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Next Steps

Neuromorphic computing and
neuroscience both seek computational
abstractions for spiking neural networks.

Computational abstractions emerge
from equivalence relations.
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Decomposing Neural Activity

ldentifying Isomorphic GNATs
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New CRCNS project (FY25-FY27) “Decomposing . ® © 0 O
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Couple spiking neural networks to nonlinear l Dynamical Modes

dynamical systems (e.g. birdsong) ® 606 00
* Use Dynamic Mode Decomposition techniques to
isolate sensorimotor projection kernels t
 Spike coupling to dynamic modes “close the I m
loop” and extend GNATs through a dynamical
system
* Identify GNATs that support specific behaviors
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