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Abstract

Computation of adsorption and transition state energies for a large number of

surface intermediates for numerous active site models pose significant computational

overhead in computational screening of catalysts. Machine learning (ML) techniques

can be used to predict part of these energies. To predict the energies, ML models need

to be fed appropriate metal and species descriptors. For complex surface chemistries,

the structures of the intermediate species can vary greatly. In this paper, working with

the hydrodeoxygenation of succinic acid on six different metal surfaces, we have studied

the effect of linear and non-linear ML models used along with pen-and-paper based

species descriptors and two categories of metal descriptors on two different categories of

intermediate species: chain and ring. More specifically, our computations include the

prediction of chain species when trained on only chain species and also when trained

on both chain and ring species. Similar computations were performed for predictions

of ring species. In each case, results of linear ML models were compared with kernel

based non-linear models. Our results indicate that ring species data does not improve

the prediction of chain species. Similarly, chain species data does not improve the

prediction of ring species. The use of non-linear ML models, however, did help to

minimize the prediction errors compared to the linear models. The study also shows

that electronic or adsorption energy based metal descriptors along with bond count

based species fingerprints can achieve a mean absolute error (MAE) of less than 0.2 eV

for complex chain molecules when used with an appropriate machine learning model.

1 Introduction

For discovery of heterogeneous catalysts through computational catalyst screening, microki-

netic reaction models are usually developed that is based on parameters computed from

density functional theory (DFT) and transition state theory (TST)1–3. There is a large com-

putational cost associated with the computation of adsorption and transition state energies

for each elementary reaction in the reaction network on different metal surfaces4. When
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energy data for each intermediate and transition state species are available for a number

of surfaces, the energies on other surfaces have been predicted using typically linear scaling

relations based on metal descriptors5–7. However, when all species data are not available

for any metal surface, the predictive model must incorporate species descriptors. Previous

studies8–10 have shown that non-linear ML models outperform linear models in this case. It

has also been shown11,12 that flat molecular fingerprints based on SMILES notation13 give

good predictive results when training and testing sets contain similar sized molecules.

In this paper, we have studied and compared the predictive results between chain struc-

tured intermediate species and ring structured species on different metal surfaces for different

splitting of train and test sets. Specifically, we worked with the data of adsorption energies

for surface species for the hydrodeoxygenation of succinic acid on six different metal surfaces

(Pd, Pt, Rh, Ru, Cu, and Ni). Using two different sets of electronic metal descriptors14

and adsorption energy-based metal descriptors, a flat constant sized SMILES based species

descriptor, and both linear and kernel based non-linear ML models, we have run predictions

for four different splittings of train and test sets. First, when training on a random subset of

the chain species and predicting on the rest of them for each metal surface; second, similar

to the first case but with training and testing performed on ring structures; third, training

on all the ring structures and a random subset of chain structures, and testing on the rest

of the chain molecules; fourth, training on the full chain data and a random subset of ring

data, and predicting on the rest of the ring data. The key questions that the current study

seeks to answer are: what is the predictive accuracy of pen-and-paper based descriptors for

complex ring structured intermediates that absorb at multiple surface sites and thus whose

adsorption geometry is difficult to describe without the use of coordinates that are unknown

in a prediction model? Does inclusion of chain data help with the prediction of ring struc-

tures, and vice versa? In terms of accuracy, is there any advantage of using electronic metal

descriptors over adsorption energy based ones? And how linear and non-linear ML models

compare for predictions of both chain and ring structured surface intermediates? Thus, the
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goal of the paper was not to develop any novel descriptor or machine learning model. In-

stead, this is a comparative study on the efficiency of established predictive models for chain

and ring species on metal surfaces.

2 Methodology

In this section, we begin with a description on data collection and preparation. Then, we

discuss the choice of metal descriptors, species descriptors, and ML models, respectively.

Finally, the process of splitting the combined chain and ring data into training and testing

set is explained.

2.1 Data Collection and Data Preparation

Since adsorption energies vary widely based on the structure of the metal surface1, we have

only used data of the hydrodeoxygenation of succinic acid for similar, closed-packed metal

surface structures in the current work: Pd(111), Pt(111), Rh(111), Ru(0001), Cu(111),

Ni(111); all were obtained from VASP15 calculations with PBE-D3 functional. Data consists

of 186 intermediate species for both ring and chain structures for each of the 6 metal surfaces.

