Fermilab

DGaaS: GPU as a Service on Distributed Computing System

FERMILAB-TM-2889-STUDENT

This manuscript has been authored by Fermi Forward Discovery Group, LLC
under Contract No. 89243024CSC000002 with the U.S. Department of Energy,

Office of Science, Office of High Energy Physics.

= o) o preanomnior || Dffice of
Fermllab \E}ENERGY Science

FINAL REPORT
August-September 23

Sara Mazzucato
Marco Mambelli, Bruno Coimbra

GPU as a service on distributed computing system

Contents

= 1 I ¥ O PSPPI 2
INTRODUGCTION ..ottt ettt ettt ettt ettt ettt e e et e e et e eeeeeeaeeeeeaeeees 3
Computing resources as support to HEP experiments............ccooovriiiiiiiiiiee e 3
LAY =l e o L= 3
GlAEINWIMS ... 3

[1O o o PP PPPPPPPPPP 4
GPU's Role in Scientific COMPULING........coooii i 4

I 10 g TE=T=T = PP 4
Virtuam Maching and CONEAINEIS.uuuuueiiiiiiiiiiiiiieieieeeeereeaeeee e areerreerreeerreranersreesrrnnnes 5
GlABIN e 6
Life cycle phase eXECULIONcoiviiiiiiiiiiiiiiiiiieeeeeee ettt 6
DELIVERABLES ...ttt 7
1 8 I 8
Creation Of @ VM ... e e e et e e e e a e e e e e aaanne 8
Windows Subsystem fOr LINUXoooooiiii i 9
Test1: SCrIPt @XECULIONceve e e e et e e et e e et e aaees 11
Test 2: use a Glidein script of a container to launch a server............ccooooeviiiiiiiciin i, 12
Wilson Cluster — Institutional Cluster: SLURM job scheduler..............ccccoooiiii, 13
Test 3: use Glidein script from a container to launch Triton...........cccooooiiii . 17
NEXT STEPS ... ssssssssnnnnnnen 22
03] =R 23
CONCLUSIONS .. e aaaaaaaaaas 24
TRAININGS AND REFERENCES ... 25

ABSTRACT
DGaaS: GPU as a Service on Distributed Computing System

In the rapidly evolving landscape of scientific computing, Graphics Processing Units (GPUs) have
become indispensable for their unparalleled ability to handle parallel tasks in complex
calculations, simulations, and data analysis. Their utility is further magnified in machine learning
and Al applications, where they significantly accelerate model training and predictive analytics.
Within this context, the Triton Inference Server emerges as a pivotal open-source tool,
specializing in Al inferencing and optimizing GPU utilization across various platforms and
frameworks.

This paper presents an in-depth study on distributed High Throughput Computing (HTC),
specifically focusing on the HTCondor framework and its resource provisioning tools, GlideinWWMS
and HEPCloud. These systems enable large-scale scientific experiments like CMS and DUNE to
efficiently access and utilize vast computational resources. The paper explores the core
architectural components of GlideinWMS, including jobs, user pools, and worker nodes, and
discusses their integration with GPUs and the Triton server.

The primary aim of this research is to develop a solution that optimizes GPU utilization by
leveraging Glideins and containers. This approach allows computational jobs, particularly those
involving Al models, to use GPUs only when essential, thereby facilitating efficient sharing of
limited GPU resources. To validate this architecture, the study conducted three key tests involving
custom scripts, container-based servers, and Triton server deployments.

However, the study faces challenges, notably in locating the Triton server and ensuring secure
remote access. To address these issues, future work will focus on developing a proxy mechanism
and enhancing security protocols.

In conclusion, this study offers a comprehensive roadmap for effective and efficient GPU
utilization in distributed High Throughput Computing. It aims to contribute significantly to the
scientific community by solving pressing problems and implementing robust solutions in
collaboration with the GlideinWMS and HEPCloud teams. The research sets the stage for a more
efficient, scalable, and cost-effective paradigm in scientific computing.

INTRODUCTION

Computing resources as support to HEP experiments

Computing resources are vital for High Energy Physics (HEP) experiments, with grid computing
emerging as a key solution. By connecting numerous geographically dispersed computers
through networks, as seen in Fermilab's experiments like CMS and DUNE, grid computing
enables collaborative task completion. This approach integrates global grid sites, including
university and lab batch systems, into a unified infrastructure, fostering distributed high-
throughput computing for HEP endeavors.

Worker nodes

A worker node, under the management of a resource manager, is distinguished by its resource
allocation such as CPU, RAM, and Disk. Functioning as a logical resource abstraction, this node
essentially serves as a computer tasked with specific jobs. The CMS Global Computing grid,
exemplified with over 120 sites and 2 million CPU cores, showcases this concept. Adjacently,
additional instances of worker nodes are illustrated on the left.

