision 3.23, 2025. doi: 10.2172/2565610.

[7] B. Mouginot et al., DAGMC - Direct Accelerated Geometry Monte Carlo Toolkit. (Jan.
2021). [Online]. Available: https://github.com/svalinn/DAGMC

[8] B. Harvey, “Quality Assurance Program Plan (QAPP), Revision 16.” Argonne National
Laboratory, Oct. 01, 2024.

[9] “Quality Assurance,” U.S. Department of Energy, Washington, D.C., Order DOE O
414.1D, Sep. 2020.

[10] “MOOSE and MOOSE-Based Applications: Software Quality Assurance Plan
(SQAP),” Idaho National Laboratory, PLN-4005, Revision 10, Mar. 2025.

[11] issuing body. American Society of Mechanical Engineers and A. N. S. Institute,
Quality assurance requirements for nuclear facility applications. New York, N.Y: The
American Society of Mechanical Engineers, 2022.

[12] “Quality Manual,” Argonne National Laboratory, LMS-MNL-7, Rev. 8, Sep. 2025.
[13] “SCITECH-8 Material Published Externally.” Argonne National Laboratory, Oct. 19,

2023.
[14] A. E. Slaughter, C. J.Permann, J. M. Miller, B. K. Alger, and S. R. Novascone,

“Continuous Integration, In-Code Documentation, and Automation for Nuclear Quality
Assurance Conformance,” Nucl. Technol., vol. 0, no. 0, pp. 1–8, 2021, doi:
10.1080/00295450.2020.1826804.

[15] “Procurement: Acquiring Goods and Services: For Argonne Staff.” Argonne National
Laboratory, Jan. 29, 2025.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 5 of 32

3 Definitions and Acronyms
This section provides definitions of the terms and acronyms required to understand this plan.

3.1 Definitions
Definitions commonly used in this plan are provided below. Definitions are derived from [10] unless
otherwise noted.

baseline: A specification or product that has been formally reviewed and agreed upon, that thereafter
serves as the basis for use and further development, and that can be changed only by using an approved
change control process. [11]

change control: An element of configuration management consisting of the evaluation, coordination,
approval or disapproval, and implementation of changes to configuration items (configuration items
see definition) after formal establishment of their configuration identification [11].

change control board (CCB): The group of individuals who are qualified to act as an independent
reviewers (see definition). CCB members are responsible for evaluating and approving or
disapproving change requests (see definition) (see Section 9.4.1). Adding individuals to the CCB
requires a formal training course and approval of the software managers.

change request (CR): A proposed change to a configuration item, including configuration items stored
in the Cardinal repository or elsewhere. A CR that proposes a change to a configuration item stored in
the Cardinal repository (e.g., to report a defect or request an enhancement) is equivalent to a pull
request (PR) on GitHub.

Continuous Integration, Verification, Enhancement, and Testing (CIVET): Idaho National
Laboratory managed support software for automating the build and testing of Cardinal within the
MOOSE ecosystem [14].

configuration identification: An element of configuration management, consisting of selecting the
configuration items (see definition) for a system and recording their functional and physical
characteristics in technical documentation.

configuration item: An item or aggregation of hardware or software (including documentation) or
both that is designed to be managed as a single entity.

configuration management: A discipline applying technical and administrative direction and
surveillance to identify and document the functional and physical characteristics of a configuration
item (see definition), control changes to those characteristics, record and report change processing and
implementation status and verify compliance with specified requirements.

contributor: An individual, including external users, who contributes modifications to Cardinal via a
CR or to documentation that is reviewed and accepted by a member of the Cardinal CCB; or an
individual, including external users, who reports a defect. All developers and CCB members are
contributors. (definition adapted from [10])

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 6 of 32

defect: Anything observed in the documentation or operation of Cardinal that deviates from
expectations based on previously verified software products or reference documents. (see anomaly in
[10])

development documentation: Documentation of the change control process and release of custom-
developed software.

enhancement: An improvement or enhancement to Cardinal not associated with a defect.

GitHub: A web-based revision control hosting service for software development and code sharing.

independent reviewer: A member of the CCB who reviews proposed changes to the repository in a
CR and evaluates the technical adequacy of the design approach and assures internal completeness,
consistency, clarity, and correctness of the software requirements and design. They must not be the
contributor who initiated the CR content.

issue: A means of reporting a defect or proposed enhancement of software via GitHub.

MOOSE: The Multiphysics Object Oriented Simulation Environment, which is custom-developed
open source software that provides a library of functions that can be used within other custom-
developed software applications for the purpose of mathematical modeling and simulation of
engineering applications.

MOOSE-based application: Custom-developed software that derives primary functionality from
MOOSE. In this context, Cardinal is a MOOSE-based application.

nonrecord: Informational material that does not meet the statutory definition of a record (44 U.S.
Code 3301) or that has been excluded from coverage by the definition. Excluded materials are extra
copies of documents kept only for reference, stocks of publications and processed documents, blank
forms and library or museum materials intended solely for reference or exhibit.

open source: Denoting software for which the source code is made freely available and may be
redistributed and modified.

