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Introduction: Electron-lon Collider

The Electron-lon Collider (EIC) is a future accelerator currently being developed that will be built
at Brookhaven National Lab (BNL) which collides electrons and hadrons

Protons are injected, cooled (injection cooling), ramped to collision energy, and collided

A possible future upgrade to improve the luminosity would require proton bunches to be cooled
during collisions, preserving the proton beam emittance

This ERL design is meant to deliver an electron beam which provides Coherent electron Cooling
(CeC) for the two collision energies of 275 and 100 GeV - corresponding to 150 and 55 MeV
electrons
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Introduction: Microbunched Electron Cooling

Coherent electron cooling (CeC) uses an electron bunch to “measure” the position of the protons,
then use the same electron bunch to apply energy kicks to reduce the emittance of the proton
bunch in the longitudinal and transverse directions

Microbunched electron cooling (MBEC) is a specific type of CeC and is the mechanism proposed
for the SHC-ERL to provide cooling for the EIC protons during collision

2

H* Modulater J ¥ > E>E, Kicker
- - -

An electron bunch with the same relativistic gamma as the protons co-propagates with the proton
beam in the modulator, where the protons imprint on the electrons

Once separated, the electrons are sent through a series of chicanes and drifts to amplify the
energy modulations induced by the protons, and convert them into density modulation

The electrons and protons co-propagate in the kicker, where the density modulation of the
electrons provide a corrective kick to the protons in order to cool them
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Introduction: Beam Parameters

100 GeV 275 GeV

Gamma 107.6 294
Energy (MeV) 55 150
Bunch charge (nC) 1
Repetition rate (MHz) 98.5
Average current (mA) 98.5

Bunch length, rms (mm)* 9 7
Peak current (A) 10 13
Slice energy spread (dp/p) 0.6-1.5e-4 4-8e-5
Normalized emittance (mm-mrad) 2.8

* Assumes supergaussian of order ~4
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Introduction: Cooling Channel Parameters

100 GeV 275 GeV
Gamma 107.6 294
Energy (MeV) 55 150
Modulator / Kicker Length (m) 33
Number of Amplifier Drifts (m) 2
Amplifier Drift Length (m) 49
B,/B, in Modulator (m) 20.0/20.0 21.4/21.4
B,/By in Kicker (m) 29.714.09 7.89/7.89
B,/B, in Amplifier (m) 12.0/12.0 4.89/4.89
Rss In First / Second / Third Chicane (mm) 23.3/-16.7/-18.2 12.0/-6.66 / -6.85

Beam parameters in the cooling channel provided by Will Bergan (BNL)
Details at DOI:10.18429/jacow-ipac2024-thyd1
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Overview: Representative Layout
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Overview: Injector
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Overview: Merger . Dogleg + (2) solenoids
« Solenoids in dispersive region result in
equal emittance growth in both planes
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Overview: Booster + (2) 197 MHz QWR + (2) 591 MHz single-

cell+ (2) 197 MHz QWR
* Run off crest at ~25°, hbeam at ~13 MeV
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Overview: PX 13 MeV beam goes down P1 line

« Beam is compressed to bunch length of
adron Chicane either 7 or 9 mm rms, depending on final
- Cooling Seetion of energy (150 and 55 MeV, respectively)
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Overview: Linac . (4) 591 MHz 5-cell + (4) 1773 MHz

5-cell + (4) 591 MHz 5-cell
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Overview: Laser Heater

 Chicane and undulator

* Provides control of slice energy spread
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Overview: Return Line
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Overview: Booster (2"d Pass)
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Overview: PX (2"d Pass) ,
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Overview: Linac (2" Pass)
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Overview: Actual Layout
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Overview: Actual Layout
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Overview: Actual Layout
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Optics: Laser Heater

Coherent electron cooling is highly sensitive to the slice energy spread of the electron beam — for
the EIC, it must fall in a range, not just below a maximum

To increase the slice energy spread, and provide an adjustable knob for this parameter outside of
the injector, a laser heater is located between the linac and the cooler

The layout of the laser heater involves co-propagating a laser with the electron beam inside an
undulator in the center of a chicane; a simple layout is below

Laser Undulator

Electron Beam

v
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Optics: Laser Heater

The momentum modulation on the electron beam resulting from the laser interaction within the
undulator is smeared out in the second half of the laser heater chicane

Given the anticipated parameters, emittance growth is negligible

However, due to the cooling mechanism, it is critical microbunching gain does not occur before
the cooler — preliminary evaluations indicate that the laser heater chicane does not result in
microbunching gain, but this will have to be evaluated with full CSR simulations at a later stage
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Optics: Time of Flight Requirements

« Most ERLs have a single time of flight (TOF) requirement: linac exit to linac entrance

« Because of the layout of this machine there are two:
- Booster exit to booster entrance (Booster TOF)
- Linac exit to linac entrance (Linac TOF)

