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Abstract

The performance promise of machine learning surrogates of molecular dynamics simula-

tions of soft materials is significant, but generally comes at the cost of acquiring large training

datasets to learn the complex relationships between input soft material attributes and output

properties. Under the constraint of limited high-performance computing resources, optimizing

the size of the training datasets becomes paramount. Using an artificial neural network based

surrogate for molecular dynamics simulations of confined electrolytes, we explore the trade-

off between surrogate accuracy and computational gains. Accuracy is assessed by computing

the root mean square errors between the surrogate predictions and the ground truth results

obtained via molecular dynamics simulations. The computational performance is judged by

evaluating the speedup which incorporates the training dataset creation time. Improvement in

accuracy occurs with a loss of speedup, which scales as the inverse of the training dataset size.

The link between surrogate generalizability and the accuracy-speedup tradeoff is assessed by

examining the errors incurred in surrogate predictions on unseen, interpolated input variables

and developing a net speedup metric to capture the associated gains.
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1 Introduction

Molecular dynamics (MD) simulations are powerful computational methods for investigating the

microscopic origins of a wide variety of material and chemical phenomena. These simulations

furnish molecular-level mechanisms that drive structure and property control in materials while

isolating interesting regions of the material design space to aid experimental exploration and dis-

covery. Recent years have seen a surge in the integration of machine learning (ML) methods with

MD simulations to reduce their computational costs, enhance their predictive power, and expedite

the analysis of high-dimensional output data.1–14 A number of studies have explored the use of ML

to develop surrogates for MD simulations.9–12,15,16 The key idea behind a surrogate is to collect data

from conventional MD simulations and train an ML model that approximates the relationships be-

tween the input parameters and the simulation outcomes.9–12 Thus, the surrogate bypasses part or

all of the explicit evolution of the simulated components. The associated performance enhance-

ment enables the surrogate to serve as a fast exploratory tool that complements the MD simulation

in traversing the input design space, and to act as a dynamic alternative to simulation caching for

retrieval of reliable estimates of simulation outputs.

Neural networks, including deep neural networks (DNNs), have proven to be particularly ef-

fective in the design of surrogates. Examples include DNNs that predict adsorption equilibria

for different thermodynamic conditions,11 DNN-based denoising autoencoders that predict the

temporally-averaged radial distribution function of Lennard-Jones fluids from a single snapshot

of fluid particles generated in MD simulations,9 Bayesian neural networks that predict the disso-

ciation timescale of compounds bypassing the explicit time evolution of the particle trajectories in

ab initio MD simulations,10 and autoencoders that generate new protein-like structures and act as

a proxy for MD simulations to mine the protein conformational space.17

In our previous work,15,16,18 we introduced ML surrogates for MD simulations of soft mate-

rials. Our goal was to demonstrate that artificial neural network (ANN) based regression models

can accurately predict the relationships between the input parameters characterizing the soft-matter

system and the simulation outcomes describing the system’s equilibrium properties. The approach
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was illustrated with the design of an ANN-based surrogate for coarse-grained MD simulations of

confined electrolytes. These simulations establish the links between the distributions of electrolyte

ions and the ion attributes for diverse solution conditions. The ionic distributions shed light on

the origins of ion-specific effects in confinement (e.g., ion adsorption at interfaces), which can

be meaningful in the interpretation of effective interactions between nanoparticles, biomolecules,

and membranes, and for the evaluation of interfacial activity in separation technologies.19 These

distributions also provide a reliable guide to the regions of the material design space where signif-

icant changes in the structural organization of ions are expected, which can aid the experimental

exploration and design of electrolyte-based materials.20–25 The ML surrogate was trained to predict

the relationship between the output distribution of positive ions and the input variables character-

izing the electrolyte solution comprising positive and negative ions of the same size, confined by

uncharged surfaces. The predicted ionic density profiles were in excellent agreement with MD sim-

ulations.15,16 Additionally, the time required for predictions using the surrogate was significantly

smaller (by a factor of 10,000) compared to the runtime of the corresponding MD simulation.

In general, once a surrogate is trained, we can obtain outputs through ML inference in sec-

onds, instead of running an MD simulation, which usually takes much longer (e.g., hours). The

high accuracy and small inference time allude to the significant scientific and computational per-

formance promise of surrogates for MD simulations of soft materials. However, the performance

enhancement comes at the cost of generating large training datasets, which is a time-consuming

process that requires running many MD simulations on high-performance computing (HPC) clus-

ters. Designing ML surrogates that reach an acceptable level of scientific performance (accuracy)

with large gains in the computational performance requires an understanding of the link between

the accuracy-speedup tradeoff and the size of the training datasets. Sample size determination for

training and testing sets has long been recognized as a critical task in traditional ML applications

such as the design of high-performance pattern recognition systems,26 which consider the tradeoff

between the degree of precision and limitations on resources.27 Recently, the importance of design-

ing optimal training and validation datasets for developing robust ML models has been recognized
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in the biomedical engineering and materials science domains.28–30

In this paper, we study the accuracy-speedup tradeoff associated with surrogate models using

the ML surrogates for MD simulations of confined electrolytes. Surrogates are designed using a

dataset generated by conducting simulations of 4050 different electrolyte systems that exhibit a

much greater complexity in the relationship between the input electrolyte attributes and the output

ionic structure due to the inclusion of ionic size asymmetry, charged surfaces, and a broader range

of concentrations than previously explored. Surrogates are tasked to predict the density profiles

of both positive and negative ions by learning the relationship between 1004 output features char-

acterizing the density profiles and 5 input features: confinement length, electrolyte concentration,

positive ion diameter, negative ion diameter, and surface charge density. The scientific performance

is measured by computing the root mean square errors (RMSE) between the surrogate predictions

and the ground truth results obtained via MD simulations, as well as by comparing the output fea-

tures obtained via the two approaches. The computational performance is judged by evaluating

the speedup which incorporates the training dataset creation time. Two data reduction methods:

random splitting and deterministic separation, are utilized to study the surrogate performance and

generalizability. A study of the changes in the surrogate accuracy with the training dataset size

Ntrain ∈ (150, 3550) reveals a power-law decrease in the overall RMSE, and the onset of conver-

gence of the surrogate accuracy for Ntrain ≳ 1550 samples. The speedup decreases with increasing

Ntrain, scaling as 1/Ntrain. Based on the overall and output-specific errors and the agreement be-

tween the predicted density profiles and the ground truth results obtained via MD simulations, an

acceptable level of accuracy under the constraint of maximizing the speedup is reached for the

training dataset containing Ntrain = 1550 samples. Surrogate generalizability is assessed by exam-

ining the surrogate performance on input variable values obtained via interpolation. The surrogate

performance varies greatly depending on which input material attribute is hidden, and the fraction

of the samples associated with the interpolated values the surrogate sees during training. Increas-

ing this fraction improves the accuracy but at the cost of reducing the potential of computational

gains. A simple metric for the net speedup is presented to probe this accuracy-speedup tradeoff.
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Figure 1: Overview of the approach to design, train, and use an ML surrogate for MD simulation
of a soft-matter system.

