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2 1 Qutline

lon Trapping Overview




3 1 Earnshaw’s Theorem and lon Trapping

Trapping requirement: A restoring force when displaced from trap center
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+ I Various Trap Geometries

Use a combination of static and rf fields to trap ions
Various geometries possible




s | Various Trap Geometries

Pseudopotential well (dark area) formed along the axis of a

—)

surface trap

| P

Electrodes from above

House, PRA 78 033402 (2008)
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s | Need for DC Fields

Looking along axis of trap

Well confined radially

L

Looking at trap from above

Still free to
move along
axis

RF

RF

Use DC fields on the
electrodes to confine

Creates a trapping
potential along axis
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s | Create custom trap designs with advanced ion control

I

QSCOUT - Jackrabbit trap



9 I Next Generation Traps — Increasing Optical Access
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What’'s Nex.  'nieqrated Photonics

« Integrated optics serve to soye the problem of scaling vacuun)@%/stems for trapped ion systems

« Direct integration = llthograph}%}allgnment <9
« Disadvantages = long tim~ to fabrigate & must be com}\@dﬁi\blewith trap fabrication
| % ]
@(}.
%

c Kwon, J. et al. N4t Com °/> 15, 3709
> a (2024).
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n I Why Heterogenous Integration?

« By separating the pieces onto separate chips, we can enable faster development and more
flexible designs
« Disadvantage: aligning separate pieces in a way that can survive a vacuum bake is hard
« Two different approaches:
« A hybrid solution where exotic technology is off-chip = easier to integrate
« The ion trap is completely separate from photonic (and other) technology

Light passing

Waveguide light passing through trap chip to

through trap \ A/ detector

Active Photonic Optical Interposer | Detector Chip
Fiber Array Switchboard & O O @09 OF 89  OF |
Electrical socket 100’s of DC connections




2 | Heterogeneous Integration: Waveguides + Phoenix Trap

» Designed a 355nm waveguide chip to fit into a modified Phoenix trap
* “Micro-machining” a hole in the backside silicon to pass light through
* Remaining handle silicon is 10um thick

~ 250 pM




13 | Heterogeneous Integration: Waveguides + Phoenix Trap

» Designed a 355nm waveguide chip to fit into a modified Phoenix trap
« “Micro-machining” a hole in the backside silicon to pass light through
* Remaining handle silicon is 10um thick

w [niner DC
= Ground
= Outer DC
—RF
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14 I Characterize alignment using 355nm light and experiment

« QOur trapped ion system has a high-zoom imaging system which allows for sub-micron precision in
our measurements.
* We can track the light out of the waveguide with respect to the surface to determine how the
waveguide shifts during a vacuum bake
« Use the same wavelength across the surface to find the electrode edges
* Track the light out of the waveguide as we change the focus of the imaging system getting
snapshots as a function of height from the waveguide chip



15 I Characterize alignment using 355nm light and experiment

355 light in focus at trap surface

1000

|A beam light on surface

Waveguide light

« By calibrating the imaging, we can track the output of the waveguide with respect to the ion trap chip
* Our magnification give us ~0.28um/pixel on the camera with ~1pixel uncertainty as long as the lens motors
move in a single direction
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1 | Before baking track the output vs height from ion trap

. L?smglzghe location of the edges of the trap, we compare the output of the waveguide to the center
of the trap




7 I Compare output before and after bake

* Though AuSn solder should be resistant to shifting during a 150C 107

bake, we see that the chip does shift after 5 days of baking
* We measure about 3 um of shift from a 5 day bake

* Need to develop a technique that reduces stress in the solder
attach to minimize the motion
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18 ‘ Solder Will Move to Relax Stress

* Astudy has shown a relationship between temperature and stress a solder creep rate [1].
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Fig. 3. a) Creep curves of AuSn at 125 °C, truncated at 100% strain, and b) creep rates of AuSn between 125 and 200 °C. The power law stress exponent, n, is indicated for each temperature.