The energy data were prepared to have the same reference values. For example, the

adsorption energy for an intermediate surface species CxHyOz was calculated as:

ECxHyOz = EDF T
CxHyOz

− EDF T
∗ − xEC − yEH − zEO

where

EC = EDF T
CH4(g) − 2EDF T

H2(g)

EH = 1
2EDF T

H2(g)

EO = EDF T
H2O(g) − EDF T

H2(g)
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Here, EDF T
∗ is the energy of the free site (clean slab) and EDF T

X denotes the adsorption

energy of the species X from the DFT calculations. The species energies are summarized

in the Table S1 of the supporting information and Coordinate files of all optimized species

structures on all metal surfaces are also available in the supporting information.

2.2 Computational Methods

All calculations were carried out using the Vienna Ab Initio Simulation Package (VASP)
16–19 based on density functional theory (DFT) with the projector augmented wave (PAW)

method20,21. The generalized gradient approximation (GGA)22 with the Perdew-Burke-

Ernzerhof (PBE) functional23,24 was used to treat the electron exchange and correlation

effects. An energy cutoff of 420 eV is used for all calculations and the energy convergence

criterion was set to 10−7 eV. All structures were relaxed until the Hellmann-Feynman force

on each atom were smaller than 0.03 eV Å−1. Considering that dispersion interactions

have significant effect on the adsorption and desorption processes of long-chain hydrocarbon

molecules on surfaces25,26 and that the PBE functional is unable to describe these van der

Waals interactions, we included them into the calculations based on Grimme’s DFT-D3

methodology26. To conduct the calculations, a 4x4 metal (111) surface slab with four metal

atom layers (64 metal atoms in total) was constructed to simulate the metal surface. A

15 Å vacuum gap was set to the direction perpendicular to the surface plane to avoid the

interactions between the periodic slabs. For all surface calculations, the bottom two layers

were fixed to their bulk positions while the top two layers were fully relaxed in all directions.

The Brillouin zone integration was sampled by 3x3x1 k-point mesh using the Monkhorst-

Pack scheme27. Dipole corrections were applied to the direction perpendicular to the surface

and all the calculations on the Ni(111) surface are spin-polarized.
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2.3 Metal Descriptors

Two different categories of metals descriptors were used in our work. First, we used the

published values of electronic metal descriptors14 for the six metal surfaces used in our

study. The eight metal descriptors used are: Pauling electronegativity, ionization potential,

radius of d-orbitals, surface work function, d-band center, d-bandwidth, d-band filling, and

density of sp-states at the Fermi level. Second, our predictive trials also included species

adsorption energy based metal descriptors (adsorption energies of CHCHCO, OH, and

C) used in previous works8. We note that electronic descriptors have the advantage over

adsorption energy descriptors that they can be obtained using look-up tables rather than

performing expensive adsorption energy calculations for all surfaces. Also, there is hope that

these descriptors are less surface chemistry dependent given their rather general nature. On

the other hand, the catalysis community has a lot of experience with the use of adsorption

energies as metal descriptors that can be very reliable for some chemistries5–8,28,29.

2.4 Species Descriptor

Species descriptors can also be divided into two broad categories: coordinate based and non-

coordinate based. The coordinate based descriptors are computed using distance measures

between each pair or triplet of atoms inside the species. Some of the commonly used methods

in this category are Coulomb matrix30 and bag-of-bonds31. The disadvantage of using atomic

coordinates is that they have to be obtained by DFT or other semi-empirical methods which

defeats the purpose that we do not want to run these expensive computations for all species.

The other category is based on the count of different bond types around each atom11 or in

the molecule as a whole32.

In the current study, we have used the constant-sized flat molecular fingerprint based on

previously published work11 which is similar to extended connectivity fingerprint (ECFP)12

and other constant sized molecular descriptors32. The fingerprint, obtained from the molecule’s

SMILES notation, consists of the number of different types of bonds in the molecule. Here,
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Figure 1: Molecular fingerprint for a ring structured surface species. Here, C0 denotes a saturated carbon
(no free valence). C1, C2, and C3 denote carbon atoms with one, two, and three free valencies, respectively.
Similarly, O0 is a saturated oxygen whereas O1 is an oxygen atom with one free valence. The fingerprint
vector (shown at the bottom of the image) contains the number of different saturated or unsaturated atoms,
and the number of bonds between them.

the fingerprint vector contains more information than what is available with a basic bond

count scheme which just calculates the number of C-C bonds, or the number of C-O bonds

and so on. Instead, each carbon or oxygen atoms are denoted with the number of free va-

lencies and the fingerprint is made up of these more granular-level bond counts such as how

many oxygen atoms with one free valence is connected to saturated carbon atoms etc. The

fingerprint is described in Figure 1 with an example.