2 Methods

Figure 1 shows the overview of the approach describing the design, training, and use of a surro-

gate for MD simulation of a soft-matter system. We first run MD simulations on an HPC cluster

for different model variables (input) characterizing the soft-matter system, and save the converged

simulation outcomes (output) for training the ML surrogate, which occurs after a set number of

successful simulation runs. Error handler aborts the MD simulation program and displays appro-

priate error messages when a simulation fails due to any pre-defined criteria. The inputs are also

fed to the ML-based prediction module, which is trained to learn the associated output quantities.

Once trained, the ML surrogate is ready to be used for predicting the output properties of a soft-

matter system characterized with a given set of input material attributes. Figure 1 highlights the

use of data reduction methods to train the surrogates.

2.1 Input Variables and Output Quantities

We consider a monovalent electrolyte in water confined by two planar interfaces at room temper-

ature T = 298 K. A coarse-grained model19,31–34 is employed to describe the electrolyte solution.

Water is modeled as an implicit solvent with a relative dielectric permittivity of 80. The main

simulation cell is a rectangular box with dimensions L × L × h, where L denotes the box edge

length in the unconfined x and y directions, and h denotes the confinement length (interfacial
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separation). The box dimension L is selected based on the Debye length of the solution;19 for

electrolyte concentration c > 0.5 M, L = 10 nm, and for c ≤ 0.5 M, L = 15 nm. h ranges from

4 − 5 nm. The planes at z = −h/2 and z = h/2 represent the location of the charged interfaces

(z = 0 corresponds to the midpoint between the interfaces). Each interface is characterized with

a uniform charge density σs < 0, which is modeled by discretizing the interface with M mesh

points and assigning each mesh point the same charge q = σsL
2/M . M = 784 for c > 0.5 M,

and M = 1764 for c ≤ 0.5 M. The positively-charged ions (cations) and negatively-charged ions

(anions) associated with the monovalent electrolyte are modeled as spheres with hydrated sizes d+

and d− respectively. An appropriate number of counterions, modeled as cations of the same diam-

eter and charge, are included in the confinement to ensure electroneutrality. The total number of

ions within the confinement ranges from 366 to 1228, depending on the concentration, confinement

length, and the surface charge density characterizing the interfaces.

Electrolyte system attributes h, c, d+, d−, and σs are chosen as the surrogate input variables

(Table 1). c is defined as c = N−/V , where N− is the number of anions and V is the volume of

the simulation box. We note that not all electrolyte system attributes that are expected to alter the

output ionic structure are considered as tunable input variables. For example, ion valencies (set to

1,−1), temperature (298 K) and solvent permittivity (80) are held fixed across all the simulations.

MD simulations are performed using LAMMPS35 in an NVT ensemble at T = 298 K. Ion-ion

and ion-interface steric interactions are modeled using Lennard-Jones potentials,19 and all elec-

trostatic interactions are modeled using Coulomb potentials whose long-range is properly treated

with Ewald sums.36 Each system is simulated for 1 ns to reach equilibrium with a timestep of 1

femtosecond. After equilibration, systems are simulated for ≈ 9 ns, and ion trajectory data are

collected every 0.1 ps. Due to the planar symmetry and the homogeneously-charged interfaces,

the ionic distributions vary only in the direction perpendicular to the interfaces, and are functions

of a single variable z. Trajectory data samples are used to compute the average ionic distributions

n+(z) of cations and n−(z) of anions, which form the output quantities. Converged results for the

ionic distributions are obtained by computing the average using the samples generated post equili-
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Table 1: Input variables and their values at which simulations are launched to generate the dataset

Input Variable Simulated Values
Confinement length h (nm) 4.0, 4.2, 4.4, 4.6, 4.8, 5.0
Electrolyte concentration c (M) 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0
Cation diameter d+ (nm) 0.2, 0.3075, 0.415, 0.5225, 0.63
Anion diameter d− (nm) 0.2, 0.3075, 0.415, 0.5225, 0.63
Surface charge density σs (C/m2) −0.01, −0.015, −0.02

bration from 3 ns to 10 ns. Each distribution or number density profile is specified by computing

the average ion population densities (with error bars) at 502 locations within the confinement re-

gion z ∈ (−h/2, h/2). The output of the ML surrogate is thus characterized with 1004 features.

2.2 Datasets for Surrogate Training

Table 1 shows the region of the material design space that contributes toward the dataset used to

train and test the ML surrogate. By sweeping over the shown discrete values of each input variable

h, c, d+, d−, and σs, 4050 unique electrolyte systems are created. For each of these systems, MD

simulations are run and the converged distributions of cations and anions are extracted as output.

Each MD simulation is performed for ≈ 10 nanoseconds and takes ≈ 3.5 hours using 96 cores.

Generating the entire dataset took approximately 20 days, including the queue wait times on the

Indiana University BigRed3 supercomputing cluster.

Figure 2 illustrates the two data reduction methods employed in our investigation to prepare the

training and testing datasets: random splitting and deterministic separation. Figure 2(a) illustrates

the random splitting method used in results shown in Sections 3.1 and 3.2, where the dependence

of the surrogate performance on the size of the training dataset is investigated. First, Ntest = 500

samples are randomly drawn from the total dataset S of size Ntotal = 4050 to form an independent

test dataset Stest. The samples in this test dataset are hidden from the surrogate. Next, Ntrain

samples are randomly drawn from the reduced dataset SR of size Ntotal − Ntest = 3550 to form

the train dataset Strain. This process is used to create 15 training datasets with sample size Ntrain =

150, 200, 250, 300, 350, 400, 450, 500, 550, 1050, 1550, 2050, 2550, 3050, 3550. Post-training, the
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Figure 2: Overview of the data reduction methods used to train the surrogate. In the random
splitting method (a), a test dataset Stest is first formed by randomly drawing samples from the total
dataset S. The train dataset Strain is formed by randomly drawing samples from the reduced dataset
SR. In the deterministic separation method (b), a decision is first made to exclude the samples
associated with pre-selected input parameters to create the test dataset Stest. The remaining data
forms the train dataset Strain. If needed, Atrans samples are removed from Stest and appended to Strain.

surrogate is evaluated using the Ntest samples in the test dataset Stest.