GlideinWMS

GlideinWMS serves as a scientific computing facilitator, designed to streamline workflows
centered around GPU utilization and sharing. Built upon HTCondor, a workload management
system acting as a batch system or local resource manager, GlideinWMS operates as a Glidein-
driven workload management framework within the HTCondor framework. This system functions
as a pilot-oriented resource provisioning tool for distributed High Throughput Computing.
Comprising multiple services, GlideinWMS aims to simplify access to Grid resources by exposing
pilots to potentially unreliable and diverse resources. Consequently, users can seamlessly submit
standard HTCondor jobs while computational resources are seamlessly orchestrated in the
background.

Components are visible in the bottom figure:

o Job: task, program that needs to be executed by the user running the experiment. E.g.
data analysis’ script working on clinical data

o User Pool: set of jobs that a user wants to be run.

e GlideinWMS Frontend & Factory: main services behind GlideinWMS.

e Worker nodes: machines part of the Grid where jobs will be actually executed.

User GlideinWMS CorraWMS
Jobs Frontend Frontend

\ 4

\J - sy

User Pool Glidein Factory
(Condor) & WMS Pool

Grid Sites

Worker Worker Worker

Figure 1- GlideinWMS structure

HTCondor

HTCondor functions as a workload management system, encompassing both batch system and
local resource manager functionalities. As an open-source implementation, it offers fault
tolerance, a sturdy feature set, and adaptability. It finds application in local high-performance
computing centers such as UW Madison. For instance, when operating within a consistently active
local cluster, specific software or file systems unique to the environment might be relied upon.
Notably, it accommodates specialized job scenarios involving multiple nodes, like MPI or HTC
resources. HTCondor provides essential components including a job queueing mechanism,
scheduling policy, resource monitoring, and resource management to effectively manage and
optimize job execution within computing clusters.

GPU's Role in Scientific Computing

In the realm of scientific computing, GPUs play a pivotal role due to their remarkable attributes.
Their prowess in handling extensive parallel tasks is especially noteworthy. This capability proves
invaluable for tackling intricate calculations, spanning simulations, data analysis, and optimization
tasks. Notably, GPUs contribute to a significant boost in processing speed and efficiency, resulting
in notable reductions in execution time. Their impact extends to machine learning as well. When
training deep neural networks, GPUs' parallel processing capabilities offer accelerated model
refinement. Moreover, they expedite data preprocessing and feature extraction in data analysis
tasks. In the realm of Al applications, GPUs further enhance predictive modeling and decision-
making processes through their computational potency.

Triton server

The Triton Inference Server stands as an open source software tailored for seamless Al
inferencing. Within the Central Distributed System, the Triton server fulfills the role of an open
source inference serving tool, with a focus on GPU utilization. This server facilitates GPU
management by enabling its access from external programs, extending even to remote usage.
Triton's functionality allows for the sharing of GPUs, allocating them to processes that demand
their resources, whether local, remote, cloud-based, or across clusters. It empowers teams to

deploy Al models from various deep learning and machine learning frameworks, encompassing
TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton
seamlessly supports inference across diverse platforms including NVIDIA GPUs, x86 and ARM
CPUs, AWS Inferentia, and cloud environments, optimizing performance for a spectrum of query
types such as real-time, batched, ensembles, and audio/video streaming.

Virtuam Machine and Containers

Two fundamental concepts are at the forefront: virtual machines (VMs) and containers. VMs act
as self-contained software environments, mirroring physical computers. They facilitate the
operation of multiple operating systems on a single hardware infrastructure. Conversely,
containers are lightweight packages that enclose applications along with their dependencies,
ensuring portability across various platforms.

Both VMs and containers significantly enhance operational efficiency by simplifying software
deployment, optimizing resource utilization, and enabling seamless scalability in modern
computing landscapes. This convergence is where Apptainer emerges. Apptainer serves as an
orchestrator for container clusters, streamlining the scaling and management of applications. It
facilitates the uniform distribution of applications across diverse environments, while maintaining
simplicity in the process.

Given the inherent diversity of worker nodes, necessitating the utilization of both VMs and
containers, Apptainer bridges the gap. VMs unify the disparate nodes by isolating services and
encapsulating programs with their dependencies, ensuring seamless portability. While VMs are
more widespread, containers, being computationally lighter, are often preferred for their efficiency
in various applications.

Apptainer, in particular, stands out by providing robust support for running containers. A notable
advantage is that these containers operate in an unprivileged state, enhancing security and
maintaining system integrity. Through the synergy of VMs, containers, and the streamlined
management offered by Apptainer, the complexities of modern computing environments are
seamlessly addressed.

App 1 App 3 App 1 g App 3

Guest OS ﬂ Guest OS

Hypervisor

Container Engine

Operating System
Infrastructure

Infrastructure I:] ‘

O E &

Virtual Machines Containers

Figure 2-Difference between Virtual Machine (VM) and Containers

Glidein

A glidein refers to a pilot job initiated within a worker node to secure and configure the necessary
resources for a job's execution. These glideins are solicited by the Frontend, activated through
the Factory, and integrated into the virtual cluster. Essentially, a glidein functions as a pilot job,
serving as the catalyst for commencing processes. It enables the initiation of simulations initiated
by users, ensuring a smooth start to the computational tasks.