Publication Approval Notification and Distribution Application (PANDA): The ANL system used
for reviewing, managing, and approving the distribution of scientific and technical information.

pull request (PR): Mechanism for a contributor to propose a change to a Cardinal configuration item
stored in the Cardinal repository, using GitHub. Note that in this context, a pull request is equivalent to a
change request (CR).

qualified supplier: A supplier that has been verified by the acquiring organization as having developed
the software for an intended end use under a program consistent with the American Society of
Mechanical Engineers (ASME) Nuclear Quality Assurance (NQA-1) requirements.

quality level (QL): the grade of quality assigned to the software based on the graded approach defined
in the ANL Quality Manual. The grade is determined by the probability of and severity of
consequences of a failure. ANL defines four QLs: QL-A, B, C, and D. QL-D is considered non-safety

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 7 of 32

related, whereas QL-A/B/C describe software related to safety, security, and environment. The QL is
determined through ANL review. [12]

record: Information in any form—including electronic files, created or received by an agency that
falls under the legal control of the federal government—that documents an organization’s functions,
policies, decisions, procedures, and essential transactions; adds value to the agency; illustrates
compliance with requirements; or is needed for administrative purposes or to establish quality (e.g.,
training qualifications).

release: A named version of Cardinal that has been developed according to this plan, has been
subjected to verification (see definition) and validation (see definition) through a release review (see
definition), and includes a release log.

release log: Documentation associated with a release that provides the baseline (see definition) for all
configuration items and associated reviewer information as specified in this plan.

release review: Verification and validation of all configuration items and test results (see definition)
for a release.

repository: A collection of configuration items that is under version control for custom-developed
software and managed using GitHub.

repository documentation: Documentation considered as a configuration item that is managed as a
part of the repository on GitHub.

revision: A stable snapshot of Cardinal that has been managed by the CCB according to this plan but
has not undergone the process for a release.

software: Computer programs, associated documentation, and data pertaining to the operation of a
computer system, including:

• acquired software: Software supplied through procurement, two-party agreement, or other
contractual arrangements, or open source/zero-dollar acquisitions.

• custom-developed software: Software built at ANL to meet a specific set of functional
requirements.

• software library: A collection of computer program units, data, and related documentation that
may be used in software development, use, or maintenance to provide functionality. These may
include configuration data, help data, message templates, classes, functions, subroutines, and
data values or type specifications.

• support software: A computer program used in development, analysis, testing, or documenting
software, including the following.

o system software: Software designed to facilitate operation and maintenance of a
computer system and its associated programs (e.g., operating systems).

o software tool: A computer program used in development, testing, analysis, or
maintenance of a program or its documentation. (e.g., compilers).

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 8 of 32

software life cycle: The activities that comprise evolution of software from conception to retirement.
The software life cycle typically includes the activities associated with requirements, design,
implementation, test, installation, operation, maintenance, and retirement.

software quality assurance (SQA): All actions that provide adequate confidence that software quality
is achieved.

static documentation: Documentation considered as a configuration item that is managed via PANDA
or other official ANL systems according to SCITECH-8.

test case: A set of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a specific
requirement. It includes documentation specifying inputs, predicted results, and a set of execution
conditions for a test item. A test case can include:

• regression test: A test case to verify that modifications have not caused unintended effects and
that the system or component still complies with associated requirements.

• expected-error test: A test case to verify that modifications have not caused unintended effects
to expected warning and/or error messages.

• validation test: A test case that compares the results of the software against a measurement or
reference solution. Validation tests are not associated with requirements but are used to verify
that the system or component still produces acceptable results.

test-driven development: A method of software development in which testing is repeatedly conducted
on source code. After each test, refactoring or new developments are done and the same or a similar
test is repeatedly conducted on the source code. The process is repeated until the code functions in
accordance with the specifications.

test results: A complete set of results obtained by executing the test cases (see definition) for
Cardinal.

user documentation: Instructions for use describing the capabilities and intended use of the software
within specified limits. May also include a theory manual, when relevant.

validation: Confirmation, through the provision of objective evidence (e.g., acceptance test), that the
requirements for a specific intended use or application have been fulfilled.

verification: (1) The process of evaluating a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase. (2) Formal proof
of program correctness (e.g., requirements, design, implementation reviews, system tests).

3.2 Acronyms
ANL Argonne National Laboratory

ASME American Society for Mechanical Engineers

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 9 of 32

CCB change control board

CCI communication and contact information

CIVET Continuous Integration, Verification, Enhancement and Testing

CM configuration management

CR change request

DOE U.S. Department of Energy

FAR failure analysis report

IEC International Electrotechnical Commission

INL Idaho National Laboratory

ISO International Organization for Standardization

IT information technology

M&O maintenance and operations

MOOSE Multiphysics Object Oriented Simulation Environment

NQA Nuclear Quality Assurance

PANDA Publication Approval Notification and Distribution Application

PR pull request

QA quality assurance

QL quality level

QLD quality-level determination

RTM requirements traceability matrix

SCS software coding standards

SDD software design description

SLL software library list

SRS software requirements specification

SQA software quality assurance

SQAP software quality assurance plan

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 10 of 32

SVVP software verification and validation plan

TMS training management system

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 11 of 32

4 Management

4.1 Organization
As a DOE-sponsored code, Cardinal project planning activities occur annually as part of DOE
NEAMS Program work package development efforts. During the planning phase, the Software
Managers prepare a baseline work package, schedule, resource allocation, and budget estimate. As per
DOE requirements, progress on Cardinal project activities is reported in annual milestone reports, or
a similar deliverable determined at the time of project planning. All work package activities that
involve modification of Cardinal occur in accordance with the practices, procedures, and requirements
set forth in the Cardinal SQA Program, and quality planning is integrated with project planning.

4.2 Roles and Responsibilities
Details on SQA Program roles are provided in Table 4.1. Program personnel have access to the NSE
Division QA Representative (QAR), who has informal oversight of the SQA Program.

Table 4.1: Roles and Responsibilities
Role Tasks and Responsibilities
Software Managers • Interface with line management to prepare budgets, ensure availability of

adequate staffing, create task assignments, and oversee project tasks to
ensure that work is carried out on schedule and within budget.

• Reassign role and responsibility in this plan, as needed.
• Schedule work activities as needed, see Section 9.1.1.
• Manage schedule and scope, see Section 9.1.1.
• Establish and control business requirements.
• Establish schedule for CR as needed, see Section 9.8.2.
• Ensure the implementation of the required SQA and training, see Section

13.
• Determine correct approach for obtaining error information from a

supplier, see Section 8.
• Update and maintain project level risks, annually, see Section Error!