Figure 2(b) shows the deterministic separation method used in results shown in Section 3.3,

where the generalization ability of the surrogate is assessed. First, a decision is made about what

input variable and associated values are hidden from the training dataset. An example of such

a decision is to exclude all electrolyte systems having the concentration value c = 1.0 M from

the training of the surrogate. These systems form the test dataset Stest of size Ntest such that each

sample s ∈ Stest is an input-output pair associated with a simulation of an electrolyte at c =

1.0 M. The training dataset Strain is the complement of Stest, i.e., Strain = {s ∈ S : s /∈ Stest}.

In the aforementioned example, the surrogate gets trained on input-output pairs associated with

all electrolyte systems except those that are characterized with c = 1.0 M. Such an approach

enables the evaluation of the surrogate predictions for input variable values not “seen” during

training. In order to study the link between the surrogate performance and the number of samples

the surrogate sees during training that have the hidden input value, we randomly draw and remove
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Figure 3: Artificial neural network (ANN) based regression model used in the ML surrogate to
extract features and predict output density profiles of cations (n+) and anions (n−). The input layer,
two hidden layers, and output layer are characterized with 5, 256, 512 and 1004 nodes respectively.

Atrans samples from the test dataset Stest and append it to the training dataset Strain. This enables us

to systematically investigate how the surrogate’s performance is affected by changing Atrans, with

Atrans = 0 corresponding to the case where the surrogate makes predictions in a complete “blind”

mode (see Section 3.3 for more details).

2.3 Feature Extraction and Regression

The ML surrogate is trained to predict the density profiles of cations and anions. Each density

profile is characterized with 502 points. For a given sequence of input parameters, the surrogate

thus makes a total of P = 1004 predictions to quantify the output ionic distributions. Figure 3

shows a sketch of the ANN model used in the surrogate to implement the regression and prediction

of these output quantities. The ANN architecture has 2 hidden layers, similar to the surrogate

employed in our earlier work.16 The weights and biases in these hidden layers are determined by

the regression process, following an error backpropagation algorithm, implemented by a stochastic

gradient descent procedure. This process uses a training dataset and an appropriate loss function

for error computation and backpropagation to update the weights and biases after each batch of
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input data is regressed through the network by a simple forward prediction. The mean square error

(MSE) between the ground truth and the surrogate predictions is chosen as the loss function.

Training the ANN model involves an appropriate selection of hyperparameters such as the

number of first hidden layer units n1, the number of second hidden layer units n2, learning rate

lr, batch size b, and the number of epochs ne. lr acts as a step size associated with the gradient

descent process to reach the minimum of the MSE loss function. b is the number of training

samples allowed to pass through the ANN before updating its weights and biases. ne controls the

number of complete passes made through the entire training dataset.

In both random splitting and deterministic separation methods, the data in the training dataset

Strain is separated further into training and validation sets using a ratio of 0.8 : 0.2 in order to find

the optimal hyperparameters for the ANN model. A min-max normalization filter is applied to

normalize the input data at the preprocessing stage. A separate grid search is performed for each

training dataset Strain to obtain the set of optimal hyperparameters by examining the validation loss.

The grid search is carried out for a total of ne = 20000 epochs for the following hyperparameters:

n1 ∈ {128, 256, 512}, n2 = {256, 512}, lr ∈ {0.0001, 0.0002}, b ∈ {32, 64}. Regardless of the

training dataset size, the optimal values are found to be n1 = 256, n2 = 512, b = 32. For most

cases, the optimal value for the learning rate is lr = 0.0001. A few training datasets do yield a

marginally lower value of the validation loss for lr = 0.0002, however, the ANN performance on

the test dataset is unaffected when lr = 0.0001 value is used.

The ReLU activation function is applied to the output of the input and the second hidden layers,

while the sigmoid activation function is applied to the output of the first hidden layer. The Adam

optimizer is used to optimize the error backpropagation process. During the forward propagation

in the training phase, the dropout rate in the dropout layers between the input and the first hidden

layer, and between the first and second hidden layers is set to dr = 0.1 to prevent overfitting. The

weights in each hidden layer are initialized using a Glorot normal distribution characterized with

a mean of 0 and a variance of 2/(h + h′), which changes according to the size of the input (h)

and output (h′) associated with the hidden layer. The ANN model is implemented using scikit-
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learn and TensorFlow Keras libraries. Scikit-learn is used for grid search and feature scaling, and

Tensorflow Keras is used to build, train and evaluate the ANN model.

3 Results and Discussion

3.1 Surrogate Performance vs Train Dataset Size

We begin by showing the results for the surrogate model convergence for different training dataset

sizes generated via the random splitting method depicted in Figure 2(a). Recall that in this method,

an independent test dataset Stest of size Ntest = 500 is first created by randomly drawing elements

from the total dataset S of size N = 4050. The reduced dataset SR of size Ntotal − Ntest = 3550

is used to create training datasets Strain of different sizes Ntrain = {150, 200, 250, . . . , 3050, 3550}.

Each element in Strain is randomly drawn from SR. For each Strain, the ANN model convergence

is examined by computing the validation loss L for each epoch of training and examining the

overfitting behavior. L is computed as the average mean square error (MSE) incurred by the model

to make P = 1004 predictions describing the cation and anion density profiles associated with the

validation dataset Sval ∈ Strain of size Nval = 0.2Ntrain:

L =
1

NvalP

Nval∑
j=1

P∑
k=1

∣∣ŷkj − ykj
∣∣2 . (1)

Here, ŷkj represents the kth prediction made by the surrogate to characterize the ion number density

for the electrolyte system j, and ykj is the corresponding ground truth result.

The validation loss L decreases with increasing training dataset size Ntrain from 150 to 3550.