VM
Glidein
HTCondor startd

job

C—

~2083 lines of code

Worker Node

Figure 3-Glidein start up role inside the Worker Node

Life cycle phase execution

The life cycle of a glidein, encompassing the execution of custom scripts, unfolds through four
distinct phases: startup, pre-job, post-job, and cleanup. The glidein's configuration component
features a designated file section dedicated to specifying programs for both testing and node
setup.

Our primary focus lies on the initial setup phase, where the Triton server is initiated. This is
achieved using Apptainer, which employs a portable container for seamless execution.

For illustrative purposes, let's consider the scenario of a single-node glidein. During the startup
phase, a series of scripts come into play. These scripts undertake tests to ensure the worker
node's functionality, followed by the setup process that readies the node for job execution. It's
worth noting that multiple jobs can be involved, with the glidein capable of executing them either
in parallel or sequentially.

p—— Glidein

startup pre_job after_job cleanup

e N\

// \
mile/st/one:l milestone:2 faillh*e\:l

g

periodic

Figure 4-Workflow of Glidein during the submission of a user job

DELIVERABLES

The initial objective involves establishing a local system where a single node hosts both a glidein
instance and multiple jobs executed by the same Triton server. Looking ahead, the aspiration is
to expand this capability to remote clusters. This would empower jobs to leverage GPUs across
different nodes, enabling glidein to access external jobs. This could potentially entail the creation
of a proxy mechanism.

Notably, the envisioned setup envisions glidein and jobs interacting seamlessly. This harmonious
interaction extends to utilizing glideins across diverse clusters, even those connected remotely.

However, this endeavor isn't without challenges. Two major difficulties include locating the Triton
server and ensuring secure access from remote sources. These obstacles need to be navigated
to achieve the envisioned efficient and collaborative computing setup.

METHODS

In this section are explained the first steps to set up a Virtual machine, a short introduction of
Apptainer and then the different tests executed.

It is needed to install git, Docker, WSL, AlIma9, as further explained in the following.

Creation of a VM

openstack.

Figure 5-Symbol of Openstack

OpensStack is an open-source cloud computing platform that allows organizations to build and
manage cloud infrastructure using a collection of integrated services. One of the key
functionalities of OpenStack is its ability to provision and manage virtual machines (VMs) through
its Compute service, commonly known as Nova.

Creating a VM in OpenStack:

1. Access Dashboard: Log in to the OpenStack Dashboard, also known as Horizon.

Navigate to Compute: Once logged in, go to the "Compute" section and then click on

"Instances."

Launch Instance: Click on the "Launch Instance" button to initiate the VM creation process.

Configure Instance: In the launch instance dialog, you'll be prompted to configure various

settings such as:

e Name: A name for the VM.

e Flavor: The type of instance (CPU, memory, storage).

o Image: The operating system image to use.

e Key Pair: SSH key pair for secure access.

o Network: The network to which the VM will be connected.

e Security Groups: Firewall rules for the VM.

e Launch: After configuring the settings, click on the "Launch" button to create the VM.

5. Monitor Status: You can monitor the status of the VM from the "Instances" page. Once the
status changes to "Active," the VM is up and running.

6. Access VM: You can then access the VM using SSH or through the console available in
the dashboard.

B w

Available VM address:

o root@fermicloud862.fnal.gov
o root@fermicloud762.fnal.gov (has 30+70=100GB)

Addresses of Frontend and Factory:

e fermicloud819.fnal.gov FRONTEND
o fermicloud798.fnal.gov FACTORY
e fermicloud762

mailto:root@fermicloud862.fnal.gov
mailto:root@fermicloud762.fnal.gov

Windows Subsystem for Linux

First of all it is needed to do the ‘Windows Setup’ of the three containers: factory, front end and
compute engine (https://github.com/glideinWMS/glideinwms/wiki/WWindows-Setup).

The following steps serve as a guide on setting up a development environment on Windows using
WSL (Windows Subsystem for Linux), Docker, and VSCode.

e Prerequisites: Enable Virtual Machine Platform and WSL in Windows Features.

¢ Installation: Install a Red Hat-based Linux distro like Rocky, Alma, or CentOS from the
Windows Store. Follow the guide on Microsoft's website for WSL installation. In our case
the distro used is Alma9.

e Basic Commands: Use wsl to enter the default Linux distro, and for
non-default ones. List all installed distros with [SEREI.

e Setup: Connect to the Fermilab network directly or via VPN. Install Kerberos for
authentication.

¢ VSCode and Extensions: Install VSCode and various extensions for WSL, Docker,
Python, and SSH management.

e WSL Configuration: Set the default Linux distro to Alma9/CentOS and create an
file to handle SSH configurations between Windows and Linux.

