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Abstract

Computation of adsorption and transition state energies for a large number of
surface intermediates for numerous active site models pose significant computational
overhead in computational screening of catalysts. Machine learning (ML) techniques
can be used to predict part of these energies. To predict the energies, ML models need
to be fed appropriate metal and species descriptors. For complex surface chemistries,
the structures of the intermediate species can vary greatly. In this paper, working with
the hydrodeoxygenation of succinic acid on six different metal surfaces, we have studied
the effect of linear and non-linear ML models used along with pen-and-paper based
species descriptors and two categories of metal descriptors on two different categories of
intermediate species: chain and ring. More specifically, our computations include the
prediction of chain species when trained on only chain species and also when trained
on both chain and ring species. Similar computations were performed for predictions
of ring species. In each case, results of linear ML models were compared with kernel
based non-linear models. Our results indicate that ring species data does not improve
the prediction of chain species. Similarly, chain species data does not improve the
prediction of ring species. The use of non-linear ML models, however, did help to
minimize the prediction errors compared to the linear models. The study also shows
that electronic or adsorption energy based metal descriptors along with bond count
based species fingerprints can achieve a mean absolute error (MAE) of less than 0.2 eV

for complex chain molecules when used with an appropriate machine learning model.

1 Introduction

For discovery of heterogeneous catalysts through computational catalyst screening, microki-
netic reaction models are usually developed that is based on parameters computed from
density functional theory (DFT) and transition state theory (TST)**. There is a large com-
putational cost associated with the computation of adsorption and transition state energies

for each elementary reaction in the reaction network on different metal surfaces®. When



energy data for each intermediate and transition state species are available for a number
of surfaces, the energies on other surfaces have been predicted using typically linear scaling

relations based on metal descriptors®™.

However, when all species data are not available
for any metal surface, the predictive model must incorporate species descriptors. Previous
studies®"Y have shown that non-linear ML models outperform linear models in this case. It
has also been shown™# that flat molecular fingerprints based on SMILES notation®® give
good predictive results when training and testing sets contain similar sized molecules.

In this paper, we have studied and compared the predictive results between chain struc-
tured intermediate species and ring structured species on different metal surfaces for different
splitting of train and test sets. Specifically, we worked with the data of adsorption energies
for surface species for the hydrodeoxygenation of succinic acid on six different metal surfaces
(Pd, Pt, Rh, Ru, Cu, and Ni). Using two different sets of electronic metal descriptors’*
and adsorption energy-based metal descriptors, a flat constant sized SMILES based species
descriptor, and both linear and kernel based non-linear ML models, we have run predictions
for four different splittings of train and test sets. First, when training on a random subset of
the chain species and predicting on the rest of them for each metal surface; second, similar
to the first case but with training and testing performed on ring structures; third, training
on all the ring structures and a random subset of chain structures, and testing on the rest
of the chain molecules; fourth, training on the full chain data and a random subset of ring
data, and predicting on the rest of the ring data. The key questions that the current study
seeks to answer are: what is the predictive accuracy of pen-and-paper based descriptors for
complex ring structured intermediates that absorb at multiple surface sites and thus whose
adsorption geometry is difficult to describe without the use of coordinates that are unknown
in a prediction model? Does inclusion of chain data help with the prediction of ring struc-
tures, and vice versa? In terms of accuracy, is there any advantage of using electronic metal
descriptors over adsorption energy based ones? And how linear and non-linear ML models

compare for predictions of both chain and ring structured surface intermediates? Thus, the



goal of the paper was not to develop any novel descriptor or machine learning model. In-
stead, this is a comparative study on the efficiency of established predictive models for chain

and ring species on metal surfaces.

2 Methodology

In this section, we begin with a description on data collection and preparation. Then, we
discuss the choice of metal descriptors, species descriptors, and ML models, respectively.
Finally, the process of splitting the combined chain and ring data into training and testing

set is explained.

2.1 Data Collection and Data Preparation

Since adsorption energies vary widely based on the structure of the metal surface!, we have
only used data of the hydrodeoxygenation of succinic acid for similar, closed-packed metal
surface structures in the current work: Pd(111), Pt(111), Rh(111), Ru(0001), Cu(111),
Ni(111); all were obtained from VASP" calculations with PBE-D3 functional. Data consists
of 186 intermediate species for both ring and chain structures for each of the 6 metal surfaces.

The energy data were prepared to have the same reference values. For example, the

adsorption energy for an intermediate surface species C, H, O, was calculated as:
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EDPFT is the energy of the free site (clean slab) and ELF?T denotes the adsorption

Here,
energy of the species X from the DFT calculations. The species energies are summarized
in the Table S1 of the supporting information and Coordinate files of all optimized species

structures on all metal surfaces are also available in the supporting information.