For the sake of clarity, Figure 4 shows a comparison of L for 5 datasets of sizes Ntrain = 150, 350, 500,

1050, 3550. For Ntrain > 300, L exhibits a decrease with increasing number of epochs up to

the highest value of ne = 20000, yielding convergence for ne > 15000. For Ntrain < 300, a

small increase in L is observed within 15000 < ne < 20000, indicating the crossover to the

overfitting regime. For example, for the dataset of size Ntrain = 150, the crossover occurs near
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Figure 4: Validation loss defined in Equation 1 vs number of epochs ne for training dataset size
Ntrain = 150 (green circles), 350 (yellow down triangles), 500 (black cross), 1050 (red up trian-
gles), 3550 (blue squares). For Ntrain = 350, 500, 1050, 3550, the validation loss decreases with
increasing ne and exhibits convergence for ne > 15000. For Ntrain = 150, an increase in the vali-
dation loss is observed when ne > 15000, signaling overfitting.

ne = 15000, which corresponds to a validation loss of L = 9.31 × 10−3. The crossover value for

ne increases slightly with increasing Ntrain = 200, 250, 300. For simplicity, we checkpointed all

models at ne = 15000 and saved the associated weights and biases to evaluate the performance

of the surrogate on the independent test dataset. On average, changing the number of epochs

ne ∈ (15000, 20000) had an insignificant effect on the surrogate performance.

The scientific performance (accuracy) of the surrogate is assessed by examining the errors

incurred in the surrogate predictions for the cation and anion density profiles associated with the

electrolyte systems in the unseen test data. The root mean square error (RMSE) Ek associated

with the kth prediction characterizing the density profiles is computed by averaging over the errors

incurred in making this prediction for all the Ntest samples in the test dataset:

Ek =

(
1

Ntest

Ntest∑
j=1

∣∣ŷkj − ykj
∣∣2)1/2

. (2)

Here, ŷkj is the kth prediction or inference associated with the ion number density for the input

system specified by the index j, and ykj is the corresponding ground truth. Prediction numbers
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Figure 5: Overall RMSE value E (in units of M) defined in Equation 3 decreases as a power-
law with increasing the size Ntrain of the surrogate training dataset. A sharp decrease is observed
when Ntrain increases from 150 to 1050. E starts to exhibit convergence for Ntrain ≳ 1550. The
inset shows the speedup S/SHPC defined in Equation 5 vs Ntrain. The dotted red line represents
S = SHPC. S/SHPC decreases with increasing Ntrain, scaling as 1/Ntrain.

k = 1, 2, ..., 502 correspond to the cation density profile and k = 503, 504, ..., 1004 correspond to

the anion density profile. For a train dataset Strain of size Ntrain, Ek is evaluated using Equation 2

for each of the P = 1004 surrogate predictions and an overall RMSE E is computed:

E =
1

P

P∑
k=1

Ek. (3)

E serves as a metric to evaluate the accuracy of the surrogate as a function of the train dataset size.

In what follows, all reported RMSE values (e.g., Ek, E) are in units of M.

Figure 5 shows the overall RMSE E for the 15 training datasets described in Section 2.2.

E exhibits a power-law decrease with increasing training dataset size Ntrain. A steep drop in E

from Ntrain = 150 to 1050 is followed by a relatively milder decay as Ntrain is increased further,

and the surrogate accuracy reaches convergence for Ntrain ≳ 1550 samples. In order to evaluate the

robustness of the surrogate predictions, we computed the error bar associated with E by employing

the random splitting method 10 times to get 10 different Strain datasets for the same Ntrain. In

general, the error bar is larger for Ntrain < 500, indicating a low degree of robustness for the
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predictions made by the surrogate trained on smaller number of samples.

The computational performance of the surrogate is assessed by evaluating the potential gain

or speedup resulting from the surrogate use. The speedup depends on the computational costs

associated with the creation of the training dataset Strain, and can be expressed as:

S =
Nptseq

Nptp +Ntrainttrain
(4)

where Np is the number of surrogate predictions, Ntrain is the number of elements in the training

dataset, tseq is the time to run the MD simulation via the sequential (serial) model, tp is the time

it takes for the surrogate to make a prediction for one input, and ttrain is the average walltime

associated with the MD simulation to create one element of Strain. ttrain is typically similar to the

average runtime of the parallelized MD simulation. Ntrain × ttrain is the amount of time utilized to

create the training dataset. For MD simulations of confined electrolytes, tseq ≈ 24 hours, ttrain ≈

3.5 hours, and tp ≈ 0.3 seconds. Note that in Equation 4, we have assumed that the training

dataset generation using MD simulations is a much more time-consuming process compared to the

surrogate training using TensorFlow, which is generally the case.

The above formula highlights a unique feature of the ML surrogate performance: S rises with

increasing Np, that is, the speedup increases as the surrogate makes more predictions. At first

glance, this suggests a limitless computational performance gain through the use of the surro-

gate. However, the predictions are only useful if they meet an acceptable level of scientific per-

formance or accuracy. Considering this accuracy-speedup tradeoff, a more practical assessment of

the speedup S is the gain achieved in making predictions with errors similar or less than the overall

RMSE value E, where the latter serves as an acceptable accuracy level, which changes with train

dataset size Ntrain. In general, the errors incurred in the surrogate predictions on the train dataset

are expected to be smaller than the RMSE value E. Thus, an estimate for S is obtained by setting

14



Np = Ntest +Ntrain in Equation 4:

S =
Nptseq

Nptp +Ntrainttrain
≈ SHPC

Np

Ntrain
= SHPC

(
1 +

Ntest

Ntrain

)
, (5)

where the second equality follows by noting tp ≈ 0 ≪ ttr and we have introduced SHPC =

tseq/ttrain to denote the traditional speedup obtained by parallelizing the MD simulation using HPC

resources. For the case of simulations of confined electrolytes considered here, SHPC = 7.

Figure 5 inset shows the speedup S/SHPC associated with the same 15 training dataset sizes

Ntrain for which the error E is shown in the outset. S scales as 1/Ntrain and decreases from ≈

4.3SHPC for Ntrain = 150 to ≈ 1.14SHPC for Ntrain = 3550. This trend highlights the tradeoff

between the surrogate accuracy and the potential for speedup resulting from its application. A

gain in the accuracy with increasing train dataset size occurs at a loss in the speedup. Note that

S/SHPC > 1, as evident by all S values above the dotted red line indicating S = SHPC. This

indicates that for all training dataset sizes, the speedup from the use of the surrogate exceeds the

enhancement resulting from parallelization.

It is likely that the number of predictions made by a well-trained surrogate with an acceptable

level of average error E will exceed Ntest+Ntrain samples. For example, the speedup can be boosted

by tasking the surrogate to make predictions on the interpolated values between the discretized

input variables. This requires an assessment of the associated errors incurred by the surrogate that

are linked to its generalizability, which we discuss in Section 3.3.