¢ Remote Connection: Use VSCode's Remote Explorer to connect to remote VMs and
containers. Make sure to authenticate Fermilab's network if needed.

o Compute Engine and Factory Setup: Instructions are provided for setting up compute
engines and factories, checking their statuses, and running startup scripts.

o Token Management: Update tokens every few hours for proper functioning.

e Dev Containers: Install to use development containers within VSCode.
In this case the following version was used:

docker pull nvcr.io/nvidia/tritonserver:23.08-py3
Apptainer/Singularity
Reference: https://mambelli.github.io/hsf-training-apptainer/index.html

Apptainer (formerly Singularity), a free and open-source container platform designed for the
scientific and High-Performance Computing (HPC) communities. It allows for the creation and
running of isolated application environments, known as containers.

Prerequisites:

e Basic Unix Shell knowledge is required.
e Access to a Linux-based system with Apptainer/Singularity installed or the ability to enable
user namespaces and access CVMFS.

Software Setup:

Apptainer and Singularity are often pre-installed on institutional computing resources. You can
check their availability and versions with dsingularity --version}

If not installed or if the version is outdated, you can potentially use an updated version via CVMFS
if user namespaces are enabled.

https://github.com/glideinWMS/glideinwms/wiki/Windows-Setup
https://mambelli.github.io/hsf-training-apptainer/index.html

A short guide on using Apptainer's Command Line Interface (CLI) for container management is
reported below.

Key Features:

e Check versions with and get help with .
o Apptainer allows you to search, build, and run containers easily.

e Compatible with both its own and Docker images.

Commands:

o or BREEIS RS AERATIa o]y to check the version.

e apptainer --help to see available options.

o Bl EMCEINdy to find containers.
o ElsJoi=HyIgleIsill to download images.

Running Containers:

o Use E[JEHIIg M0 to start an interactive shell inside the container.
e Use to execute a specific command inside the container.

Storage and Binding:

e Images are stored as . files.
e Directories can be bound between the host and the container using the ! option.

Compatibility:
Apptainer is compatible with Docker images and can pull from Docker Hub.
Important Notes: Recommended versions are Apptainer >= 1.0 or Singularity >= 3.5.

In the following it is explained how to create and modify containers using Apptainer's build
command, described as the "Swiss army knife of container creation."

Workflow:

e Develop and test containers in a build environment like a laptop.

o Deploy the container into a production environment like an institutional cluster.

e For reproducibility and transparency, it's recommended to build containers from a
definition file.

Building Containers:

e Use flag with EJJsi=FIgMeIsiRe| to create a writable directory for building and
testing.
T SEglolcBapptainer build --sandbox myCentO0S7 docker://centos:centos?

Interactive Sessions:
Use and options for writing files and installing new components.
Key Points:

10

o is essential for container creation.

o Sandboxes are writable directories for interactive container building.

e Superuser permissions are needed for certain build tasks.

e Use interactive builds for testing and definition files for production or distribution.

To build and deploy containers using Apptainer definition files, which offer a streamlined way to
create containers, it is possible to follow the example below.

e Create a definition file (e.g.,) with the necessary script.

LI =1V o R CRIn Ele S RWiiigBa pptainer build hello-world.sif hello-world.def}
Run the image with AN R e]aiNe IS

Deployment:
Containers can be executed immediately and anywhere once built.
Libraries like Sylabs Cloud Library and organizations like OSG facilitate image distribution.

Finally, we can use Apptainer for running background services, particularly useful for deploying
web applications like Jupyter notebooks. Unlike commands like and which run
containers in the foreground, Apptainer offers the concept of "instances" to run containers in the
background.

Basic Usage:

« Tostartan instance, use
e To list running instances, use

e Tointeract with an instance, use .
S CECRELREEYPIE o 0 tainer instance stop cinstance name>)

Advanced Features:

¢ Instances can have bind paths for directory mounting using option.
e You can deploy web services, demonstrated with a basic HTML server using Python's

http.server}

e You can deploy a Jupyter notebook with a custom environment, including libraries like
ROOT.

SSH Tunneling:For remote deployments, SSH tunneling can be used to access services.

Reproducibility: Apptainer allows you to package the environment needed for Jupyter
notebooks, ensuring that your code will work consistently over time.

Test1: script execution

The aim of the first test is to create a custom script (hello_script_factory.sh) in the factory and call
it from the frontend.

kinit saram@FNAL.GOV

klist
ssh

11

mailto:root@fermicloud862.fnal.gov

podman exec -it factory-workspace.fnal.gov /bin/bash

1ls /etc/gwms-factory/

nano hello script factory.sh

find / -name " hello script factory " 2>/dev/null
vi /etc/gwms-factory/glideinWMS.xml

<file absfname="/hello script.sh" after_entry="False" const="True"
executable="True"/>

systemctl stop gwms-factory

systemctl reload gwms-factory OR gwms-factory reconfig
systemctl start gwms-factory

podman exec -it frontend-workspace.fnal.gov /bin/bash

su - testuser
condor submit submitFile

Test 2: use a Glidein script of a container to launch a server

Typically, containers are initiated in an interactive mode using Podman, but the goal here is to run
them in the background as a server.