2.2 Computational Methods

All calculations were carried out using the Vienna Ab Initio Simulation Package (VASP)
1689 hased on density functional theory (DFT) with the projector augmented wave (PAW)
method“”2L,  The generalized gradient approximation (GGA)“? with the Perdew-Burke-
Ernzerhof (PBE) functional*®*#* was used to treat the electron exchange and correlation
effects. An energy cutoff of 420 eV is used for all calculations and the energy convergence
criterion was set to 1077 eV. All structures were relaxed until the Hellmann-Feynman force
on each atom were smaller than 0.03 ¢V A~!. Considering that dispersion interactions
have significant effect on the adsorption and desorption processes of long-chain hydrocarbon

29200 and that the PBE functional is unable to describe these van der

molecules on surfaces
Waals interactions, we included them into the calculations based on Grimme’s DFT-D3
methodology“®. To conduct the calculations, a 4x4 metal (111) surface slab with four metal
atom layers (64 metal atoms in total) was constructed to simulate the metal surface. A
15 A vacuum gap was set to the direction perpendicular to the surface plane to avoid the
interactions between the periodic slabs. For all surface calculations, the bottom two layers
were fixed to their bulk positions while the top two layers were fully relaxed in all directions.
The Brillouin zone integration was sampled by 3x3x1 k-point mesh using the Monkhorst-

Pack scheme“”. Dipole corrections were applied to the direction perpendicular to the surface

and all the calculations on the Ni(111) surface are spin-polarized.



2.3 Metal Descriptors

Two different categories of metals descriptors were used in our work. First, we used the
published values of electronic metal descriptorsi* for the six metal surfaces used in our
study. The eight metal descriptors used are: Pauling electronegativity, ionization potential,
radius of d-orbitals, surface work function, d-band center, d-bandwidth, d-band filling, and
density of sp-states at the Fermi level. Second, our predictive trials also included species
adsorption energy based metal descriptors (adsorption energies of CHCHCO, OH, and
C) used in previous works®. We note that electronic descriptors have the advantage over
adsorption energy descriptors that they can be obtained using look-up tables rather than
performing expensive adsorption energy calculations for all surfaces. Also, there is hope that
these descriptors are less surface chemistry dependent given their rather general nature. On
the other hand, the catalysis community has a lot of experience with the use of adsorption

energies as metal descriptors that can be very reliable for some chemistries® 2822,

2.4 Species Descriptor

Species descriptors can also be divided into two broad categories: coordinate based and non-
coordinate based. The coordinate based descriptors are computed using distance measures
between each pair or triplet of atoms inside the species. Some of the commonly used methods
in this category are Coulomb matrix®” and bag-of-bonds®!. The disadvantage of using atomic
coordinates is that they have to be obtained by DFT or other semi-empirical methods which
defeats the purpose that we do not want to run these expensive computations for all species.
The other category is based on the count of different bond types around each atom™! or in
the molecule as a whole®2.

In the current study, we have used the constant-sized flat molecular fingerprint based on
previously published work™ which is similar to extended connectivity fingerprint (ECFP)"2
and other constant sized molecular descriptors®?. The fingerprint, obtained from the molecule’s

SMILES notation, consists of the number of different types of bonds in the molecule. Here,
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Figure 1: Molecular fingerprint for a ring structured surface species. Here, Cy denotes a saturated carbon
(no free valence). C1, Cy, and C3 denote carbon atoms with one, two, and three free valencies, respectively.
Similarly, Oq is a saturated oxygen whereas O; is an oxygen atom with one free valence. The fingerprint
vector (shown at the bottom of the image) contains the number of different saturated or unsaturated atoms,
and the number of bonds between them.
the fingerprint vector contains more information than what is available with a basic bond
count scheme which just calculates the number of C-C bonds, or the number of C-O bonds
and so on. Instead, each carbon or oxygen atoms are denoted with the number of free va-
lencies and the fingerprint is made up of these more granular-level bond counts such as how
many oxygen atoms with one free valence is connected to saturated carbon atoms etc. The
fingerprint is described in Figure [If with an example.