We now compare the cation and anion number density profiles predicted by the ML surrogate

with the ground truth results obtained using MD simulations for the unseen electrolyte systems in

the test dataset in order to obtain a direct assessment of the prediction quality. Figure 6 shows the

results of cation (outset) and anion (inset) density predictions for 4 representative input systems

randomly selected from the test dataset. The systems are labeled (h, c, d+, d−, σs) using the 5 input

variables defined in Section 2.1. The 4 systems are: system I (4.6, 0.25, 0.5225, 0.415,−0.01),

system II (4.4, 1.0, 0.3075, 0.63,−0.01), system III (4.6, 1.75, 0.3075, 0.63,−0.01), and system IV
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Figure 6: Cation and anion (inset) density profiles for four representative electrolyte systems I
(a), II (b), III (c), and IV (d) predicted by the surrogate. Ground truth results (blue squares) are
extracted using MD simulations. Surrogate predictions are shown for train dataset size Ntrain = 200
(yellow up triangles), 1550 (green down triangles), and 3550 (red circles). For systems I-III, the
surrogate trained with Ntrain = 1550 and 3550 samples produces results in good agreement with the
ground truth, while surrogate predictions for Ntrain = 200 are inferior. For system IV, all surrogate
predictions deviate from the ground truth. See main text for the electrolyte system details.

(4, 0.1, 0.63, 0.5225,−0.01). Figure 6 (a), (b), (c), and (d), respectively, show surrogate prediction

results for systems I, II, III, and IV for three train dataset sizes Ntrain = 200, 1550, 3550.

For systems I, II and III, surrogates designed using Ntrain = 1550, 3550 samples produce

density profiles in good agreement with the ground truth, while the surrogate trained with Ntrain =

200 samples generates inferior predictions. For system IV, all three surrogates yield predictions

that deviate away from the ground truth. The surrogate trained using Ntrain = 200 samples fails

completely to capture the ionic structure. An explanation emerges by examining the input variables

for the electrolyte system IV, many of which are on the edge of the design space used to train the

surrogate (for example, h = 4.0 nm, c = 0.1 M, d+ = 0.63 nm). As Ntrain decreases, the surrogate

performance worsens because it does not “see” enough of these edge combinations during training.
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3.2 Output-Specific Surrogate Performance

The negatively-charged surfaces, that tend to attract cations and repel anions, and the differences in

the size of cations and anions lead to differences in the cation and anion density profiles, as evident

in Figure 6. In addition to the overall RMSE E, it is thus useful to examine the cation-specific

and anion-specific accuracy values for a more precise evaluation of the surrogate performance.

The density profiles also show that the confinement created by the two interfaces produces distinct

ion accumulation and depletion behaviors within the interfacial regions as compared to the bulk.

Therefore it is also useful to assess the performance of the surrogate for different regions within

the confinement that exhibit distinct ionic structure. In this sub-section, we carry out a detailed

examination of these output-specific surrogate performance metrics.

We introduce the set K+ = {1, 2, 3...502} comprising prediction indices associated with the

cation density profile and define E+
k = Ek for k ∈ K+ as the average RMSE value Ek in-

curred in the kth prediction characterizing the cation density profile. Similarly, we introduce

K− = {503, 504...1004} which comprises prediction indices associated with the anion density

profile, and define E−
k = Ek for k ∈ K− as the average RMSE value incurred in predictions char-

acterizing the anion density profiles. For both K+ and K− sets, it is also useful to note that the

low and high index values represent the confining interfaces, and the indices outside these ranges

are defined as associated with the bulk of the confined region.

Figure 7 shows the plot of E+
k and E−

k associated with predictions made by the surrogate

trained with Ntrain = 200, 1550, 3550 samples. To facilitate the comparison of the errors for

cation and anion density predictions, we left-shift the prediction index numbers for anions by

502, i.e., the prediction indices k = {503, 504, . . . , 1004} for the anion density are mapped to

k = {1, 2, . . . , 502}. In general, RMSE values for both cation and anion density predictions are

higher near the interface compared to the bulk. Very large errors are observed for the case of

Ntrain = 200 near the interface. Both E+
k and E−

k decrease as Ntrain is increased.

To understand the performance of the surrogate on different regions of the confinement that

are associated with distinct ionic structure, we evaluate the contributions to the RMSE emerging
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Figure 7: RMSE values (in units of M) associated with surrogate predictions for the cation density
profile (E+

k ) and anion density profile (E−
k ) vs prediction index k. Green circles and crosses,

red up and down triangles, blue squares and diamonds represent E+
k and E−

k for training dataset
size Ntrain = 200, 1550, 3550 respectively. Large errors near the left and right edges of the plot
correspond to predictions near the interface. E+

k and E−
k decrease with increasing Ntrain.

from predictions near the interfaces and the predictions within the bulk. The interface set I is

defined as a set of 100 predictions made by the surrogate near the 2 interfaces. For cations, I =

{1, 2, 3...50, 452, 453...502}, and the corresponding bulk set B = {k ∈ K+ : k /∈ I}; for anions

I = {503, 504...553, 954, 955...1004}, and the corresponding bulk set B = {k ∈ K− : k /∈ I}.

This enables us to define RMSE values E+
I , E+

B , E−
I , and E−

B associated with interface and bulk

for cation and anion density predictions as:

E+
I =

1

NI

∑
k∈I

E+
k , E+

B =
1

NB

∑
k∈B

E+
k (6)

E−
I =

1

NI

∑
k∈I

E−
k , E−

B =
1

NB

∑
k∈B

E−
k (7)

Figure 8 shows a bar chart of these interface and bulk RMSE values incurred in surrogate

predictions for training dataset size Ntrain = 200, 400, 550, 1550, 2550, 3550. Regardless of the

training dataset size, errors incurred in predicting output features associated with the interface are

higher than those incurred in predicting output features associated with the bulk. This suggests

18



Figure 8: Interface RMSE E+
I (blue) and bulk RMSE E+

B (orange) for the cation density predic-
tions, and interface RMSE E−

I (green) and bulk RMSE E−
B (red) for the anion density predictions

vs training dataset size Ntrain = 200, 400, 550, 1550, 2550, 3550. For all Ntrain, interface RMSE
E

+/−
I are higher than the bulk RMSE E

+/−
B . All errors are in units of M.

that the model predictions for the interfacial ionic structure are inferior compared to the bulk pre-

dictions. The RMSE values E+
I and E−

I associated with the predictions near the interface decrease

sharply as Ntrain increases from 200 to 1550. As Ntrain is increased further, these errors decrease

relatively slowly, indicating the onset of convergence for Ntrain ≳ 1550. The bulk RMSE values

E+
B and E−

B decrease as Ntrain increases from 200 to 1550. Further increase in Ntrain only leads to

a very slight drop in E+
B and E−

B , indicating convergence.