Reference source not found..
• Align software requirements with work, see Section 9.2.
• Coordinate and manage software releases, see Section 9.6.
• Establish members of the CCB.
• Establish timeline for completion of CR, as needed, see Section 9.8.2.
• Assess adequacy of change control process, as needed, see Section 9.8.2.
• Identify system software (see definition) used for testing and release, see

Section 11.2.
• Manage project baseline, see Section 9.8.2.
• Document and control technical requirements/design per this plan.
• Acquire IT materials and services in accordance with ANL ESHQ-QA-

7.3 and the AMOS workflow; for software acquisitions, ensure that
procurement documents identify the mechanism for supplier reporting of
software errors to the purchaser, and the purchases reporting of software
errors to the supplier.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 12 of 32

• Document and control test procedures and instructions for users per this
plan.

• Manage and resolve problems per this plan.
• Build, configure, and test IT assets per this plan.
• Place software under version control.
• Perform acceptance test, document review and approval of test results in

accordance with this plan.
• Disposition and maintain all records per this plan, see Section 12.
• Create and manage retirement plan.

Software Quality Assurance
Lead

• Ensure the implementation of the required SQA and training, see Section
13.

• Document and maintain this plan (SQAP) and QLD, see Section 7.2.
• Authenticate records, see Section 12.1.
• Identify and document the quality level in the Quality Level

Determination (QLD).
• Review the QLD and revise as needed.

Change Control Board
(CCB) Member

• Manage configuration items within the repository and software libraries,
see Section 7.2.

• Manage modifications to the software, see Section 9.
• Oversee problem reporting, see Section 9.8.1.
• Act as independent reviewer, see Section 6.2.1.
• Perform and document a review that evaluates the technical adequacy of

the design approach and assures internal completeness, consistency,
clarity, and correctness of the software requirement/design.

• Approve the technical requirements/design.
• Manage technical requirements/design in accordance with Section 5.2.
• Close CRs.
• Document CRs including change descriptions and submit them to the

CCB for approval.
• Approve or disapprove CR and inform requestor.
• If change impacts technical requirements/design, approve revised

technical requirements/design.
• Collaborate, as necessary, with other CCB members on any of the above

responsibilities.

4.3 External Interfaces
Due to its nature as open source software, Cardinal is available to all, including, but not
limited to, government, private, and academic scientific research organizations. Access to the
repository and other selected digital resources are unlimited.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 13 of 32

5 Documentation
Three classes of documentation are defined for Cardinal: static documentation (see definition),
repository documentation (see definition), and development documentation (see definition). At a
minimum, the documentation listed in the following sections are required. These documents are
managed as records in accordance with Section 12.

5.1 Static Documentation
Static documentation is generated at plan initiation using Argonne templates and managed via ANL
tools (e.g., PANDA or other formal system).

• Software Quality Assurance Plan (SQAP; this plan), includes the configuration management
plan (CMP), software verification and validation plan (SVVP)

• Quality-level determination (QLD) (see Section 9.1.3.1)

5.2 Repository Documentation
The following documents are managed within the repository.

• User documentation (see definition) (e.g. user and/or theory manual, within-code
documentation)

• Software requirement specification (SRS)
• Software design description (SDD)
• Requirement traceability matrix (RTM)
• Software test plan (STP)
• Failure analysis report (FAR)
• Communication and contact information (CCI)
• Software coding standards (SCS)
• Software library (see definition) list (SLL)

5.3 Development Documentation
The following documents shall be maintained to document the change control process leading to a
release.

• CRs
• Test results
• Release logs
• Issues

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 14 of 32

6 Reviews
At a minimum, the following reviews shall be conducted.

6.1 Documentation Reviews
Documentation reviews are performed following processes dictated by the document management
system as detailed in Section 7.2.

6.2 Software Reviews

6.2.1 Design Verification Review
A review shall be conducted by an independent reviewer of the CCB. The reviewer may rely on
assistance from any individual, but the final approval or disapproval is the sole responsibility of the
independent reviewer. All comments are retained in the GitHub system.

All reviews and approvals will be recorded within the PR using the integrated approval system of
GitHub. This includes identification of the independent reviewer of the CCB prior to acceptance of
the proposed modification. Any proposed changes to the repository trigger automated testing.

An independent reviewer of the CCB shall conduct a design review for all CRs and shall evaluate
the technical adequacy of the design approach and ensure internal completeness, consistency, clarity,
and correctness of the software design and demonstrate that software design is traceable to the
software requirements. This review will be conducted as specified in Section 9.4.1. Review of test
results is considered to be within the scope of the design verification review.

6.2.2 Release Review
A release requires an additional release review, as specified in Section 9.6.2, to ensure compliance
with the approved software requirements. Test results from CIVET are considered part of the review.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 15 of 32

7 Configuration Management
Software configuration management activities, including configuration identification (see definition),
change control (see definition), status accounting, and software configuration reviews, are established
during the planning phase of the software life cycle and implemented through operations and
maintenance until Cardinal is retired.

7.1 Identifying Configuration Items
For Cardinal, the configuration items include:

• Static documentation as defined in Section 5.1.
• Configuration items within the repository, including the code necessary to satisfy the

software requirements as well as the repository documentation. The identification of
configuration items within the repository is inherent to the change-control process and is the
responsibility of the independent reviewer.

• Support Software and Software Libraries as defined in Section 11.

The software baseline is the latest release unless otherwise specified within a CR via a comment.

7.2 Managing Configuration Items
Static documentation shall be managed by the SQA Lead as follows:

• The SQAP (this plan) shall be reviewed at a minimum of every three years. Modifications to
the SQAP (this plan) require an approval from the SQA Lead, Software Managers, and the
relevant QAR. This plan is retained as a record in PANDA.

• The QLD shall be reviewed at the same time the SQAP is reviewed. Modifications to the QLD
(see Section 9.1.3.1) require a review and approval process. The QLD is retained as a record
in official ANL systems.

The configuration items within the repository will be managed by the CCB and adhere to the change
control process detailed in Section 9.8.2 and maintained under CM until the software is retired.