To achieve this, a server can be launched from a container using either Apptainer or Docker,
utilizing a web server Docker image.

In the Glidein configuration file, make sure to update the 'type' attribute to include 'exe' along with
modifiers such as 'exe:s', where 's' represents Singularity (or Apptainer).

Finally, run the Docker application within the container to start the server.
Reference to deploy a model using Triton inference Server:

e https://docs.nvidia.com/deeplearning/triton-inference-server/user-
guide/docs/getting started/quickstart.html

e https://github.com/triton-inference-
server/server/blob/main/docs/getting started/quickstart.md#run-on-cpu-
only-system

git clone -b r23.08 https://github.com/triton-inference-server/server.git

cd server/docs/examples
./fetch_models.sh

12

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/getting_started/quickstart.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/getting_started/quickstart.html
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md#run-on-cpu-only-system
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md#run-on-cpu-only-system
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md#run-on-cpu-only-system

docker run --gpus=1 rm --net=host -v ${PWD}/model repository:/models
nvcr.io/nvidia/tritonserver:23.08-py3 tritonserver --model-repository=/models

docker run -it rm --net=host nvcr.io/nvidia/tritonserver:23.08-py3-sdk
/workspace/install/bin/image client -m densenet onnx -c 3 -s INCEPTION
/workspace/images/mug.jpg

Image '/workspace/images/mug.jpg’:
15.346230 (504) = COFFEE MUG
13.224326 (968) = CUP
10.422965 (505) = COFFEEPOT

Other triton tutorials to familiarize users with Triton's features and provide guides and examples
to ease migration: https://github.com/triton-inference-server/tutorials/tree/main

Wilson Cluster — Institutional Cluster: SLURM job scheduler

SLURM (Simple Linux Utility For Resource Management) is an open-source resource manager
and job scheduling system developed by SchedMD. It is widely used in high-performance
computing environments, including most of the Top 500 supercomputers.

SLURM provides various commands for job control, monitoring, and resource allocation, such as
scontrol, squeue, sbatch, salloc, srun, sinfo, and sacct.

Users can check their default SLURM account and associated accounts using the 'sacctmgr'
command. If an account name is not specified during job submission, the default account will be
used.

Reference: https://computing.fnal.gov/wilsoncluster/slurm-job-scheduler/

13

https://github.com/triton-inference-server/tutorials/tree/main
https://computing.fnal.gov/wilsoncluster/slurm-job-scheduler/

Globus endpoint Server " &

/pl’lfii fnal#Wilson 1s online
Start here ‘\‘—i:} (tape robots) \ /wclustre
-~ ~ = /\ Y = =
dCache X g =
. SN < ;ustre
(R A ervers -
... (VE[StP,r?)Q —1 [1Backup NO
wce.fnal.gov [=
’ . — /nashome [JBackup YES
SLURM Submit host \y Public
= - LAN
!.\.:;I/work1 iior HPC interconnect -
;J Nodes - = SATA interconnect
= /scratch
/scratch
/scratch
(GvInf EJ /scratch

Figure 6-SLURM job scheduler

ssh wc.fnal.gov

sacctmgr list user name=saram
User Def Acct Admin

saram HEPCloud

Slurm Resource types

14

Resource - GPU Number of Number of SLURM Shared
SLURM Type Description tasks per " Nodenames Resource
Type Type resources Partition -
resource
) —ntasks- ») .
—constraint —-nodes —partition —nodelist —exclusive
per-node
2.6 GHz Intel
. E5-2650v2 “lvy wewn[001-
tel2650 CPU TN a0 16 M
" Bridge” Eight | o ° cpu_gee 050] °
Core
Same wown[091-
intel2650 cPU ame as None 10 16 cpu_gee_test | S No
above 100]
2.4GHz Dual ;;“Nﬁ
p100nvlink GPU CPU Fourteen P100 :'ith 1 56 gpu_gce wegpu Yes
Core Intel NVLINK
Bx
1.7GHz Dual NVIDIA
p100 GPU CPU Eight P100 with | 1 16 gpu_gce wegpu2 Yes
Core Intel NO
NVLINK
2%
2.5GHz Dual NVIDIA
v100 GPU CPU Twenty V100 with | 4 40 gpu_gce wegpu[03-08] | Yes
Core Intel NO
NVLINK
2.8GHz dx
Dual CPU NVIDIA
al00 GPU Thirty-Two A100 with |1 64 gpu_gce wegpuall Yes
Core EPYC NO
7543 MNVLINK
3.8GHz Dual dx
) CPU Sixteen NVIDIA)
v100nvlinkppc64 | GPU Core IBM V400 with 1 128 gpu_gce_ppc | wcibmpower01 | Yes
Power9 NVLINK

Figure 7-SLURM Resource Types

It is better to use cpu_test to send a test job since it is faster, then we should use the SLURM
partitions that have GPU (and are into the red rectangle).