This analysis suggests that some output features (e.g., interfacial structure) present a more

challenging test to the generalization capabilities of the surrogate compared to others (e.g., bulk

structure). In addition to assessing the error (E) associated with the overall output, it is thus im-

portant to examine the output-specific errors (E+
I , E−

I , E+
B , E

−
B ) to credibly assess the convergence

and the acceptable level of scientific performance of the surrogate. For the electrolyte system un-

der study, judging by the RMSE values E, E+
I , E−

I , E+
B and E−

B as well as the predicted density

profiles (Figure 6), an acceptable level of scientific performance for the surrogate at the highest

speedup S ≈ 4/3SHPC is reached for the training dataset of size Ntrain = 1550. As we move to the

studies in Section 3.3, it will be useful to define a reference error scale to judge the surrogate per-
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formance. We choose this to be the errors E, E+
I , E−

I , E+
B and E−

B associated with the predictions

made by the surrogate trained with Ntrain = 1550 samples (e.g., E ≈ 0.017, E+
I ≈ 0.04 and so on).

3.3 Dataset Composition and Surrogate Generalizability

It is important to recognize that while the qualitative trends shown above regarding the accuracy-

speedup tradeoff are expected to hold more generally, the quantitative results regarding the optimal

training dataset size are intricately linked to the specific dataset composition. Table 1 highlights

the input design space, which shows that different input parameters have different discretizations

and ranges. While the ranges get normalized to (0, 1) for all input variables during preprocessing,

the different number of discretizations yield differences in the contributions of the input variables

toward the learning of the surrogate. We used a dataset of 4050 samples formed via a specific

representation of the input design space: nh × nc × nd+ × nd− × nσs ≡ 6 × 9 × 5 × 5 × 3,

where nh, nc, nd+ , nd− , nσs are the number of discretizations associated with the input variables

h, c, d+, d−, σs respectively. A different combination of these discretizations yielding 4050 sam-

ples will lead to quantitative differences in the RMSE values and the optimal training dataset size.

The specific set of discretizations employed here are the result of a design choice informed by

domain knowledge19,37 and constraints due to the limited computing resources. For example, our

recent study37 on coarse-grained simulations of dense electrolytes was inspired by experiments re-

porting dramatic changes in the screening behavior of electrolytes with increasing concentration.38

Thus, the electrolyte concentration c emerged as a key input variable to probe the ionic structure,

and is therefore discretized with the most number of values. We also showed that the rise in the

steric ion-ion correlations, which depend on the cation size d+ and anion size d−, is critical to

changes in the ionic structure, particularly in the interfacial regions. This paved the way for se-

lecting a good representation of ion diameters in the discretized input design space. Such domain

knowledge infusion is essential for building ML surrogates for MD simulations of soft matter.

In all our previous experiments, the surrogate performance is tested on electrolyte systems in

the test dataset Stest that the surrogate did not see during training. However, it is very likely that the
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surrogate encountered the input variables associated with these samples in other combinations. For

example, while the surrogate did not see the specific electrolyte system II (h = 4.4, c = 1.0, d+ =

0.3075, d− = 0.63, σs = −0.01) during training, it was trained on many systems that have the

concentration c = 1 M such as the electrolyte system (h = 4.6, c = 1.0, d+ = 0.415, d− =

0.415, σs = −0.02). In order to assess the generalizability of the surrogate, it is important to

explore its performance on completely unseen input variables.

A campaign that accomplishes this task can be initiated by utilizing the total dataset of 4050

simulations to design training and testing datasets that enable the study of surrogate performance

on input variable values obtained via interpolation between the values seen during training. The

deterministic separation method (Section 2.3), where pre-selected input variable values are held

in a test set hidden from the surrogate training, is suited for this purpose. One can also start

a campaign where datasets are designed to enable the study of surrogate performance on input

variable values extrapolated outside the region of the input design space. At this time we do not

carry out this exercise. Our expectation is that the relatively simple neural network architecture

with 2 hidden layers will not fare well on extrapolations.

Surrogate generalizability is key to understanding the potential of computational performance

enhancement: a greater degree of generalizability ensures that the surrogate can make a large

number of predictions beyond the initial dataset composed of the training and testing samples,

thus boosting the speedup obtained in Equation 5. Generalizability is linked to the discretization

errors associated with the coarse-grained dataset representative of the continuum input material

design space, and to challenges associated with capturing a specific feature in the output which

may correlate strongly to one or more input variables. For example, interfacial ionic structure is

strongly correlated with the ion size. To assess surrogate generalizability, we carry out 3 studies

that involve determining the surrogate performance on unseen input variable values obtained via

interpolation between the seen ones. In all these studies, the surrogate is trained using the deter-

ministic separation method outlined in Section 2.2. The validation loss is observed to decrease

with increasing number of epochs in all cases, yielding convergence for ne > 15000. The optimal
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ANN models are built by checkpointing at ne = 20000.

We begin with excluding systems characterized with electrolyte concentration c = 1 M from

the training dataset Strain, and using these excluded systems to create the test dataset Stest. In order

to study the dependence of the surrogate performance on the number of c = 1 M samples the

surrogate sees during training, we define f = 100Atrans/Ntest as the percentage of test samples

appended to the training dataset Strain, where Atrans denotes the number of samples drawn randomly

from the test set. f = 0% means Stest contains all electrolyte systems with c = 1 M, and Strain

contains none, signaling that the surrogate will make predictions in a completely “blind” mode.

f = 50% implies 50% of samples from Stest are randomly drawn and appended to Strain, which are

likely to “informate” the surrogate learning of the features associated with the hidden, interpolated

input variable value. The training and testing dataset sizes (Ntrain, Ntest) for f = 0%, 1%, 10% and

50% are: (3600, 450), (3604, 446), (3645, 405), (3825, 225) respectively. These different dataset

compositions enable the probing of the generalization ability of the surrogate on unseen c = 1 M

electrolyte systems after it sees Atrans = 0, 4, 45, and 225 samples characterized with c = 1 M.

Figure 9(a) shows a bar chart of the average interface and bulk RMSE values for cations

(E+
I , E

+
B ) and anions (E−

I , E
−
B ) as a function of f . Figure 9(b) shows the cation density pro-

files predicted by the surrogate for a representative system in the test set characterized with the

input variable combination of (4.2, 1.0, 0.415, 0.415,−0.01). The f = 0% result exhibits very

large errors E+
I ≈ 0.125, E−

I ≈ 0.1, and E
+/−
B ≈ 0.175, which shows that the model fails to

generalize well on this interpolated input variable value if it does not “see” any c = 1 M samples.