We note that particularly for ring species (but also for longer chain species), describing

the specific adsorption site is not easily done with pen-and-paper descriptors that do not

use coordinates. Under such conditions, we are most interested in the most stable adsorp-

tion configuration and an additional objective of this study is investigating what accuracy

can be achieved for databases that only contain the most stable adsorption configuration
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of various adsorbed species with descriptors (fingerprints) that do not explicitly distinguish

adsorption configurations (indirectly, the species descriptors can probably describe the ad-

sorption configurations in that adsorbate species with e.g. carbon and oxygen atoms with

one or two unpaired electrons (described in our fingerprint as C1, C2 and O1) along with the

corresponding C1-C2 bond and C1-O1 bond indices etc. describe sites within the adsorbate

that prefer forming bonds with specific metal surface sites).

2.5 Machine Learning Models

The machine learning models in the current work can be broadly divided into two categories

- linear models and kernel based non-linear models. The goal was to compare the effects

of different settings of species descriptors and metal descriptors on these categories of ML

models.

The linear models used were linear ridge regression and lasso33. Both methods are linear

regressions but with different types of regularizers: L2 regularizer for ridge and L1 for lasso.

The kernel based models used were kernel ridge regression (KRR)34, support vector regression

(SVR)35, and Gaussian process (GP)36. The GP model has an additional benefit over the

other models in that, besides the predictions, it also supplies the uncertainty measures around

the predictions that can be useful in later stages during the calculation of a catalyst’s turnover

frequency or other macroscopic quantities of interest37,38. More advanced and complex ML

models based on different structures of neural networks12,39–45 or molcular graphs46,47 have

also been proposed but have not been used here. As will be shown later, our predictive trials

indicate that all kernel based models with tuned hyperparameters outperform linear models.

The results of kernel based models, however, has no statistically significant difference among

themselves. This finding is consistent with previous works8, and suggests there is no basis

to prefer one kernel based model over another in terms of prediction accuracy. However, it

should be pointed out that the GP provides the extra information about the uncertainty

of the predictions compared to the other models, and hence can be of importance for some
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scenario where one has to study the effects of uncertainty propagation on the macroscopic

quantities of interest.

A GP treats each data point as a random variable where any subset of these variables48

form a multivariate normal distribution. The relation between any pair of data points is

defined by the kernel49. GP predicts the values for test points given the values of the

training points. The uncertainty of the prediction is higher in the region of data-space where

the concentration of training points is low. And the opposite happens in the regions where

there is a high number of training points. Support vector regression (SVR) predicts based

on a subset of the training data which are called support vectors. Kernel ridge regression

(KRR) provides closed form estimates while using a different loss function compared to SVR.

The hyperparameters of the models such as which kernel to use, and the parameters of the

kernels such as length-scale were tuned using 5-fold cross-validation50. We found Gaussian

kernels to perform better than the Laplacian kernel51. The hyperparameters were tuned

using cross validation on the training set. The tuned hyperparameters were then used to

predict on the testing sets to yield the performance measure of a trial run. The performance

measures were averaged over all the trial runs to get the final prediction results.

2.6 Splitting Data into Training and Testing Sets

Using both linear and non-linear ML models, our predictive trials ran for four different types

of splitting of the combined dataset of chain and ring structured intermediate species.

First, for each metal surface, we trained on a random subset of the chain species and

predicted on the rest. Out of the 186 species for a metal surface, 160 were randomly chosen

and added to the training set, the remaining 26 species were added to the testing set - with

the process repeated for each metal. The training set thus obtained was used to train each

of the ML models and in each case the predictions were done on the testing set.

Second, similar to the first case but working with ring structures instead of chain struc-

tures, we split the 186 ring species for a metal surface randomly into 160 to be added to
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the training set and the remaining 26 to be added to the testing set and finally perform the

usual training of ML model on the training set and then predict on the testing set.

Third, the chain data was split into 160-26 as in the first case and appended to the

training and testing set. This time, however, all the ring structure data are appended to the

training set. This is the case where we have both ring and chain structures in training but

only chain structures in the testing set. The prediction results compared with the first case

would ascertain whether there is any statistically significant benefit obtained by including

the ring structures in the training.

Fourth, similar to the third case but predicting on ring structures instead of chain struc-

tures, we performed the 160-26 split of ring structure data for each metal, then at the end

appending all of the chain data to the training set, and testing on the rest of the ring

structures. Again, this will help us to see if inclusion of chain data increases the prediction

accuracy on ring structures or not.