We used SLURM to submit an interactive job. Remember to exif at the end. In this case srun is
the command equivalent to condor submit).

Example:

[@wc]$ srun pty --nodes=1 ntasks-per-node=16 --partition cpu_gce bash
[user@wcwn@@1]$ env | grep NTASKS

SLURM_NTASKS_PER_NODE=16
SLURM_NTASKS=192
[user@wcwn@@1l]$ exit

In my case:

15

docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
nvcr.io/nvidia/tritonserver 23.08-py3 4 weeks ago 126

nvidia/cuda 12.2.0-base-centos? 2 months ago

df -h

Inference test running in a Triton Server using python function:

pip install 'tritonclient[all]’

Define in a .py file:

import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
triton_client = httpclient.InferenceServerClient(
url="localhost:8000")
test infer(model name,
input@_data,
inputl data):
inputs = []
outputs = []
inputs.append(httpclient.InferInput('INPUT LAYER 1 NAME',
list(input@_data.shape), "INT64"))
inputs.append(httpclient.InferInput('INPUT_LAYER 2 NAME',
list(inputl data.shape), "INT64"))

inputs[@].set_data_from_numpy(input®_data)
inputs[1].set _data from_ numpy(inputl data)
outputs.append(httpclient.InferRequestedOutput('model output’,
binary_data=))
results = triton_client.infer(
model name,
inputs,
outputs=outputs
)

return results

input@_data = np.arange(start=0, stop=16, dtype=np.int64)

input@® data = np.expand dims(input® data, axis=0)

inputl _data = np.full(shape=(1, 16), fill value=-1, dtype=np.int64)

test_infer('simple identity', input®@ data, inputl data)

Create a /tmp folder to contain the model and run the script

mkdir /tmp/models
[saram@SlimProSara:~/models/simple identity]$ cp -r ../simple_identity
/tmp/models/

[saram@SlimProSara:~/models/simple_identity]$ docker run rm -p 8000:8000 -p
8001:8001 -p 8002:8002 -v /tmp/models:/models 3e96065a3dcc tritonserver --model-
repository=/models

[saram@SlimProSara:~/models/simple identity] python3 test.py

Alternative way to use cmd and python to call function inline from file:

PYTHONPATH="/~/: $PYTHONPATH"

/~

import ‘name file.py’ ‘directory’
from ‘module/folder’ import *

If all the scripts are located in a single folder, it's advisable to create a package by adding an
__init__.py file. This file can be used to specify which components are public or private, as well
as to initialize variables.

Test 3: use Glidein script from a container to launch Triton

When Glidein is activated, it locates the image and launches Triton via Apptainer. After that, jobs
can be submitted. You can also place the client image and run tests again.

1. Create two images (server and client): client.sif and server.sif

nano client.def

Inside paste the image configuration:

#tstart from img di Triton, 2 img in /cvmfs/local

tritonserver_23.08-py3-sdk.sif #client
tritonserver 23.08-py3.sif #serverls

BootStrap: docker
From: ubuntu:20.04

%runscript
echo "Client"
Create the .sif file:

apptainer build client.sif client.def
Repeat for HIaYEIg R Ei

17

2. Save the images in the directory /opt and make it publicly visible:

mv server.sif /opt/

chown root:root /opt/client.sif
chown root:root /opt/server.sif

sudo chmod 755 /opt/client.sif
sudo chmod 755 /opt/server.sif
3. Manual test: create a script (.sh) to invocate two things:
1. to launch Triton server as daemon
2. that launch the client and execute on this client the inference of the test

Include the "docker run’ command for sending the inference request using the ‘image_client’
example.

nano launch_triton _and client.sh

docker run --gpus=1 rm --net=host -v ${PWD}/model repository:/models
nvcr.io/nvidia/tritonserver:23.08-py3 tritonserver --model-repository=/models &

sleep 10

docker run -it rm --net=host nvcr.io/nvidia/tritonserver:23.08-py3-sdk
/workspace/install/bin/image client -m densenet _onnx -c 3 -s INCEPTION
/workspace/images/mug.jpg

chmod +x launch_triton_and client.sh

Now, when you run the script using "./launch_triton_and_client.sh’, it will:

e Launch the Triton server as a daemon.

18

e Wait for 10 seconds to allow the server to initialize.
¢ Run the ‘image client’ example to send an inference request for the "densenet_onnx
model using the specified image.

NB: docker stop 123456789abc remember to stop it!