Software libraries will be managed by the CCB and adhere to the change control process detailed in
Section 9.8.2. The software libraries required for Cardinal shall be listed in the Software Library List.

7.3 Naming Configuration Items
Static documentation shall follow the naming convention “Cardinal-DocAcronym-rN”, where
DocAcronym is the acronym of the documents title, and N is the revision number. Static
documentation will be recorded in the release log during the release process as detailed in Section
9.6.

The configuration items included in the repository are uniquely identifiable for all revisions or releases
by the inherent capabilities of the version control system.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 16 of 32

Support software and software libraries will be named and versioned as defined by the supplier of the
software and will be recorded in the release log during the release process as detailed in Section 9.6.

All releases of Cardinal shall be identified by a tag based on the date of release. The format shall be
“YYYY-MM-DD”, where YYYY is the four-digit year, MM is the two-digit month, and DD is the
two-digit day of the month. If a release is altered via a correction action, that tag for the patched version
shall include a patch number as YYYY-MM-DD-pN, where “N” is the patch number.

7.4 Software Change Control
Changes to the software baseline will be managed in accordance with Section 9.8.2.

7.5 Software Configuration Status Accounting
Configuration status accounting activities record and report the status of the CRs. A CR remains in
proposed status until it has been approved by an independent reviewer of the CCB or closed. All
CRs are tracked for the full duration of their lifetimes, irrespective of status, using the GitHub
system for PRs.

A PR can have one of the following statuses:

• Proposed: A PR that is under development by a contributor and reviewed by an independent
reviewer. Within GitHub, all PRs that are “open” have this status.

• Approved: A PR that has been reviewed as detailed in Section 9.4.1 and approved by an
independent reviewer of the CCB using GitHub approval system. The changes may be
merged by any member of the CCB after approval.

• Completed: An approved PR that has been merged.
• Disapproved: A PR that no longer has a proposed status and has not been merged. Within

GitHub all PRs that are “closed” and have not been merged have this status.

7.6 Software Configuration Audits
Surveillance of the repository is completed regularly to verify compliance with this Configuration
Management Plan.

For each release, functional configuration audits are achieved through the performance of the required
reviews and approvals specified in this plan. Physical configuration audits are the responsibility of the
end user.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 17 of 32

8 Software Acquisition
Software or software services acquired to support Cardinal will either be procured with support from
the ANL procurement office in accordance with LMS-MNL-23 [15]. All zero-dollar (no fee) or open
source acquisitions will be handled in accordance with LMS-MNL-23. Acquired software necessary
for Cardinal will be managed upon receipt, and, as such, will be considered a configuration item as
defined in Section 7.1.
Procurement documents associated with acquisitions from a qualified supplier shall identify
requirements for supplier’s reporting of software errors to the team and, as appropriate, the team’s
reporting of software errors to the supplier. For software acquisitions where there is no relationship
with the supplier, the project lead shall determine the correct approach for obtaining error
information from a supplier (e.g., periodic monitoring of a supplier’s website).
When acquiring software (including software libraries) that will be integrated with Cardinal, the
following will be incorporated into the life-cycle documentation for that application:

1. Requirements describing the capabilities and limitations of the acquired software.
2. Test cases that will be used to validate the capability of the acquired software.

3. Instructions for use, as applicable.
The resulting documentation and associated software will become part of the current baseline and
managed in accordance with the change control process detailed in Section 9.8.2.
A software library required for Cardinal shall be listed in the Software Library List (SLL).

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 18 of 32

9 Software Engineering Method
Cardinal uses test driven development (see definition), an agile software development methodology,
with a constant stream of new builds, updates, and modifications to the software that is managed by
the CCB. The process includes creating continuous builds that are fully tested before being
integrated into the repository. Each stable integration is considered a revision of Cardinal. Only a
revision that has followed the release process (see Section 9.6) will be set as a baseline.

All revisions and releases are stored using GitHub and are available for download from this location
at any time.

The tasks delineated in the following subsections encompass SQA activities performed throughout
the life cycle of Cardinal.

9.1 Project Initiation
Cardinal shall follow the requirements and processes as defined in this plan. If any processes deviate
from this plan, an amendment to this SQAP shall be created to document those deviations. As much
as possible, the processes for Cardinal shall remain consistent with MOOSE and be repeatable.

9.1.1 Work Activities and Schedule Allocation
Work activities will be defined and delineated for the Cardinal software by the software managers as
a general work activity/schedule with high-level milestones for the fiscal year. Detailed planning
will be conducted at a frequency deemed appropriate by the software managers.

9.1.2 Resource Allocation
The software managers will allocate resources in coordination with line management. Each resource
will participate in the assigned work activities described in Table 4.1. The software managers have
the discretion to allocate resources as needed throughout the duration of the project.

Subcontractors may be used. The software managers are responsible for securing funding for the
procurement of their services and determining tasks that are subcontracted.

9.1.3 Budget Allocation
The budget for the development of Cardinal is based on year-to-year customer needs and funding
granted by research and development activities. The current year budget is managed and can be
obtained by contacting on of the software managers.

9.1.3.1 Quality-Level Determination

The QLD documents the decision basis as to why a software application is a specific quality level.
The record copy is maintained within official Argonne systems.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 19 of 32

9.2 Software Requirements
The requirements for Cardinal align with the work activities defined by software managers (see
Section 9.1.1). The requirements shall be recorded within the repository, defined within test cases, and
available in the SRS.

The software requirements or other life-cycle documentation shall identify operating systems,
functions, interfaces, performance requirements, installation considerations, design inputs, and any
design constraints of the computer program; specify technical and software-engineering requirements;
identify applicable reference drawings, specifications, codes, standards, regulations, procedures, or
instructions that establish software design requirement test, inspection and acceptance criteria, as
applicable. Security features (e.g., vulnerability protection, and cybersecurity) shall be specified by
the end user, commensurate with the risk from unauthorized access or use.

