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Introduction: Electron-Ion Collider

• The Electron-Ion Collider (EIC) is a future accelerator currently being developed that will be built 

at Brookhaven National Lab (BNL) which collides electrons and hadrons

• Protons are injected, cooled (injection cooling), ramped to collision energy, and collided

• A possible future upgrade to improve the luminosity would require proton bunches to be cooled 

during collisions, preserving the proton beam emittance

• This ERL design is meant to deliver an electron beam which provides Coherent electron Cooling 

(CeC) for the two collision energies of 275 and 100 GeV – corresponding to 150 and 55 MeV 

electrons
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Introduction: Microbunched Electron Cooling

• Coherent electron cooling (CeC) uses an electron bunch to “measure” the position of the protons, 

then use the same electron bunch to apply energy kicks to reduce the emittance of the proton 

bunch in the longitudinal and transverse directions

• Microbunched electron cooling (MBEC) is a specific type of CeC and is the mechanism proposed 

for the SHC-ERL to provide cooling for the EIC protons during collision

• An electron bunch with the same relativistic gamma as the protons co-propagates with the proton 

beam in the modulator, where the protons imprint on the electrons

• Once separated, the electrons are sent through a series of chicanes and drifts to amplify the 

energy modulations induced by the protons, and convert them into density modulation

• The electrons and protons co-propagate in the kicker, where the density modulation of the 

electrons provide a corrective kick to the protons in order to cool them
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Introduction: Beam Parameters
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100 GeV 275 GeV

Gamma 107.6 294

Energy (MeV) 55 150

Bunch charge (nC) 1

Repetition rate (MHz) 98.5

Average current (mA) 98.5

Bunch length, rms (mm)* 9 7

Peak current (A) 10 13

Slice energy spread (dp/p) 0.6–1.5e-4 4–8e-5

Normalized emittance (mm-mrad) 2.8

* Assumes supergaussian of order ~4 



Introduction: Cooling Channel Parameters
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100 GeV 275 GeV

Gamma 107.6 294

Energy (MeV) 55 150

Modulator / Kicker Length (m) 33

Number of Amplifier Drifts (m) 2

Amplifier Drift Length (m) 49

βx/βy in Modulator (m) 20.0 / 20.0 21.4 / 21.4

βx/βy in Kicker (m) 29.7 / 4.09 7.89 / 7.89

βx/βy in Amplifier (m) 12.0 / 12.0 4.89 / 4.89

R56 in First / Second / Third Chicane (mm) 23.3 / -16.7 / -18.2 12.0 / -6.66 / -6.85

Beam parameters in the cooling channel provided by Will Bergan (BNL)

Details at DOI:10.18429/jacow-ipac2024-thyd1



Overview: Representative Layout
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Overview: Injector
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Overview: Merger
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Overview: Booster
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Overview: PX
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Overview: Linac
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Overview: Laser Heater
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Overview: Cooler
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Overview: Return Line
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Overview: Booster (2nd Pass)
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Overview: PX (2nd Pass)
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Overview: Linac (2nd Pass)
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Overview: Actual Layout
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Overview: Actual Layout

• Top: XZ view of floor plan for cooler and first part of return line

• Bottom: YZ view of floor plan for cooler and first part of return line
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Overview: Actual Layout
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Optics: Laser Heater

• Coherent electron cooling is highly sensitive to the slice energy spread of the electron beam – for 

the EIC, it must fall in a range, not just below a maximum

• To increase the slice energy spread, and provide an adjustable knob for this parameter outside of 

the injector, a laser heater is located between the linac and the cooler

• The layout of the laser heater involves co-propagating a laser with the electron beam inside an 

undulator in the center of a chicane; a simple layout is below
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Optics: Laser Heater

• The momentum modulation on the electron beam resulting from the laser interaction within the 

undulator is smeared out in the second half of the laser heater chicane

• Given the anticipated parameters, emittance growth is negligible

• However, due to the cooling mechanism, it is critical microbunching gain does not occur before 

the cooler – preliminary evaluations indicate that the laser heater chicane does not result in 

microbunching gain, but this will have to be evaluated with full CSR simulations at a later stage
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Optics: Time of Flight Requirements