Put model repository in the right place /model_repository /root/

With Apptainer

apptainer instance start bind ${PWD}/model repository:/models
/cvmfs/local/tritonserver 23.08-py3.sif tritonserver --model-repos>

sleep 10

apptainer run /cvmfs/local/tritonserver 23.08-py3-sdk.sif
/workspace/install/bin/image client -m densenet onnx -c 3 -s INCEPTION />

4. Create a similar script to launch the Triton server and execute multiple time the
client using different images simulating in this way the multiple jobs (if possible,
otherwise the same img, depending on model densenet constraints)

A shell script was used to launches the Triton server and then runs the client multiple times with
different images to simulate multiple jobs.

apptainer run /cvmfs/local/tritonserver 23.08-py3-sdk.sif
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION />

docker run --gpus=1 rm --net=host -v ${PWD}/model repository:/models -v
/root/image_repository:/workspace/images
nvcr.io/nvidia/>

19

sleep 10

images=("mugl.jpg" "mug2.jpg" "mug3.jpg")

for img in "$ "; do

echo "Running inference on $img"

docker run -it rm --net=host -v /root/image repository:/workspace/images
nvcr.io/nvidia/tritonserver:23.08-py3-sdk /workspac>done

done

chmod +x launch_triton_and multiple clients.sh

./launch _triton and multiple clients.sh

Note: Make sure that the paths to the model repository and images are correct and accessible
from the containers. Also, adjust the ‘sleep’ time as needed based on your Triton server's
initialization time.

To mount the images
cd /mnt/c/Users/saram/Pictures/images/
scp ./* root@fermicloud762.fnal.gov:/root/image_repository

With the apptainter:

apptainer instance start bind ${PWD}/model repository:/models
/cvmfs/local/tritonserver_23.08-py3.sif tritonserver --model-repos

sleep 10

images=("mugl.jpg" "mug2.jpg" "mug3.jpg")

for img in "$

20

echo "Running inference on $img"

apptainer run bind "$ /model repository:/models"” bind
"/root/image_ repository:/workspace/images" /cvmfs/local/tritonserver 23.08-py3-
sdk.sif /workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION
/workspace/images/%$img
done

5. Create a custom script in the factory to call the Triton server (modify xml on the
factory inserting a path to a .sh script that invokes the triton, as script 3 or 4).
Configurate the file vi /etc/gwms-factory/glideinWMS.xml

Move to file section, in the general location (at the bottom).

apptainer instance start bind ${PWD}/model repository:/models

/cvmfs/local/tritonserver 23.08-py3.sif tritonserver --model-repos>
ITB_CE_Big, fermicloud762

6. Send an user job (specifying the container to use, Marco will share the command)
that use the client container, transfer the image, mount the dir with the image and
execute the classification

In the job submit file: (when there is condor submit)

+REQUIRED_0S = “titonclient” OR +SingularityImage = "/cvmfs/local/client” (as

long as we work with 1 site)

And add variable in the frontend configuration:
SINGULARITY IMAGES DICT param with value

"titonclient:/cvmfs/local/client,tritonserver:/cvmfs/local/server"

21

NEXT STEPS

The next main aim is to modify factory code and front end code to automate the startup of the
Triton server. By following the steps here reported, we will not only make it easier for users to use
the Triton server but also ensure that the system is robust, scalable, and well-documented.

e Conduct a Comprehensive Test: Run multiple jobs in the glidein to ensure stability.
Also, perform tests on various resources such as GPU and Wilson cluster to validate
compatibility and performance.

e Create a Default Server Image: Generate a default image for the server on CVMFS
by creating and building a Dockerfile. Review the existing image options for Triton on
the official website and select the most commonly used versions for the default image.

e Simplify Triton Startup in Factory Code: Modify the factory code to enable Triton server
startup with a single switch command. Users should be able to start Triton with just
one line of code or optionally specify a custom image version.

e Define a Default Client Image: Create a default client image using a Dockerfile.
Existing images are large, so investigate ways to reduce the image size (see point 5).
A separate client is needed for each job.

e Identify Minimum Requirements for a Lighter Client Image: Determine the minimum
requirements needed to offer a runtime or a lighter image for the client. This should be
in contrast to loading the full image used in the first test.

e Enhance Frontend Usability for Triton: Modify the frontend code to simplify Triton
usage for end-users. Add a switch in the frontend commands to request Triton. Users
should also be able to select which site to send the glidein to, making it a bit more
complex. In addition to activating configurations for starting the Triton client, users
should also be able to choose a site that supports Triton.

In parallel, check use cases:

e Find a Simple Example and Test at Scale: Locate a straightforward example (such as
the one involving mugs) and conduct tests on a large scale, involving multiple glide-
ins and running numerous jobs simultaneously.

e Identify a More Complex Use Case: Adapt your existing research or classification
models to utilize the Triton server. This will serve as a more significant, real-world test
case.

e Document the Adaptation Process: Create comprehensive documentation outlining
the steps taken to adapt your models for the Triton server. This will serve as a guide
for others who wish to do the same.

e Generalize and Educate: Provide a generalized guide on how to use the system,
possibly starting with a PyTorch example. Explain how to transition from a Python
script (.py) to a program that leverages the Triton server.