9.2.1 Requirements Traceability Matrix
Traceability of each requirement through design and testing for the release will be established and
maintained within the test cases and available in the RTM. The complete set of test results shall be
accessible through the RTM.

9.3 Software Design
The software design shall consider the software's operating environment. Measures to mitigate the
consequences of problems, as identified through analysis, shall be an integral part of the design. These
potential problems include external and internal abnormal conditions and events that can affect the
software. The software design shall define the computational sequence necessary to meet the software
requirements and include, as applicable, numerical methods, mathematical models, physical models,
control flow, control logic, data flow, process flow, data structures, process structures, and the
applicable relationships between data structures and process structures.

Design documents shall be stored within the repository and referenced within test cases.

9.4 Software Implementation
Contributors utilize the software design to implement the relevant features for the software
applications. The code standards referenced in Section 10.1 must be followed for all code developed
or modified as part of a CR.

9.4.1 Independent Review
Independence is achieved through a variety of measures that are integrated in the development and
change control process. Each PR must be peer reviewed by at least one independent reviewer of the
CCB. If the PR was initiated by a member of the CCB, the independent reviewer must be a different
CCB member. The test results act as an independent indicator of the software performance from the
perspectives of expected results, expected errors, and other factors deemed necessary by the reviewer.

This review includes evaluation of the test results as detailed in Section 9.5.4. The review shall ensure
that requirements, design, and implementation phase activities have been completed satisfactorily, and

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 20 of 32

the software is approved to follow the release process. However, a release will only be performed if
deemed necessary by the software managers. The review documentation is maintained on GitHub.

9.5 Software Verification, Validation, and Testing
Software verification, validation, and testing activities are performed to ensure compliance with
software engineering requirements and adequacy of the software design. All verification, validation,
and testing activities are to be performed by an independent reviewer, in addition to the automated
testing performed using GitHub Runners and CIVET [14].

9.5.1 Software Test Plan
9.5.1.1 Test Cases

As part of a PR, contributors are expected to add at least one test case that covers implemented code
changes, if applicable. An independent reviewer of the CCB must approve a PR and ensure that the
PR includes adequate test cases, including the necessary requirements and design associated with
newly created or modified test cases. The process for handling PRs that modify requirements is
defined in Section 9.8.2.

Test cases specify what a test should do, the inputs, and the post-conditions for determining test
success or failure and assuring that the software produces expected results. Test cases shall ensure
that the software application properly handles abnormal conditions and credible software application
failures. Additionally, test cases shall ensure the software application does not perform adverse
unintended functions nor degrade other software applications running in the operating environment.
Review of the online user guide on the general syntax required for Cardinal is sufficient background
for the creation of the test case.

Each test case will:

• Define the requirement that the test satisfies
• Reference one or more design documents
• Reference at least one of the following:

o An issue that motivated the associated test case.
o The PR that implemented the test case.
o The revision when it was created.

Acceptance criteria for each test are defined in the test case definition.

9.5.2 Software Test Execution
Testing is performed automatically by a GitHub continuous integration (CI)/continuous delivery
(CD) Runner and CIVET [14] as part of the change control process when a contributor creates a PR.
Table 9.1 summarizes the various levels of testing that occur during the change-control process.

CIVET automated testing will indicate successful execution of test cases. This ensures that Cardinal
demonstrates adherence to the documented requirements and that the software produces correct
results.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 21 of 32

Table 9.1 Summary of testing and reviews that occur during the change control process for
Cardinal.

Step Description Who What
1 PR Testing Automated

(CIVET)
This testing is executed when a contributor submits a
PR through GitHub. The proposed change is checked
for adherence to coding standards, compiled, and
tested. This step also evaluates the compatibility of
Cardinal in the MOOSE ecosystem. The test results are
reported as comments and status updates on the PR
within GitHub. See Section 9.8.2.3 for details.

2 Code Review Independent
reviewer

All code modifications to the repository go through a
review by an independent reviewer of the CCB, as
detailed in Section 9.4.1. After approval the PR is
merged into the development branch (“devel”) of the
repository.

3 Development
Branch Testing

Automated
(CIVET)

This step reevaluates test cases to ensure that merged
PRs are compatible. This step also evaluates test cases.
If successful, the changes are automatically merged to
the stable branch. If not, a new PR must be created to
correct the problem. The merge to the stable branch
(“master”) results in a revision.

4 Documentation Automated
(GitHub
Runner)/Software
Manager

The Cardinal documentation, which is automatically
compiled for the new revision, is made available by
one of the software managers by pushing to the website
with each release, or sooner if deemed necessary.

5 Release Software
Managers

As necessary, the release process will be followed to
establish baseline as described in Section 9.6.

9.5.3 Test Results
Test results are accessible from the RTM and are readily available to the independent reviewer
during the review process discussed in Section 9.4.1. Each test case defines the information that shall
be recorded in a test result. Test results for each release are managed as defined in Section 9.6.

9.5.4 Test Results Evaluation
Test-result evaluation occurs during the evaluation of a PR and is performed by an independent
reviewer of the CCB. It entails viewing the test results provided by CIVET. Because each test case
defines a requirement, if all test cases pass then all requirements have been satisfied. This removes
the burden of having to determine if test cases meet acceptability requirements.

9.5.5 Test Records
The generated test reports are maintained as test records with each release as outlined in Section
9.6.3.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 22 of 32

9.6 Version Release
Software intended for use in a quality setting must undergo the release process detailed in this
section. The releases of Cardinal are supported for at least the duration between one release and the
next.

Revisions present in the repository, as detailed in Table 9.1, are not intended to be used in a safety or
quality setting. The revision is provided “as-is,” and no guarantee of functionality or performance of
a revision is provided. Hence, a release of Cardinal must depend on a release of MOOSE.

ANL is not a qualified supplier of safety software. As such, software released in accordance with
this section requires the end user to perform additional end-use qualifications and/or dedication prior
to the software being used in a safety or quality setting.