* For AuSn that melts at 280 °C, the temperature range of 125 to 200 °C represents a homologous temperature,
T/TM, range of 0.72 to 0.86

* We know that 150 C falls exactly here which is demonstrated in this paper to incur creep.

* The region where the waveguide is mounted is suspected to have the highest stress, suggesting this cause
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[1] J.W. EImer, R.P. Mulay,, Scripta Materialia, vol. 120, pp. 14-18, 2016.



19 ‘ Reinforcing the Solder with Adhesive

» We can use an established HI practice and underfill the soldered piece with an adhesive
» Trap surface is too damaged for trapping
* Reduced the amount of shift to < 0.5 ym
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Quantum Scientific Computing Open User Testbed
20 1 (QSCOUT)

ST gscout.sandia.gov
W ENERGY gscout@sandia.gov
Office of Science ‘
QSCOUT Jaoal

A quantum computing testbed based on trapped ions for the greater quantum scientific community

QSCOUT grants low-level access to quantum machines for free to researchers around the world to study |
their proposed research.
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QSCOUT goals:
» Greater understanding of how quantum machine work (and fail)

» Study new techniques for encoding and compiling quantum circuits

» Construct a roadmap for building larger, more sophisticated machines m

.
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https://www.sandia.gov/quantum/Projects/QSCOUT.html

21 ‘ Current Specifications of the Machine

Repeated M5 gates of Motional modes of 6-ion chain

Current Specs: o different entangling angles
* 6 ions, fully connected, individually T e
Fully entangling, gy e A ket [ o 7
addressable 200 0 =1/2, F ~ 0.984/ gate ;2] oo oo
* >0.96 fidelity two-qubit gate (any £ o6
pair)
C >0.997 fidelity Single'quit gate go.z— .. Tightring bolt.” mage 3 . '"uvl.r.'—:ve-‘ | Tzig-zen” gode 5 I
* >0.998 fidelity state preparation o _ I (REAVAY:
and measurement O L (RIS S T |
» Can provide custom calibrations
o ——— 6=m/8 F~0.992/gate — . . . .
« Can specify phase and amount of S wen. | ©710N chain MS gate pairs S
. > 081 — |o0>
entanglement for 2-qubit Malmer- : fully entangled estimated _state fldelltles
S@rensen1 ( oi X Gi ) gate (use as g : l—‘uu‘rl)ntivx.q{;a] q_lh] I\lmlt‘ﬁuult*x L){\.Lumrlll;;: lk}l'f.].l"lilt‘m_\' l:{}; _l—l_ff-. —2/5-]
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» | Light from each ion is directed to its own detector

171Yb+
2|31/2
Detect
(cycling //acuum Chamber\ Detectors
transition) -
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10) \ lony/ Multicore PMT
fiber 32 cores -
by 1 PMT
5 = PMT 1
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a = PMT 3 * During detection, light from each ion is collected
S separately
§ * Depending on # of photons collected, ion is determined
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Copropagating or counterpropagating configurations as
2 | needed

Each spin flip needs two tones

lon Chain
— T - - -
32 channel AOM, each channel controllable /;:\cuum Chamber\ 33 THZ-I-
in frequency phase and amplitude 2P1/2
- . i Global 355 beam
\ 355 nm
Single qubit gates, use two pulsed
tones on each individual beam (n\ / laser
global beam) |1Ll L
Two Qubit Gates with Trapped lons: “Sip v ]12.6 GHz

Mglmer-Sgrensen’ o; x o, entangling interaction 10)
(choose your basis)

» Three frequencies required, counterpropagating
configuration required (2 freq on individual
channel, 1 freq on global channel)

« Any pair of ions can be illuminated, excite and de- ' 0
excite motion of whole chain, only illuminated R [
ions experience spin flip needed for entanglement _, O

'"Mglmer and Serensen, PRL 82, 1835 (1999) 6 4 2 0 2 4 6
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24 ‘ QSCOUT uses Jagal programming language

Just Another Quantum Assembly Language /Pl level control vi
utse Levetl controt via