The corresponding density profile result completely misses the ground truth.

For f = 1%, which corresponds to only four c = 1 M samples seen by the surrogate, the model

gains knowledge and adjusts its weights and biases, yielding 3× smaller RMSE values and a much

improved density profile prediction. The interface RMSE values E
+/−
I approach the acceptable

reference error scale (≈ 0.04) set by the errors associated with the training dataset of 1550 samples

(Section 3.2). However, the average RMSE is higher than the reference value (E ≈ 0.017) due to

the relatively high bulk RMSE values ∼ E
+/−
B ≈ 0.05. For f = 10%, which corresponds to the
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Figure 9: RMSE values (in units of M) and cation density profiles associated with the predictions
made by the surrogate trained using datasets generated via the deterministic separation method by
excluding electrolyte concentration c = 1 M (a, b) or by excluding the cation diameter d+ = 0.415
nm (c, d). (a) and (d) show interface RMSE E+

I (blue) and bulk RMSE E+
B (orange) for the

cation density predictions, and interface RMSE E−
I (green) and bulk RMSE E−

B (red) for the anion
density predictions for different percentages f = 0%, 1%, 10%, 50% of samples appended to the
train dataset. (b) and (d) show cation density profiles for the same electrolyte system in the test set
characterized with input variables (4.2, 1.0, 0.415, 0.415,−0.01). Yellow up triangles, green down
triangles, red circles represent surrogate predictions with f = 0%, 1%, 10% respectively. Blue
squares with errorbars show the ground truth results produced by MD simulations.

surrogate seeing 45 systems with c = 1 M, E+/−
I ∼ E

+/−
B ≈ 0.025. While the bulk RMSE values

are still on the higher side, the overall error is low and close to the reference RMSE E. Further, the

corresponding density profile prediction agrees well with the MD simulation results, particularly

near the interfaces. Errors E+/−
I and E

+/−
B associated with f = 50% are smaller than the reference

errors, indicating the convergence of the surrogate accuracy.

We next perform a similar study by hiding the cation diameter value d+ = 0.415 nm during

the training of the surrogate. The training and testing datasets associated with f = 0%, 1%, 10%,
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and 50% are (3240, 810), (3248, 802), (3321, 729), and (3645, 405) respectively. These different

dataset compositions enable the probing of the generalization ability of the surrogate on unseen

electrolyte systems with cations of diameter d+ = 0.415 nm, after the surrogate sees Atrans =

0, 8, 81, and 405 systems with cations of diameter d+ = 0.415 nm. Figure 9(c) and 9(d), respec-

tively, show the RMSE errors E+
I , E

+
B , E

−
I , E

−
B , and the predicted cation density profiles for the

same electrolyte system used in the previous study. A very different picture emerges in compari-

son to the study depicted in Figures 9(a) and 9(b), where the pre-selected hidden input variable is

c = 1 M. For all f values, E+/−
B < 0.02 and the predicted density profiles show that the surrogate

generalizes well for the bulk region, even for f = 0%. E−
I ≈ 0.04 for anions at f = 0% is close

to the acceptable reference error scale, and is reduced by half for f = 10%. The corresponding

surrogate predictions for the anion density profiles agree well with the ground truth.

On the other hand, the interface RMSE values for cations start out 5× bigger than E−
I at

f = 0% and do not decrease sharply with increasing f , dropping to E+
I ≈ 0.07 at f = 50%.

The predicted cation density profiles are consistent with these errors, indicating that the prediction

of the cation density profile near the interface is challenging for the surrogate if it does not “see”

the cation diameter during training. This is consistent with our physical understanding that the

cation size is the primary determinant of the cation contact density near the confining surfaces.37

In another study, an anion diameter value was excluded from the surrogate training, and we found

analogous results: predictions were significantly poorer for the anion density profile near the inter-

faces, while other output features were predicted with acceptable accuracy.

We now perform a study to assess the surrogate generalizability in making predictions for mul-

tiple electrolyte concentrations interpolated between the seen values. Electrolyte concentrations

c = 0.25, 0.75, 1.25, 1.75 M are excluded from the training dataset and the surrogate is trained

on c = 0.1, 0.5, 1.0, 1.5, 2.0 M. This effectively increases the discretization step by a factor of

≈ 2. The surrogate is then tasked to make predictions for the interpolated c values, i.e., c =

0.25, 0.75, 1.25, 1.75 M in the test dataset. We generate the training and testing datasets for f =

0%, 1%, 10%, and 50%, whose sizes (Ntrain, Ntest) are (2250, 1800), (2268, 1782), (2430, 1620),
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Figure 10: RMSE values in units of M (a) and cation density profiles (b) associated with the
predictions made by the surrogate trained using datasets generated by the deterministic separation
method via excluding electrolyte concentration c = 0.25, 0.75, 1.25, 1.75 M. (a) Interface RMSE
E+

I (blue) and bulk RMSE E+
B (orange) for the cation density predictions, and interface RMSE

E−
I (green) and bulk RMSE E−

B (red) for the anion density predictions decrease with an increase
in the percentage f of samples removed from the test dataset and appended to the train dataset.
(b) Yellow up triangles, green down triangles, red circles represent surrogate predictions with
f = 0%, 1%, 10% respectively for an electrolyte system in the test set characterized with input
variables (4, 0.25, 0.3075, 0.415,−0.015). With increasing f , surrogate predictions get closer to
the ground truth results (blue squares) produced by MD simulations.

and (3150, 900) respectively. Using these different dataset compositions, we evaluate the surro-

gate performance on electrolyte systems characterized with c = 0.25, 0.75, 1.25, 1.75 M after it

sees Atrans = 0, 18, 180, and 900 samples with these concentrations.

Figure 10(a) shows a bar chart of the resulting RMSE values E+
I , E

+
B , E

−
I , E

−
B and Figure 10(b)

shows the predicted density profiles for a representative system in the test dataset characterized

with input variables (4, 0.25, 0.3075, 0.415,−0.015). For f = 0%, the model predictions incur

large interface and bulk errors, and the associated density profile misses the ground truth entirely,

indicating the inability of the surrogate to generalize without seeing any systems characterized

with the interpolated c values. The f = 1% result shows improvement, but the errors are still large

and the agreement with the ground truth is poor. For f = 10%, the errors are below or close to

the acceptable reference errors, and the predicted density profile exhibits a good agreement with

the ground truth result. The surrogate accuracy converges for f = 50% as evident by the errors

E+
I , E

+
B , E

−
I , E

−
B well below the reference values.