9.6.1 Release Candidate Identification and Control
Any revision can be selected as a candidate for release for a quality setting.

9.6.2 Release Review
The candidate revision undergoes a release review as detailed in this section. One of the software
managers, who shall be familiar with the design, verifies that all test cases have passed under all
relevant configurations defined in the STP, and reviews each of the documents identified in Section
5 to verify that they are accurate and complete.

One of the software managers shall create a release log that includes what is relevant and important
for acceptability of the software product. The following information, which is not included in the test
results, is included with the release during approval.

• Date of the test results.
• Person evaluating the test results.
• Evidence that any unexpected or unintended test results have been dispositioned.
• Any actions taken in connection with any deviations from this plan.
• A list of all configuration items, as defined in Section 7.1, with the following exception: (1)

configuration items in the repository and (2) software libraries. The ability to list the
configuration items in the exceptions is inherent to the version control system.

o A list of the platforms/version and all the support software and libraries will be made
easily accessible on the main page.

• Evidence that all software quality documentation listed in Section 5 has been reviewed for
completeness and consistency.

• Acceptability.

9.6.3 Release Approval
Following the successful completion of testing, one of the software managers approves the release
by:

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 23 of 32

• Creating a new labeled branch from the revision. The creation of this branch prohibits further
development or modification of the release. The branch is tagged with the unique identifier
for the release in accordance with Section 7.3.

• Adding the release log to the labeled branch.
• Adding the associated test results to the labeled branch.

Completion of these operations for Cardinal establishes a release and represents the approval of the
release. Each release is added to the controlled baseline. Based on the inherent capabilities of the
repository and the release log, the configuration items for a specific release are accessible given a
unique tag.

Upon release approval, a copy of the repository documentation for the release may be made
available. Note that this is a copy of the content that exists in the release and is added for
convenience.

Releases may receive patches to resolve defects via an amended release but may not receive new
enhancements. Patches are managed in accordance with Section 9.8.2 and named as detailed in
Section 7.3.

9.7 Software Acceptance
It is incumbent upon any organization relying on Cardinal to conduct final acceptance testing for
their specific end-use prior to implementing any release in their software environment.

9.8 Operations and Maintenance
After release, use of Cardinal shall be controlled in accordance with the user organizations approved
procedures and instructions.

9.8.1 Problem Reporting and Corrective Action
Any user can report a problem. A problem should be reported in one of three ways as detailed in the
CCI (see Section 9.8.3):

• Direct communication
• Creation of an issue
• Creation of a PR (the GitHub implementation for CRs)

In the event that the problem is reported as a direct communication to the CCB, a problem will be
evaluated as either a defect, an enhancement, or a problem that was reported by mistake (a user
mistake). The categorization is reported to the user as detailed in Section 9.8.3.

If a problem is determined to be a defect, an issue will be created by a member of the CCB (if it was
not reported via that mechanism). The change-control process defined in Section 9.8.2 will be
followed.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 24 of 32

If a problem is determined to be an enhancement, an issue will be created by a member of the CCB
(if it was not reported via that mechanism). The change-control process defined in Section 9.8.2 will
be followed.

Communication regarding a defect and corrective action shall be performed as detailed in Section
9.8.3.

The correction actions within the scope of Cardinal are tracked using the change-control process, as
defined in Section 9.8.2. Defect resolution may be tracked via the original PR related to the
modification that led to the defect.

9.8.2 Software Change Control
All configuration items defined in Section 7.1 are under change control. The change-control process
varies based on the configuration item, as defined in Section 7.2. This section details the process for
a change request (CR), also known as a pull request (PR), which is the change-control process for
support libraries and configuration items within the repository.

A change can be initiated because of a defect that must be corrected, or an enhancement due to:

• External or regulatory changes that result in new software requirements
• Internal changes that result in new software requirements or design
• Upgrades for performance, adaptability, etc.
• New technologies that need to be incorporated
• Software refactoring
• Vulnerability patches
• Changes in the operating environment

Ideally, external contributors will communicate with the software managers to work on existing
approved issues that are viewable on GitHub. However, the process is defined to support development
efforts that begin outside of a traditional change-control process. This presents a risk that an external
contributor will propose changes that include complete code implementations and are rejected after
they have expended significant effort. Instructions for contributing code to Cardinal shall be included
in the CCI. Contributors are encouraged to reach out to the software managers prior to implementation.

9.8.2.1 Initiating Changes

The process for initiating a change to Cardinal is flexible, to accommodate external contributors and
encourage the growth of the development community. Thus, changes may be initiated through
unsolicited community-driven efforts.

Initiation occurs in one of two ways. Note that either of the following two initiation mechanisms
requires a template to be completed with the required information for an enhancement or a defect
(see “Enhancements” and “Defects” below):

• Opening an issue.
• Creating a pull request (PR).

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 25 of 32

All issues and PRs shall be evaluated by a member of the CCB and determined to be a defect, an
enhancement, or closed if the initiation was created as result of a user mistake. Both shall include:

• Unique identifying number generated by GitHub.
• The identity of the creator and the creation date.
• Optional comment thread is available to provide feedback and engage in discourse with the

issue submitter.

A member of the CCB shall ensure that the required information (as detailed below) is added to the
issue or PR.

Enhancements

An enhancement shall include the following and shall be recorded in an issue or PR.

• The reason for the change.
• A concise description of the desired change.
• The impact of the change on existing configuration items.

Defects

All defects are captured by creating an issue if it was not previously created, either by the user or a
member of the CCB. Each issue shall capture the following information regarding a defect:

• A concise description of the defect.
• The steps necessary to reproduce the defect.
• The impact of the change on existing configuration items.

A member of the CCB will evaluate the impact of a defect on project resources. If possible, other
unique and/or significant information about the defect that will aid in the evaluation will be
included: for example, limitations and capability difference between versions or anticipated new
versions. The issue shall be tagged as a “defect” with GitHub.