• Most ERLs have a single time of flight (TOF) requirement: linac exit to linac entrance

• Because of the layout of this machine there are two:

－Booster exit to booster entrance (Booster TOF)

－Linac exit to linac entrance (Linac TOF)

• Booster TOF uses two Bates bends for flexibility

－At the 197 MHz fundamental frequency of the booster and a 2.5 cm maximum orbit excursion 
at the center of the bend, this translates to ± 11.7° per Bates bend

－For a fixed path length of ~800 m, the TOF for the two energies differs by ~8° (at 197 MHz), 
but required booster TOF for deceleration is the same

－Second Bates bend is positioned so each energy is ~4° from desired TOF when on-axis 
through Bates bends – by design, both energies are off-axis through the second Bates bend

－Booster TOF flexibility becomes +27°/-19° for 55 MeV and +19°/-27° for 150 MeV

• Linac TOF handled in high energy PX lines (P2 and P3), uses moving stages for flexibility
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Optics: PX Section

• Each line is energy specific

－P1: 13 MeV

－P2: 55 → 48 MeV

－P3: 150 → 143 MeV

• Booster TOF needs to be 
correct, due to:

－The limited range of the 
moving stage

－If the decelerating beam 
enters P2/P3 at an energy 
significantly different than 
design, it will be lost on the 
beam pipe wall
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Optics: PX Section

• Linac TOF for 150 and 55 
MeV only differs by ~1.4° at 
591 MHz – in order to
minimize geometry conflicts, 
P3 has an added wavelength 
of path length

• Due to the geometry, very 
different TOF ranges:

－P2: ±35°

－P3: ±55°
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Optics: PX Section

• A simpler design would have the booster and bunch compressor before the merger – why 
not do that?

－Inject at 13 MeV, only one time of flight concern, no need for higher-energy bypass lines to 
transport the decelerating beam around the compressor chicane

• This has significant drawbacks:

－Lower energy efficiency

－Higher radiation shielding requirements at the dump and the diagnostic line

• Why not inject at 6 MeV after bunch compression?

－A solution has not been found for an injector that meets all the beam parameters
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Optics at 150 MeV: Complete Machine
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Optics at 150 MeV: Cooler
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Optics at 55 MeV: Complete Machine
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Optics at 55 MeV: Cooler
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Future Work: Alternate Cooling Scheme

• More detailed simulations have shown that MBEC is not as effective at high energy cooling for 

the EIC as desired

• However, others have proposed that bunched beam cooling and a circulating cooler ring (CCR) 

may be a prospective solution, similar to the JLEIC cooler
• D. Kayran, A. Fedotov, and S. Seletskiy, `”Electron cooler for high-energy hadrons in the EIC based on ERL”, ERL’24

https://conference-indico.kek.jp/event/225/contributions/5546/attachments/3907/5351/THO04.pdf

• ERL-driven CCR: Electron beam is accelerated to desired energy, kicked into cooling ring, 

circulated a small number of times to cool protons, and kicked out to be energy recovered

• The beam parameters presented for this concept require a high-brightness, high-charge injector 

and ERL

• The design presented is an excellent starting point, which could reasonably achieve the 

necessary parameters after modifications
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• A preliminary design exists for both energy modes of an ERL-

driven cooler capable of providing cooling during collisions at the 

Electron Ion Collider

• One critical success of this design is that the magnet layout stays 

constant between the two configurations

• Though a more complex approach than most ERLs, no show 

stoppers have been found

• The capability of this ERL to deliver a high-charge, high-

brightness electron beam makes it a good design starting point 

for coolers driven by other mechanisms

Summary
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Future Work: Alternate Cooling Scheme

Design of a Microbunched Electron Cooler Energy Recovery Linac

K. Deitrick – COOL’25 – October 30, 2025
36

From 

ERL’24:



Future Work: Alternate Cooling Scheme

• Change supergaussian longitudinal distribution to gaussian

• Increase/decrease bunch charge

• Smaller emittance required

• Higher energy spread permitted

• Remove bunch compressor, depending on injector optimizations

• Remove laser heater, add bunch stretcher and de-chirper cavity
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