The last study sheds light on the accuracy-speedup tradeoff probed in Section 3.1. Firstly, the
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surrogate does not need to see all possible combinations of the interpolated values with the other

input variables in order to achieve an acceptable level of scientific performance. To illustrate,

starting from a dataset of 2250 samples (f = 0%), for which the surrogate performs poorly, we

only need to add up to 900 samples (f = 50%) in order to achieve acceptable accuracy. In other

words, instead of a dataset containing 4050 samples obtained with running simulations on all the

finer-resolution grid points generated via interpolation, the target accuracy can be achieved with a

dataset of less than 3150 samples. This reduction in the training dataset size increases the speedup.

A simple estimate of a speedup achieved through this interpolation approach can be derived by

utilizing the f parameter, which represents the fraction of the new systems a surrogate is shown

before it is tasked to make predictions. Before interpolation, the potential gains possible with the

surrogate application is captured by the the baseline speedup SB given as

SB = SHPC
Ntotal

Ntrain
. (8)

This equation is similar to Equation 5 except that we assume the surrogate can make Ntotal predic-

tions at an acceptable level of accuracy, where Ntotal is the total number of samples in the dataset.

For simplicity, we consider the case of interpolating on one input variable (dimension). As

the discretization step is reduced by half, the number of predictions approximately doubles to

2Ntotal. However, the number of training samples required to get a well-trained surrogate increases

to Ntrain + fNtotal. For instance, in the above study, f ∈ (10, 50)%. Following the process used

in defining the baseline speedup, the net speedup S ′ associated with the surrogate performance

considering both the pre-interpolation and the post-interpolation phases can be written as:

S ′ ≈ SHPC
2Ntotal

Ntrain + fNtotal
. (9)

The net speedup S ′ decreases as f increases. In other words, if the surrogate needs to see a large

fraction of the interpolated values in order to make predictions at the accepted accuracy level, then

the speedup will be small. In another scenario, if one can tolerate larger errors incurred in the
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predictions made by a surrogate trained on a small fraction of the interpolated values, then the

speedup can be boosted. This is another manifestation of the accuracy-speedup tradeoff.

By replacing Ntotal/Ntrain in Equation 9 with SB/SHPC using Equation 8, S ′ can be expressed as

S ′ ≈ 2SBSHPC

SHPC + fSB

=
2

1/SB + f/SHPC
. (10)

A number of qualitative insights follow from Equation 10 regarding the potential gains associated

with the application of the surrogate via the interpolation approach to generate more predictions.

If the interpolation is such that the surrogate needs to see all (f = 100%) of the new potential

predictions (interpolated samples) in order to achieve the acceptable accuracy, then the net speedup

S ′ is bounded from above by 2SHPC, which is the limit of taking the baseline speedup SB → ∞.

For this case, the lower bound of S ′ is SHPC, which is the same as that of SB. These lower and

upper bounds of S ′ will increase as f decreases. For example, if the surrogate only needs to see

half (f = 50%) of the new samples obtained via interpolation to make predictions with acceptable

accuracy, the net speedup is bounded by (4/3)SHPC < S ′ < 4SHPC. The maximum possible

net speedup is doubled compared to the case where the surrogate needs to see all of the new

samples. An interesting possibility arises for f = 0%, which indicates that the baseline surrogate

is already well generalized and will predict with acceptable accuracy on all new samples generated

via interpolation. For this case, we get S ′ = 2SB > 2SHPC, i.e., the net speedup scales linearly with

the baseline speedup, and while it has a lower bound of 2SHPC, it does not have an upper bound.

4 Conclusions

We have conducted a systematic study of the tradeoff between the scientific and the computational

performance associated with ML surrogates for MD simulations of soft materials. The study used

a dataset generated by conducting simulations of 4050 different electrolyte systems that exhibit a

rich and complex relationship between the input electrolyte attributes and the output ionic structure.

The surrogate was tasked to learn the relationship between 1004 output features characterizing
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the ionic distributions and 5 input features describing the electrolyte system: confinement length,

electrolyte concentration, cation diameter, anion diameter, and surface charge density.

The scientific performance or accuracy was measured by computing RMSE values between

the surrogate predictions and the ground truth results obtained via MD simulations, as well as by

comparing the output features obtained via the two approaches. The computational performance

was evaluated by computing the speedup which incorporated the training dataset creation time.

A power-law decrease in the overall RMSE was observed with increasing training dataset size

Ntrain ∈ (150, 3550), with the onset of convergence for Ntrain ≳ 1550 samples. This improvement

in the prediction accuracy with increasing Ntrain was accompanied by a reduction in the speedup.

A comprehensive assessment of the scientific performance was obtained by evaluating the

output-feature-specific surrogate accuracies via the computation of the RMSE values associated

with the interfacial and bulk regions separately for cations and anions. Predicting output features

associated with the interfacial regions incurred larger errors compared to the features associated

with the bulk regions. An acceptable level of accuracy was reached for the training dataset with

Ntrain = 1550 samples based on the overall and output-specific RMSE values and the agreement

between the predicted density profiles and the ground truth. This training dataset was found to be

optimal under the constraint of maximizing the speedup.

The generalizability of the surrogate was explored by testing its performance on unseen values

of the input variables obtained via interpolation. The surrogate performance was affected by which

input variable (material attribute) was hidden. Showing larger fractions of the new interpolated

samples to the surrogate during training improved its accuracy, but at the cost of reducing the

potential of computational gains. This tradeoff was captured by developing a net speedup metric

that revealed qualitative insights about the bounds on the computational gains associated with the

surrogate if the interpolation approach is adopted to generate new predictions.

The interpolation study shows that the brute force approach of reducing the discretization step

of the input variables to generate simulations for a larger set of grid points is not only computa-

tionally prohibitive, it may not yield substantial improvements in surrogate accuracy as the latter
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converges with far fewer samples. Further, the surrogate does not need to see all possible combi-

nations of the interpolated input variable value with the other input variables in order to achieve

an acceptable accuracy level. Eliminating the unnecessary simulations to further reduce training

dataset size may require the use of active learning based methods to crawl through the input design

space. Exploring such smart sampling methods39,40 to determine the training datasets of optimal

size and composition will be a subject of future work.

At present, the surrogate design and MD simulations employ different environments and work-

flows. Recent work has investigated the use of ML platforms to improve the execution (e.g., accu-

racy, performance) of MD simulations themselves.41–45 Our future work will leverage these ideas

to explore simplifying the end-to-end surrogate design process by developing a unified framework

to enable the execution of MD simulations and surrogate design tasks in a one-stop platform.45
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