A member of the CCB will determine the level as defined below, for each issue that is a defect and
evaluate the impact on Cardinal.

• Significant. Issues affecting the operation or execution of the code, with a high possibility of
significantly affecting the accuracy of the results.

• Normal. Issues affecting the operation or execution of the code, but with a low possibility of
significantly affecting the results.

• Minor. Issues that do not affect the accuracy of the results.

The defect resolution will be contained within a PR and be associated with the issue.

9.8.2.2 Implementing Changes

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 26 of 32

The GitHub PR process is followed for all CRs. This process incorporates the agile software
development life cycle, including requirements, design, implementation, testing, and independent
review.

Any contributor can choose to work on a particular issue by associating the issue with a PR in
GitHub. A listing of all issues is available through GitHub.

If the PR requires code changes, the independent reviewer of the CCB will ensure appropriate test
cases, requirements, design documentation, and appropriate cross-referencing are all included within
the PR. The tests performed by CIVET as defined in the STP enforce the inclusion of each of these
components.

The software managers may require a schedule to be established for a CR that includes planning for
project funding, labor, and evaluation of impacts to work activities.

9.8.2.3 Cursory Evaluation

Once the CR is implemented, CIVET begins the process of running checks on the proposed changes.
Namely to the extent possible the coding standards are enforced via code style checks, proper issue
refencing, spacing, size checks, etc. as defined in the STP. These are performed to provide
expeditious feedback to the contributor. This process simplifies the job of the independent reviewer
because evaluation of changes is generally deferred until testing is completed.

Table 9.1 provides a depiction of the testing and reviews associated with the change-control process
for a PR. It is important to note that not every approved PR results in a release. The PR process in
Steps 1-4 in Table 9.1 can occur many times prior to a release (Step 5).

9.8.2.4 Evaluating Changes

Deferring the evaluation until testing is complete provides assurance to the reviewer that impacts are
indeed within the expected scope for a particular PR.

The independent reviewer controls and is responsible for the evaluation and disposition of proposed
changes for all configuration items within the repository. The independent reviewer will consider the
impact of the proposed change and assign actions appropriate to the level of impact. If the proposed
change is disapproved, the decision will be noted on the PR. If additional information is needed, it
will be noted and returned to the contributor for completion. The contributor is then responsible for
editing the content as requested by the independent reviewer.

It is the responsibility of the contributor to monitor the PR for communications.

There is no established time for review of the PRs; however, consideration should be given to the
priority established by the CCB.

9.8.2.5 Approving or Disapproving Changes

After a PR is reviewed, the independent reviewer will determine if the proposed change will be
approved or disapproved or additional work will be requested. The decision (following the

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 27 of 32

definitions in Section 7.5), the name of the CCB member giving the final disposition, and the date of
the disposition shall be recorded (this is automatic within GitHub).

If approved, the proposed changes associated with the PR are merged into the development branch
(“devel”) of Cardinal. The resulting modification will follow the process shown in Table 9.1 and
become part of a revision. The change will be included in the next release, as detailed in Section 9.6.

9.8.3 Communication
Methods of communication with contributors and users of Cardinal shall be specified in the CCI.

The CCI shall include:

• Instruction for reporting a problem and monitoring corrective actions (see Section 9.8.1)
• Instruction for contributing to the software, see Section 9.8.2.

9.9 Software Retirement
Users of Cardinal shall be responsible for the retirement of software for their intended use using their
internal procedures.

The software managers shall determine when support of Cardinal shall be discontinued. At that time,
a retirement plan shall be documented and approved to describe how the following activities will be
completed, as applicable:

• This plan and any associated controlled documents will be updated to reflect the change in
disposition. If all software within the scope of this plan is retired, this plan and all associated
controlled documents will be managed in accordance with the records disposition schedule.

• The retired Cardinal will be archived within the GitHub infrastructure to allow access “as-is”
in a read-only state and disallow any future contributions or changes to configuration items.

• All affected websites and links to the retired software shall be updated to reflect the status of
the software.

• Support will be discontinued, and an announcement will be posted to the Cardinal website
and repository to serve as notification to users.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 28 of 32

10 Standards, Practices, Conventions, and Metrics

10.1 Software Coding Standards
Any new software changes and developments in Cardinal shall follow a coding standard on all
source code within the repository. The coding standards shall be detailed in the SCS. The
independent reviewer of a CR shall ensure that the applicable coding standards has been followed
before the proposed change(s) are merged.

10.2 Methods, Techniques, and Tools
As Cardinal, a MOOSE-based application, continuously evolves, it is necessary to use modern
software-development tools, methodologies, and techniques to maintain its usefulness to the user
community. Methods, techniques, and tools are identified below.

A test-driven development process is used through pull requests (PRs) as described in Section 9.
Within this process, various techniques – including code coverage analysis; regression, error, and
validation testing; peer reviews; and automated builds – enable contributors to perform rapid,
incremental changes to meet project milestones. The process is enabled by modern tools such as the
Git version control system, GitHub repository services, and a range of Python-based tools for testing
and documentation.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 29 of 32

11 Support Software
The use of support software for Cardinal shall be limited to the items identified in this section.

11.1 GitHub Repository
The GitHub service provides online distributed development using Git-based repositories. Services
include issue tracking, testing integration, push notifications for events, permissions, and backup.

11.2 System Software
System software is identified by the software managers and documented within the results associated
with a release, as detailed in Section 9.6.2.

Any changes to associated system software will be tested using GitHub runners and CIVET to ensure
that requirements for Cardinal are satisfied.

11.3 Software Tools
The following software tools are used for obtaining test results for a release. The tools used are
documented in the test results. These tools follow the procedures detailed in the MOOSE SQAP in the
same capacity as a MOOSE-based application, with the following exceptions.

• The repository documentation associated with the tools are limited to the RTM and SDD.
• A release of the tools is not required. Cardinal uses a revision of the tools as noted in the release

log.
• The reviewer is not required to be independent and the review may be conducted by the same

member of the CCB who initiated the PR.
• PRs initiated by a contributor who is not a member of the CCB require a review by a member

of the CCB.