By following these steps, you'll be able to test the system's capabilities and also make it easier
for others to adapt their projects to use the Triton server.

22

Utilities

~/scripts/create-scitoken.sh
create-scitoken.sh

Condor_ssh_to_job 7

/var/log/gwms-factory/client/.../entry ce../job.#.out[err]

Locate (yam install) - it is useful to search

23

CONCLUSIONS

In the realm of scientific computing, the need for substantial computational resources is both
pressing and ever-growing. This paper has delved into the intricacies of distributed High
Throughput Computing, focusing on the HTCondor framework and its resource provisioning tools,
GlideinWMS and HEPCloud. GlideinWMS, functioning as a pilot-oriented provisioning tool,
creates consistent virtual clusters by deploying Glideins to diverse and often unreliable resources.
This approach has proven to be invaluable for large-scale scientific experiments like CMS and
DUNE, which require efficient access to vast computational resources.

The paper also emphasized the critical role of Graphics Processing Units (GPUs) in accelerating
various computational tasks, particularly in Al and machine learning workflows. Despite their
significance, the availability of GPUs is often limited and not uniformly distributed among worker
nodes. To address this bottleneck, the study introduced the NVidia Triton server within containers
to enhance GPU utilization. This innovative approach allows for the sharing of limited GPU
resources across all jobs managed by a Glidein within a worker node.

Looking ahead, the study explores the possibility of extending this GPU sharing approach to
various resources, potentially through proxying mechanisms within the Glidein to access remote
Triton servers. This holistic strategy aims to optimize resource utilization and streamline the
computational process, thereby addressing some of the most pressing challenges in scientific
computing today.

In summary, this research contributes significantly to the field by offering a comprehensive
solution for optimizing GPU utilization in a distributed computing environment. It sets the stage
for future work that will focus on overcoming current limitations, such as the secure location of
Triton servers and the development of proxy mechanisms for more efficient resource sharing. By
doing so, the study aims to have a concrete impact on the scientific community, offering a more
efficient, scalable, and cost-effective paradigm for scientific computing.

24

TRAININGS AND REFERENCES

GlideinWMS Glidein description and Basic Concepts - A GlideinWMS Glossary (Drive
repository)
HT Condor documentation
VM and containers
Training Git and Github
o https://indico.cern.ch/event/1269936/contributions/5354355/attachments/26621
58/4612177/qit cms%20(1).pdf
o https://mambelli.github.io/qgit-novice/
o https://learngitbranching.js.org/
Training shell
o https://indico.cern.ch/event/1269936/contributions/5348268/attachments/26608
80/4610121/Shell Bash%20notes.pdf
o https://swcarpentry.github.io/shell-novice/
Training Apptainer
Additional material
o Esercizi: https://www.hackerrank.com/domains/shell
o > Classic: http://www.tldp.org/LDP/abs/html/
o > Break it down: http://explainshell.com
o > Great guide: http://wiki.bash-hackers.org/
o > Good to know: https://mywiki.wooledge.org/BashPitfalls
> Unit testing: https://bats-core.readthedocs.io/en/stable/Glidein:
o https://github.com/glideinWMS/glideinwms
o https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow
o Instructions: https://glideinwms.fnal.gov/doc.prd/index.html
o Custom scripts: https://glideinwms.fnal.gov/doc.prd/factory/custom scripts.html
Container and apptainer
https://www.docker.com/resources/what-container/
o https://circleci.com/blog/docker-image-vs-container/
o https://hsf-training.github.io/hsf-training-singularity-webpage/index.html
o https://mambelli.github.io/hsf-training-apptainer/index.html

O

25

https://indico.cern.ch/event/1269936/contributions/5354355/attachments/2662158/4612177/git_cms%20(1).pdf/
https://indico.cern.ch/event/1269936/contributions/5354355/attachments/2662158/4612177/git_cms%20(1).pdf/
https://mambelli.github.io/git-novice/
https://learngitbranching.js.org/
https://indico.cern.ch/event/1269936/contributions/5348268/attachments/2660880/4610121/Shell_Bash%20notes.pdf
https://indico.cern.ch/event/1269936/contributions/5348268/attachments/2660880/4610121/Shell_Bash%20notes.pdf
https://swcarpentry.github.io/shell-novice/
https://www.hackerrank.com/domains/shell
http://www.tldp.org/LDP/abs/html/
http://explainshell.com/
http://wiki.bash-hackers.org/
https://mywiki.wooledge.org/BashPitfalls
https://github.com/glideinWMS/glideinwms
https://github.com/glideinWMS/glideinwms/wiki/Development-Workflow
https://glideinwms.fnal.gov/doc.prd/index.html
https://glideinwms.fnal.gov/doc.prd/factory/custom_scripts.html
https://www.docker.com/resources/what-container/
https://circleci.com/blog/docker-image-vs-container/
https://hsf-training.github.io/hsf-training-singularity-webpage/index.html
https://mambelli.github.io/hsf-training-apptainer/index.html