3 Results and Discussion

The chain structure data for the hydrodeoxygenation of succinic acid contains information

on 186 intermediate species across 6 metal surfaces making the total size of the chain data

set 1116. Similarly, there is a 1116 sized data set for the ring structured species. Results of

the predictions on the chain species are shown in Figure 2 and Table 1; and those of ring

species are shown in Figure 3 and Table 2. For both the tables, the first ten rows show

predictions when using electronic metal descriptors whereas the bottom ten rows are for

energy based metal descriptors. There is no apparent advantage of using adsorption energies

as metal descriptors relative to the tabulated electronic metal descriptors. For each set of the

ten rows, the first five show predictions for linear and non-linear ML models when training

on either chain or ring species and predicting on the same category of species; whereas the

second five rows are for predictions of linear and non-linear ML models when training on
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Figure 2: Predicted adsorption energy (after referencing) vs actual adsorption energy (after referencing)
for predictions of chain structured species. The top row shows prediction results for linear (on the left)
and non-linear SVR (on the right) models when predicting chain data while training on chain data. The
bottom row shows prediction results for linear (on the left) and non-linear SVR (on the right) models when
predicting chain data while training on the rest of the chain plus all the ring structure data.

both ring and chain species, and predicting on either chain (for the first table) or ring species

(for Table 2).

For each case, the whole process is repeated 100 times each time selecting a different

random subset. The absolute error (AE) for each run is obtained by taking the absolute

difference between the predicted and the real energies. For both the tables, the mean and

standard deviation of these absolute errors are shown in the fourth and the fifth columns,

respectively. Repeating the experiments 100 times also gives us hundred different MAEs.

The standard deviation of these MAEs are shown in the sixth column and are generally quite

small. For both the Figures 2 and 3, the scatter plots show a random subset of prediction

results of 100 different runs on the randomly selected test sets for all metal surfaces.
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Figure 3: Predicted adsorption energy (after referencing) vs actual adsorption energy (after referencing)
for predictions of ring structured species. The top row shows prediction results for linear (on the left) and
non-linear SVR (on the right) models when predicting ring data while training on ring data. The bottom row
shows prediction results for linear (on the left) and non-linear SVR (on the right) models when predicting
ring data while training on the rest of the ring plus all the chain structure data.

The key takeaway from these results are: first, the prediction MAE for ring species using

kernel based ML models such as SVR is around 0.2 eV; second, inclusion of ring data when

predicting chain and inclusion of chain data when predicting ring does not help to improve

the predictions (to ensure this was not because of different data distributions between the ring

data and the chain data, we performed data normalization, but it did not have a statistically

significant difference on the prediction accuracy); third, non-linear models outperform linear

models; and fourth, the difference between prediction accuracy of electronic metal descriptors

and adsorption energy based metal descriptors are not statistically significant.

Another observation on the results is that the prediction errors on ring species are signifi-

cantly higher than on chain species. One possible explanation for this is that dehydrogenated

12



Table 1: Results of prediction of chain structured species. The first five rows and the rows
11 to 15 show results for different ML models when training on a randomly selected subset of
chain data and predicting on the rest of the chain species for all metal surfaces. Rows 6 to
10 and 16 to 20 show results for linear and non-linear models when training on a randomly
selected subset of chain data and all of ring species, and predicting on the rest of the chain
species for all metal surfaces.

Case Metal Desc Model MAE (eV) SD of AEs (eV) SD of MAEs (eV)

1 Chain to Chain Electronic Ridge 0.247 0.200 0.014
2 Chain to Chain Electronic Lasso 0.251 0.243 0.017
3 Chain to Chain Electronic KRR 0.130 0.121 0.009
4 Chain to Chain Electronic GP 0.133 0.119 0.009
5 Chain to Chain Electronic SVR 0.126 0.123 0.008
6 Chain plus Ring to Chain Electronic Ridge 0.315 0.250 0.019
7 Chain plus Ring to Chain Electronic Lasso 0.321 0.249 0.017
8 Chain plus Ring to Chain Electronic KRR 0.154 0.131 0.008
9 Chain plus Ring to Chain Electronic GP 0.137 0.129 0.009
10 Chain plus Ring to Chain Electronic SVR 0.139 0.129 0.010
11 Chain to Chain Energy Ridge 0.245 0.204 0.015
12 Chain to Chain Energy Lasso 0.245 0.208 0.016
13 Chain to Chain Energy KRR 0.130 0.122 0.010
14 Chain to Chain Energy GP 0.129 0.124 0.011
15 Chain to Chain Energy SVR 0.127 0.124 0.010
16 Chain plus Ring to Chain Energy Ridge 0.318 0.245 0.020
17 Chain plus Ring to Chain Energy Lasso 0.315 0.240 0.018
18 Chain plus Ring to Chain Energy KRR 0.158 0.134 0.009
19 Chain plus Ring to Chain Energy GP 0.137 0.139 0.011
20 Chain plus Ring to Chain Energy SVR 0.136 0.141 0.009