S
Apps & Algorithms Ja:]alPaq PulseData class
SuperStaq’ oar def gate_G(self, qubit):

X programming with
Physics-aware python return [PulseData(qubit, 2e -6,

compilation . amp@=(0,9,41,50)),
C. Campbell, et al., 2023 Architecture PulseData(qubit, 2e 6,
IEEE QCE, 1020 (2023) amp@=58@)

\ : ; JAGA| amp0=(56,0)),
_ . Logic Operatlons PulseData(GLOBAL BEAM, 4.5e-6,
* RF to single- and multi-channel amp@=(9,30,20,70)]

Jaqal

AOM
* 8 channels, synchronized Apphcatlon — T
« 2 tones per channel Framework |- slobal I
o Hardware interface < 60 Y1 sop
*  Cubic splines for 2 [
oc’TE _ JaqalPaw T-; -1{] - :f | -
- . AmplituI Pulse-level - = T
control Z 20 S T l 1
* Frequency K !
" Phase 00 T30 300 150 600
/ B. C. A. Morrison, et al. 2020 IEEE QCE, 402 (2020) \ Ti _
ime (ps)

D.’S. Lobser, et al., 2022 IEEE QCE, 320 (2022) D. Lobser, et al., arXiv:2305.02311 (2023)



25 ‘ Scientific progress through low-level access: Infleqtion

Low-level native-gate aware compilation techniques to improve circuit performance

Superstaq @ Inflegtion

Benjamin Hall, Victory Omole, Rich Rines, Pranav Gokhale (PI)

Given our error rates, compared how many
circuits are required to show a convincing .
Quantum Volume = 24 measurement for
different methods of compilation

Other user teams have incorporated
Superstaq optimizations

sertoam | opumizton | seett rovie N
type 1500 1500

Why QSCOUT?

Fully parametrized 2-
qubit gates
Pulse-level access to
define new gate
variants (ZZ and
phase agnostic
MS/ZZ gates)

Using physical gate
errors to inform
compilation choices

n
LCN  zz)insteadof  Higher fidelity E .
S MS(11/2, @) circuits, S 1000 :
Shorter circuits S o
%QAK RIDGE ' _ o 9 S
~National Laboratory Eawer single qubit  Shorter circuits c @
gates Simpler circuits 2 0 < 500 \
ETH:zurich ZZ()and mirror  Higher fidelity 300
swaps circuits
Shorter circuits Standard Small angle  Mirror Replacing
compilation  entangling swaps and very small MS
gates small-angle  gates with no-
entangling OPs
gates

>ampbell et al.,2023 IEEE International Conference on Quantum Computing and Engineering (QCE),1020 (2023).
C. G. Yale, R. Rines, V. Omole, B. Thotakura, et al., in preparation (2024)
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26 | Scientific progress through low-level access: Oak Ridge

Characterizing and Mitigating Coherent Errors in a Trapped lon Quantum Processor Using Hidden Inverses

Energy [Hal

No injected error

OAK RIDGE  qQuantum 7, 1006 (2023)

~ National Laboratory
S. Majumder, T. D. Morris, Raphael Pooser (PI) Why QSCOUT?

« Purposefully injected

Under rotation of 2-qubit Variational Quantum
noise (different types)

te 0.5 rad
e Eigensolver Algorithm with

e Able to run
sequences back to
back

swept parameter
No error mitigation

Randomized Compiling

Hidden Inverse

« Connecting low-level characterization techniques to higher level

algorithmic performance
* Use error mitigation to determine types of errors in the system




7 | Moving forward, 3 main goals for QSCOUT:

1. Improving uptime of the machine and increasing user
base

2. Improving performance of the machine
3. New features and access

Automated calibration More ions Mid-circuit measurements
Increased number of Higher fidelity operations Multi-ion entangling gates
systems Lower heating Fast feedback
More representative rates/improved cooling User request
noise models Fast feedback for drift e

control  « swsasnsn
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