11.3.1 Continuous Integration Verification Enhancement and Testing (CIVET)
CIVET provides a client/server continuous integration testing services for MOOSE-based
applications. CIVET is able to integrate with GitHub repository services. CIVET maintains a database
of records and versions all changes to testing recipes, making it ideal for working with configuration
items. CIVET is maintained as a public repository on GitHub. The version of CIVET used for a release
is recorded in the release log (see Section 9.6.2). [14]

11.3.2 MOOSE Tools
The testing and documentation software used by MOOSE and Cardinal is custom-developed software
and is maintained as part of the public MOOSE repository on GitHub. These tools are used by CIVET
to run the test cases and obtain test results as well as build the repository documentation. Therefore,
any change to the use of the testing or documentation with respect to integrating with Cardinal follows
the change-control process detailed in this document.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 30 of 32

12 Records Collection, Maintenance, and Retention
The repository and development quality records identified in Section 5 will be held within GitHub
repositories, while the static documentation will be maintained via official Argonne systems
(PANDA or otherwise).

Artifacts related to Cardinal that are produced during the software development life cycle meet the
definition of records and do not meet the definition of nonrecords. Therefore, everything produced
shall be managed as a record, and segregation of records from nonrecords is not applicable to this
plan.

12.1 Records Authentication
Quality records are authenticated by the SQA lead by verifying that all documents identified in
Section 5 are accurate and complete in accordance with Section 9.6.3. For records retained in
GitHub, the PR process described in Section 9.8.2 includes the approval cycle and the control points
where approval signatures are captured.

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 31 of 32

13 Training
The software managers, in coordination with line management, are responsible in ensuring that
personnel who work on Cardinal are qualified and trained in accordance with LMS-PROC-16
“Mandatory Training.” Each role identified in Table 4.1 in this plan shall complete the training
identified in Table 13.1.

Table 13.1 Training/Qualification Requirements by Role
Role* Course:

EQO203
Plan:

Cardinal-SQAP
Required Read

Course:
RDHERD01

Course:
0INL1862

Cardinal
CCB

Training
Software
Managers

Required Required Required Required N/A

SQA Lead Required Required Required Required Required

CCB
Member

N/A Required Required N/A Required

 * See Table 4.1 for a mapping of responsibilities back to roles in this document.
Note that one individual may hold more than one role (e.g. Software managers
may also be a CCB member).

• EQO203: Quality Assurance Program Plan (QAPP) General Training: This course presents an

outline of the Quality Assurance Program Plan (QAPP) to provide awareness of the DOE
approved institutional QA Program for ANL.

• Cardinal-SQAP Required Read: A reading of this software quality assurance plan (SQAP) is

required for all roles to ensure Cardinal team members and management gain a basic
understanding of the processes that ensure that software quality is embedded as software is
developed. Compliance to this SQAP is obligatory throughout the software life cycle,
including planning, requirements, acquisition, design, implementation, acceptance testing,
maintenance and operations (M&O), and retirement.

• RDHERD01: Introduction to MOOSE and MOOSE-based Applications Development

Processes: Course providing basic information on MOOSE and MOOSE-based applications
development processes, including roles and responsibilities, change-control process, and the
release approach detailed in the MOOSE SQAP.

• 0INL1862R: MOOSE and MOOSE-based Applications Project Lead and SQA Lead

Training: Course providing detailed information for the project leads on the MOOSE and
MOOSE-based applications development processes included roles and responsibilities,
change control process and the release approached detailed in the MOOSE SQAP. Course
also includes detailed information for the SQA lead related to their specific roles and
responsibilities.

• Cardinal Change Control Board (CCB) training: training to review the SQAP (this document)

Cardinal Software Quality Assurance Plan
ANL/NSE-25/65
Effective Date: October 1, 2025

Page 32 of 32

and all related SQA documents and procedures to ensure understanding of responsibilities.

Courses that are administered via TMS will retain record of completion for ANL employees. For the
INL/MOOSE trainings, personnel shall inform the SQA lead and one of the software managers in
writing that they have read and understood the material. Personnel who attend the CCB training will
be recorded on an attendance list that is maintained by the SQA lead.

CCB members must complete training prior to beginning work. Other roles may conduct work prior
to all training being completed under supervision of an individual with equivalent training.

A list of personnel who are assigned a specific role will be maintained and controlled by the
software managers. This list shall be reviewed and updated with at least each release, or as deemed
necessary by the software managers.

When this plan changes, the software managers and SQA lead will evaluate the extent of the change
and determine if additional or re-taking of any training is required. Training will be developed and
assigned accordingly.

www.anl.gov

ARGONNE NATIONAL LABORATORY
¨ U.S. Department of Energy research facility
¨ Operated by the UChicago Argonne, LLC
¨ Midwest’s largest federally funded R&D facility
¨ Located in Lemont, IL, about 25 miles (40 km)

southwest of Chicago, IL (USA)
¨ Conducts basic and applied research

in dozens of fields
¨ Unique suite of leading-edge and rare scientific

user facilities

CONTACT
Argonne National Laboratory
9700 South Cass Avenue
Lemont, IL 60439
630-252-2000

	cardinal-sqap-cover
	Cardinal-SQAP-rev0-body
	cardinal-sqap-end

		kkiesling@anl.gov
	2025-11-08T07:58:12+0000
	Signed with Box Sign by Kiesling, Kalin (kkiesling@anl.gov)

		woodford@anl.gov
	2025-11-08T07:58:13+0000
	Signed with Box Sign by Woodford, John B. (woodford@anl.gov)

		dshaver@anl.gov
	2025-11-08T07:58:14+0000
	Signed with Box Sign by Shaver, Dillon R. (dshaver@anl.gov)

		anovak@anl.gov
	2025-11-08T07:58:15+0000
	Signed with Box Sign by anovak@anl.gov