We note that particularly for ring species (but also for longer chain species), describing
the specific adsorption site is not easily done with pen-and-paper descriptors that do not
use coordinates. Under such conditions, we are most interested in the most stable adsorp-

tion configuration and an additional objective of this study is investigating what accuracy

can be achieved for databases that only contain the most stable adsorption configuration



of various adsorbed species with descriptors (fingerprints) that do not explicitly distinguish
adsorption configurations (indirectly, the species descriptors can probably describe the ad-
sorption configurations in that adsorbate species with e.g. carbon and oxygen atoms with
one or two unpaired electrons (described in our fingerprint as C, Cy and O;) along with the
corresponding C}-Cy bond and C1-O; bond indices etc. describe sites within the adsorbate

that prefer forming bonds with specific metal surface sites).

2.5 Machine Learning Models

The machine learning models in the current work can be broadly divided into two categories
- linear models and kernel based non-linear models. The goal was to compare the effects
of different settings of species descriptors and metal descriptors on these categories of ML
models.

The linear models used were linear ridge regression and lasso®¥. Both methods are linear
regressions but with different types of regularizers: L2 regularizer for ridge and L1 for lasso.
The kernel based models used were kernel ridge regression (KRR)"*, support vector regression
(SVR)#?, and Gaussian process (GP)““. The GP model has an additional benefit over the
other models in that, besides the predictions, it also supplies the uncertainty measures around
the predictions that can be useful in later stages during the calculation of a catalyst’s turnover
frequency or other macroscopic quantities of interest®®®. More advanced and complex ML

1289745 or molcular graphs#®4” have

models based on different structures of neural networks
also been proposed but have not been used here. As will be shown later, our predictive trials
indicate that all kernel based models with tuned hyperparameters outperform linear models.
The results of kernel based models, however, has no statistically significant difference among
themselves. This finding is consistent with previous works®, and suggests there is no basis
to prefer one kernel based model over another in terms of prediction accuracy. However, it

should be pointed out that the GP provides the extra information about the uncertainty

of the predictions compared to the other models, and hence can be of importance for some



scenario where one has to study the effects of uncertainty propagation on the macroscopic
quantities of interest.

A GP treats each data point as a random variable where any subset of these variables*®
form a multivariate normal distribution. The relation between any pair of data points is
defined by the kernel?”. GP predicts the values for test points given the values of the
training points. The uncertainty of the prediction is higher in the region of data-space where
the concentration of training points is low. And the opposite happens in the regions where
there is a high number of training points. Support vector regression (SVR) predicts based
on a subset of the training data which are called support vectors. Kernel ridge regression
(KRR) provides closed form estimates while using a different loss function compared to SVR.
The hyperparameters of the models such as which kernel to use, and the parameters of the
kernels such as length-scale were tuned using 5-fold cross-validation®”. We found Gaussian
kernels to perform better than the Laplacian kernel®. The hyperparameters were tuned
using cross validation on the training set. The tuned hyperparameters were then used to

predict on the testing sets to yield the performance measure of a trial run. The performance

measures were averaged over all the trial runs to get the final prediction results.

2.6 Splitting Data into Training and Testing Sets

Using both linear and non-linear ML models, our predictive trials ran for four different types
of splitting of the combined dataset of chain and ring structured intermediate species.

First, for each metal surface, we trained on a random subset of the chain species and
predicted on the rest. Out of the 186 species for a metal surface, 160 were randomly chosen
and added to the training set, the remaining 26 species were added to the testing set - with
the process repeated for each metal. The training set thus obtained was used to train each
of the ML models and in each case the predictions were done on the testing set.

Second, similar to the first case but working with ring structures instead of chain struc-

tures, we split the 186 ring species for a metal surface randomly into 160 to be added to



the training set and the remaining 26 to be added to the testing set and finally perform the
usual training of ML model on the training set and then predict on the testing set.

Third, the chain data was split into 160-26 as in the first case and appended to the
training and testing set. This time, however, all the ring structure data are appended to the
training set. This is the case where we have both ring and chain structures in training but
only chain structures in the testing set. The prediction results compared with the first case
would ascertain whether there is any statistically significant benefit obtained by including
the ring structures in the training.

Fourth, similar to the third case but predicting on ring structures instead of chain struc-
tures, we performed the 160-26 split of ring structure data for each metal, then at the end
appending all of the chain data to the training set, and testing on the rest of the ring
structures. Again, this will help us to see if inclusion of chain data increases the prediction

accuracy on ring structures or not.