» Booster TOF uses two Bates bends for flexibility

- At the 197 MHz fundamental frequency of the booster and a 2.5 cm maximum orbit excursion
at the center of the bend, this translates to + 11.7° per Bates bend

- For a fixed path length of ~800 m, the TOF for the two energies differs by ~8° (at 197 MHz),
but required booster TOF for deceleration is the same

- Second Bates bend is positioned so each energy is ~4° from desired TOF when on-axis
through Bates bends — by design, both energies are off-axis through the second Bates bend

- Booster TOF flexibility becomes +27°/-19° for 55 MeV and +19°/-27° for 150 MeV

 Linac TOF handled in high energy PX lines (P2 and P3), uses moving stages for flexibility

Design of a Microbunched Electron Cooler Energy Recovery Linac o5
K. Deitrick — COOL’25 — October 30, 2025



¢ Brookhaven Je

XELERA National Laboratory on Lab
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« Each line is energy specific
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- P2: 55 — 48 MeV i Beam direction
- P3: 150 — 143 MeV | _
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design, it will be lost on the
beam pipe wall Moving Stages Moving Stages
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Optics: PX Section

» Linac TOF for 150 and 55
MeV only differs by ~1.4° at B e B
591 MHz — in order to : Beam direction
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Optics: PX Section
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Optics: PX Section

« A simpler design would have the booster and bunch compressor before the merger — why
not do that?

- Inject at 13 MeV, only one time of flight concern, no need for higher-energy bypass lines to
transport the decelerating beam around the compressor chicane

 This has significant drawbacks:
- Lower energy efficiency
- Higher radiation shielding requirements at the dump and the diagnostic line

« Why not inject at 6 MeV after bunch compression?
- A solution has not been found for an injector that meets all the beam parameters
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Future Work: Alternate Cooling Scheme

More detailed simulations have shown that MBEC is not as effective at high energy cooling for
the EIC as desired

However, others have proposed that bunched beam cooling and a circulating cooler ring (CCR)

may be a prospective solution, similar to the JLEIC cooler

+ D. Kayran, A. Fedotov, and S. Seletskiy, ""Electron cooler for high-energy hadrons in the EIC based on ERL”, ERL’24
https://conference-indico.kek.jp/event/225/contributions/5546/attachments/3907/5351/THO04.pdf

ERL-driven CCR: Electron beam is accelerated to desired energy, kicked into cooling ring,
circulated a small number of times to cool protons, and kicked out to be energy recovered

The beam parameters presented for this concept require a high-brightness, high-charge injector
and ERL

The design presented is an excellent starting point, which could reasonably achieve the
necessary parameters after modifications
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Summary

A preliminary design exists for both energy modes of an ERL-
driven cooler capable of providing cooling during collisions at the
Electron lon Collider

* One critical success of this design is that the magnet layout stays

constant between the two configurations o g Aw/gé(%/

« Though a more complex approach than most ERLS, no show

stoppers have been found %0—((//5 allernlior 2/

» The capabillity of this ERL to deliver a high-charge, high-
brightness electron beam makes it a good design starting point
for coolers driven by other mechanisms
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Future Work: Alternate Cooling Scheme
Basic required parameters for different EIC protons energies

From
ERL’24 Proton Energy , GeV 275 100 41 p&e currents
) Ne 3.00E+10 |1.25E+10 4.00E+09 41 GeV o o
Qe, nC 5 2 0.64 protons
Rms bunch length, cm 2.5 2.5 2.5 Z4
Peak Current, A 24 10 3 5
Rep rate, MHz 98 98 98 AN
| ave in CS, mA 490 196 63 %3 -0z -01 00 01 02 03
N _rec 7-9 3-4 1 p&e currents
lav Gun, mA 70-54 65-49 63 0 =y
100 GeV s
Rms energy Spread in CS 3.00E-04 3.00E-04 3.00E-04 protons _
<10
RMS Angular spread in CS, rad 5.20E-06 1.70E-05 2.60E-05 5
RMS Normilized Emittance, m 2.00E-06 1.50E-06 1.50E-06 %3 02 01 00 01 02 03
z[m]
Cooling Time_x, hrs * 1.8 1.9 2 pxe cutienes
Cooling Time_y, hrs * 3.6 3.9 1.8 - /\ — s
Cooling Time_z, hrs * 2.9 1.6 1 275GeV 20

protons <15

*) The cooling rates assumed 177 m cooling cooling section and averaging by 10

beta- and synchrotron oscillations of protons

5
0

-0.2 -0.1 0.0 0.1 0.2
z[m]

Dmitry Kayran Electron cooler for high-energy hadrons in the EIC based on ERL ERL'24, Sept 26, 2024, Japan
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Future Work: Alternate Cooling Scheme

« Change supergaussian longitudinal distribution to gaussian

* Increase/decrease bunch charge

« Smaller emittance required

« Higher energy spread permitted

« Remove bunch compressor, depending on injector optimizations

 Remove laser heater, add bunch stretcher and de-chirper cavity
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