ring species prefer to form strong bonds with specific sites of the surface metal atoms (atop

versus bridge versus three-fold hollow); however, this leads to significant strain in the ring

structure, and the optimized structures, for significantly dehydrogenated ring species such as

adsorbed C4O on Pt(111), possess often both elongated and/or compressed bonds within the

ring atoms and the metal sites. Figure 4 illustrates that the spread of the energy values is

bigger for ring species compared to the chain species in our dataset. Also, the ring structure

data contain more outliers, and we found that these high energy outliers are consistently

significantly dehydrogenated species with elongated and/or compressed bonds. Fingerprints

that only consider nearest neighbor atoms are limited in capturing the properties of such

species and more complex fingerprints are needed if it is desired to describe the properties

of deeply dehydrogenated surface ring species. However, given that these species are usu-
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Table 2: Results of prediction of ring structured species. The first five rows and the rows 11 to
15 show results for different ML models when training on a randomly selected subset of chain
data and predicting on the rest of the chain species for all metal surfaces. Rows 6 to 10 and
16 to 20 show results for linear and non-linear models when training on a randomly selected
subset of ring data and all of chain species, and predicting on the rest of the ring species for
all metal surfaces.

Case Metal Desc Model MAE (eV) SD of AEs (eV) SD of MAEs (eV)

1 Ring to Ring Electronic Ridge 0.380 0.336 0.025
2 Ring to Ring Electronic Lasso 0.389 0.342 0.027
3 Ring to Ring Electronic KRR 0.201 0.241 0.019
4 Ring to Ring Electronic GP 0.203 0.237 0.019
5 Ring to Ring Electronic SVR 0.192 0.245 0.017
6 Chain plus Ring to Ring Electronic Ridge 0.440 0.401 0.028
7 Chain plus Ring to Ring Electronic Lasso 0.428 0.395 0.027
8 Chain plus Ring to Ring Electronic KRR 0.212 0.242 0.019
9 Chain plus Ring to Ring Electronic GP 0.199 0.254 0.018
10 Chain plus Ring to Ring Electronic SVR 0.202 0.248 0.018
11 Ring to Ring Energy Ridge 0.385 0.331 0.026
12 Ring to Ring Energy Lasso 0.392 0.329 0.027
13 Ring to Ring Energy KRR 0.203 0.229 0.018
14 Ring to Ring Energy GP 0.204 0.226 0.020
15 Ring to Ring Energy SVR 0.190 0.248 0.018
16 Chain plus Ring to Ring Energy Ridge 0.435 0.401 0.030
17 Chain plus Ring to Ring Energy Lasso 0.434 0.401 0.029
18 Chain plus Ring to Ring Energy KRR 0.209 0.243 0.019
19 Chain plus Ring to Ring Energy GP 0.200 0.252 0.017
20 Chain plus Ring to Ring Energy SVR 0.204 0.251 0.018

ally high energy species that are likely not kinetically relevant, and that more training data

are required for models with more complex fingerprints, it might be acceptable to use the

fingerprints of this study and have a higher prediction error for deeply dehydrogenated ring

species.

4 Conclusion

Working with two datasets on the most stable chain and ring structures on six different metals

surfaces, our comparative study on predicting adsorption energies of these two different

structures has revealed some key insights. We have seen that although ring structures had a

higher predictive error, it was still below 0.2 eV when working with simple SMILES based flat
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Figure 4: Box plots comparing the energy distributions in chain and ring datasets. The ring dataset has not
only a bigger spread but also more outliers.

fingerprints and electronic or adsorption energy based metal descriptors along with regular

non-linear ML models. Our results also indicate that the non-linear models perform better

than the linear models when the predictive model requires species descriptor as well as

metal descriptors. Another key outcome from the current study is that information on chain

species do not help in predicting ring species and vice versa for current species descriptors.

We highlight that these results have been obtained with species descriptors that do not

explicitly describe specific adsorption sites, but that we used a database containing only the

most stable adsorption configuration and energy as it is currently typical in many databases.

5 Supporting Information

Energy data and SMILES representation for all species; Species fingerprints; Electronic metal

descriptors; Adsorption energy metal descriptors; Coordinate files for species.
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