3 Results and Discussion

The chain structure data for the hydrodeoxygenation of succinic acid contains information
on 186 intermediate species across 6 metal surfaces making the total size of the chain data
set 1116. Similarly, there is a 1116 sized data set for the ring structured species. Results of
the predictions on the chain species are shown in Figure [2] and Table [I} and those of ring
species are shown in Figure [3] and Table 2l For both the tables, the first ten rows show
predictions when using electronic metal descriptors whereas the bottom ten rows are for
energy based metal descriptors. There is no apparent advantage of using adsorption energies
as metal descriptors relative to the tabulated electronic metal descriptors. For each set of the
ten rows, the first five show predictions for linear and non-linear ML models when training
on either chain or ring species and predicting on the same category of species; whereas the

second five rows are for predictions of linear and non-linear ML models when training on

10
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Figure 2: Predicted adsorption energy (after referencing) vs actual adsorption energy (after referencing)
for predictions of chain structured species. The top row shows prediction results for linear (on the left)
and non-linear SVR, (on the right) models when predicting chain data while training on chain data. The
bottom row shows prediction results for linear (on the left) and non-linear SVR, (on the right) models when
predicting chain data while training on the rest of the chain plus all the ring structure data.

both ring and chain species, and predicting on either chain (for the first table) or ring species
(for Table 2).

For each case, the whole process is repeated 100 times each time selecting a different
random subset. The absolute error (AE) for each run is obtained by taking the absolute
difference between the predicted and the real energies. For both the tables, the mean and
standard deviation of these absolute errors are shown in the fourth and the fifth columns,
respectively. Repeating the experiments 100 times also gives us hundred different MAEs.
The standard deviation of these MAEs are shown in the sixth column and are generally quite

small. For both the Figures [2]and [3] the scatter plots show a random subset of prediction

results of 100 different runs on the randomly selected test sets for all metal surfaces.
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Figure 3: Predicted adsorption energy (after referencing) vs actual adsorption energy (after referencing)
for predictions of ring structured species. The top row shows prediction results for linear (on the left) and
non-linear SVR (on the right) models when predicting ring data while training on ring data. The bottom row
shows prediction results for linear (on the left) and non-linear SVR (on the right) models when predicting
ring data while training on the rest of the ring plus all the chain structure data.

The key takeaway from these results are: first, the prediction MAE for ring species using
kernel based ML models such as SVR is around 0.2 eV; second, inclusion of ring data when
predicting chain and inclusion of chain data when predicting ring does not help to improve
the predictions (to ensure this was not because of different data distributions between the ring
data and the chain data, we performed data normalization, but it did not have a statistically
significant difference on the prediction accuracy); third, non-linear models outperform linear
models; and fourth, the difference between prediction accuracy of electronic metal descriptors
and adsorption energy based metal descriptors are not statistically significant.

Another observation on the results is that the prediction errors on ring species are signifi-

cantly higher than on chain species. One possible explanation for this is that dehydrogenated
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Table 1: Results of prediction of chain structured species. The first five rows and the rows
11 to 15 show results for different ML models when training on a randomly selected subset of
chain data and predicting on the rest of the chain species for all metal surfaces. Rows 6 to
10 and 16 to 20 show results for linear and non-linear models when training on a randomly
selected subset of chain data and all of ring species, and predicting on the rest of the chain
species for all metal surfaces.

|| Case Metal Desc | Model | MAE (eV) | SD of AEs (V) | SD of MAEs (eV)
1 | Chain to Chain Electronic | Ridge | 0.247 0.200 0.014
2 | Chain to Chain Electronic | Lasso | 0.251 0.243 0.017
3 | Chain to Chain Electronic | KRR | 0.130 0.121 0.009
4 | Chain to Chain Electronic | GP 0.133 0.119 0.009
5 | Chain to Chain Electronic | SVR | 0.126 0.123 0.008
6 | Chain plus Ring to Chain | Electronic | Ridge | 0.315 0.250 0.019
7 | Chain plus Ring to Chain | Electronic | Lasso | 0.321 0.249 0.017
8 | Chain plus Ring to Chain | Electronic | KRR | 0.154 0.131 0.008
9 | Chain plus Ring to Chain | Electronic | GP 0.137 0.129 0.009
10 | Chain plus Ring to Chain | Electronic | SVR | 0.139 0.129 0.010
11 | Chain to Chain Energy Ridge | 0.245 0.204 0.015
12 | Chain to Chain Energy Lasso | 0.245 0.208 0.016
13 | Chain to Chain Energy KRR | 0.130 0.122 0.010
14 | Chain to Chain Energy GP 0.129 0.124 0.011
15 | Chain to Chain Energy SVR | 0.127 0.124 0.010
16 | Chain plus Ring to Chain | Energy Ridge | 0.318 0.245 0.020
17 | Chain plus Ring to Chain | Energy Lasso | 0.315 0.240 0.018
18 | Chain plus Ring to Chain | Energy KRR | 0.158 0.134 0.009
19 | Chain plus Ring to Chain | Energy GP 0.137 0.139 0.011
20 | Chain plus Ring to Chain | Energy SVR | 0.136 0.141 0.009

ring species prefer to form strong bonds with specific sites of the surface metal atoms (atop
versus bridge versus three-fold hollow); however, this leads to significant strain in the ring
structure, and the optimized structures, for significantly dehydrogenated ring species such as
adsorbed C,0 on Pt(111), possess often both elongated and/or compressed bonds within the
ring atoms and the metal sites. Figure [4] illustrates that the spread of the energy values is
bigger for ring species compared to the chain species in our dataset. Also, the ring structure
data contain more outliers, and we found that these high energy outliers are consistently
significantly dehydrogenated species with elongated and/or compressed bonds. Fingerprints
that only consider nearest neighbor atoms are limited in capturing the properties of such
species and more complex fingerprints are needed if it is desired to describe the properties

of deeply dehydrogenated surface ring species. However, given that these species are usu-
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Table 2: Results of prediction of ring structured species. The first five rows and the rows 11 to
15 show results for different ML models when training on a randomly selected subset of chain
data and predicting on the rest of the chain species for all metal surfaces. Rows 6 to 10 and
16 to 20 show results for linear and non-linear models when training on a randomly selected
subset of ring data and all of chain species, and predicting on the rest of the ring species for
all metal surfaces.

‘ ‘ Case Metal Desc ‘ Model ‘ MAE (eV) ‘ SD of AEs (eV) ‘ SD of MAEs (V)
1 | Ring to Ring Electronic | Ridge | 0.380 0.336 0.025
2 | Ring to Ring Electronic | Lasso | 0.389 0.342 0.027
3 | Ring to Ring Electronic | KRR | 0.201 0.241 0.019
4 | Ring to Ring Electronic | GP 0.203 0.237 0.019
5 | Ring to Ring Electronic | SVR | 0.192 0.245 0.017
6 | Chain plus Ring to Ring | Electronic | Ridge | 0.440 0.401 0.028
7 | Chain plus Ring to Ring | Electronic | Lasso | 0.428 0.395 0.027
8 | Chain plus Ring to Ring | Electronic | KRR | 0.212 0.242 0.019
9 | Chain plus Ring to Ring | Electronic | GP 0.199 0.254 0.018
10 | Chain plus Ring to Ring | Electronic | SVR | 0.202 0.248 0.018
11 | Ring to Ring Energy Ridge | 0.385 0.331 0.026
12 | Ring to Ring Energy Lasso | 0.392 0.329 0.027
13 | Ring to Ring Energy KRR | 0.203 0.229 0.018
14 | Ring to Ring Energy GP 0.204 0.226 0.020
15 | Ring to Ring Energy SVR | 0.190 0.248 0.018
16 | Chain plus Ring to Ring | Energy Ridge | 0.435 0.401 0.030
17 | Chain plus Ring to Ring | Energy Lasso | 0.434 0.401 0.029
18 | Chain plus Ring to Ring | Energy KRR | 0.209 0.243 0.019
19 | Chain plus Ring to Ring | Energy GP 0.200 0.252 0.017
20 | Chain plus Ring to Ring | Energy SVR | 0.204 0.251 0.018

ally high energy species that are likely not kinetically relevant, and that more training data
are required for models with more complex fingerprints, it might be acceptable to use the
fingerprints of this study and have a higher prediction error for deeply dehydrogenated ring

species.

4 Conclusion

Working with two datasets on the most stable chain and ring structures on six different metals
surfaces, our comparative study on predicting adsorption energies of these two different
structures has revealed some key insights. We have seen that although ring structures had a

higher predictive error, it was still below 0.2 eV when working with simple SMILES based flat
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Figure 4: Box plots comparing the energy distributions in chain and ring datasets. The ring dataset has not
only a bigger spread but also more outliers.

fingerprints and electronic or adsorption energy based metal descriptors along with regular
non-linear ML models. Our results also indicate that the non-linear models perform better
than the linear models when the predictive model requires species descriptor as well as
metal descriptors. Another key outcome from the current study is that information on chain
species do not help in predicting ring species and vice versa for current species descriptors.
We highlight that these results have been obtained with species descriptors that do not
explicitly describe specific adsorption sites, but that we used a database containing only the

most stable adsorption configuration and energy as it is currently typical in many databases.

5 Supporting Information

Energy data and SMILES representation for all species; Species fingerprints; Electronic metal

descriptors; Adsorption energy metal descriptors; Coordinate files for species.
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