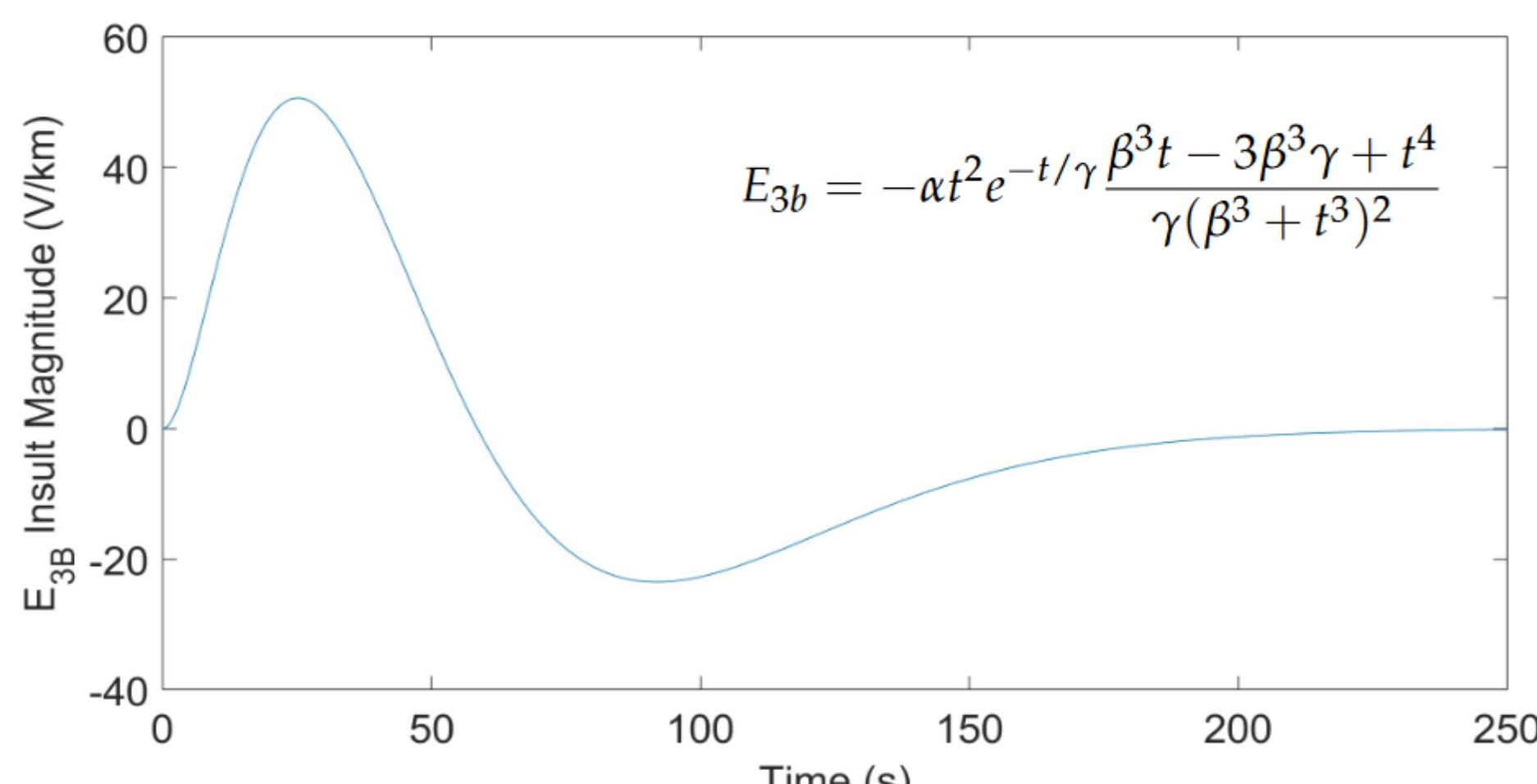


DECOUPLED, DECENTRALIZED, LQR-BASED CONTROLS FOR E3 HEMP/GMD MITIGATION ON THE POWER GRID


Introduction

Objective of Study:

Prevent magnetic core saturation of transformers during an E3b high altitude electromagnetic pulse (HEMP) insult

- Long-term exposure to high common mode currents cause distortion and overheating of transformers

Field Strength of Simulated HEMP Insult

Transformer Model

Per-Phase Transformer:

- Per-phase model simulates the dynamics of the 0 axis in the stationary frame of reference using dq0 coordinates
- Blocking controller is placed on neutral path of transformers and provides voltage as control effort

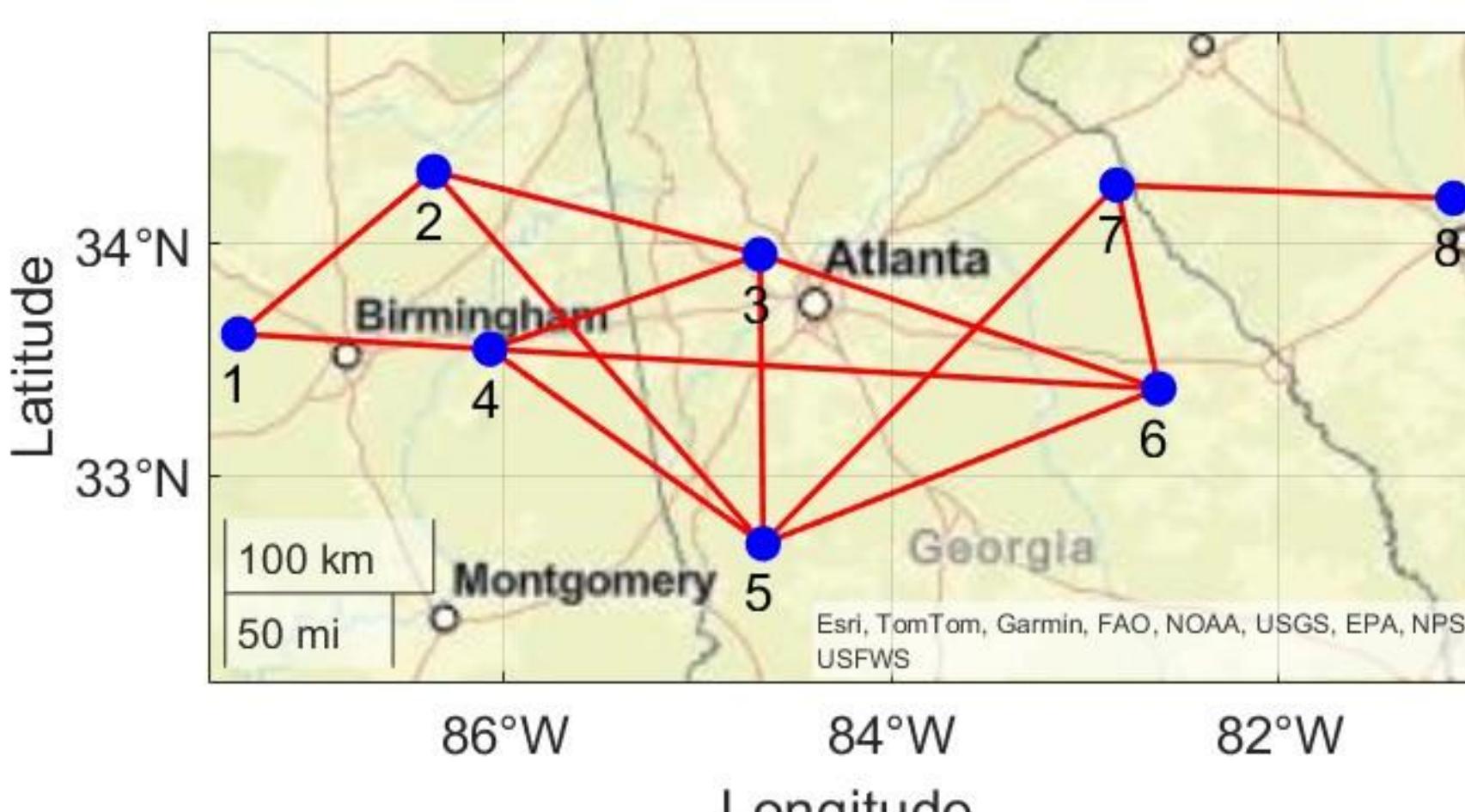
Magnetic Saturation:

- Saturation occurs when the magnetic core will no longer store additional magnetic flux and magnetic flux begins to be stored in the air
- Saturation in this study's models is defined as any value of magnetic flux below -1.2 pu and above 1.2 pu
- A transformer with a saturating core is inherently nonlinear, but will act linearly when the transformer's magnetic core remains unsaturated

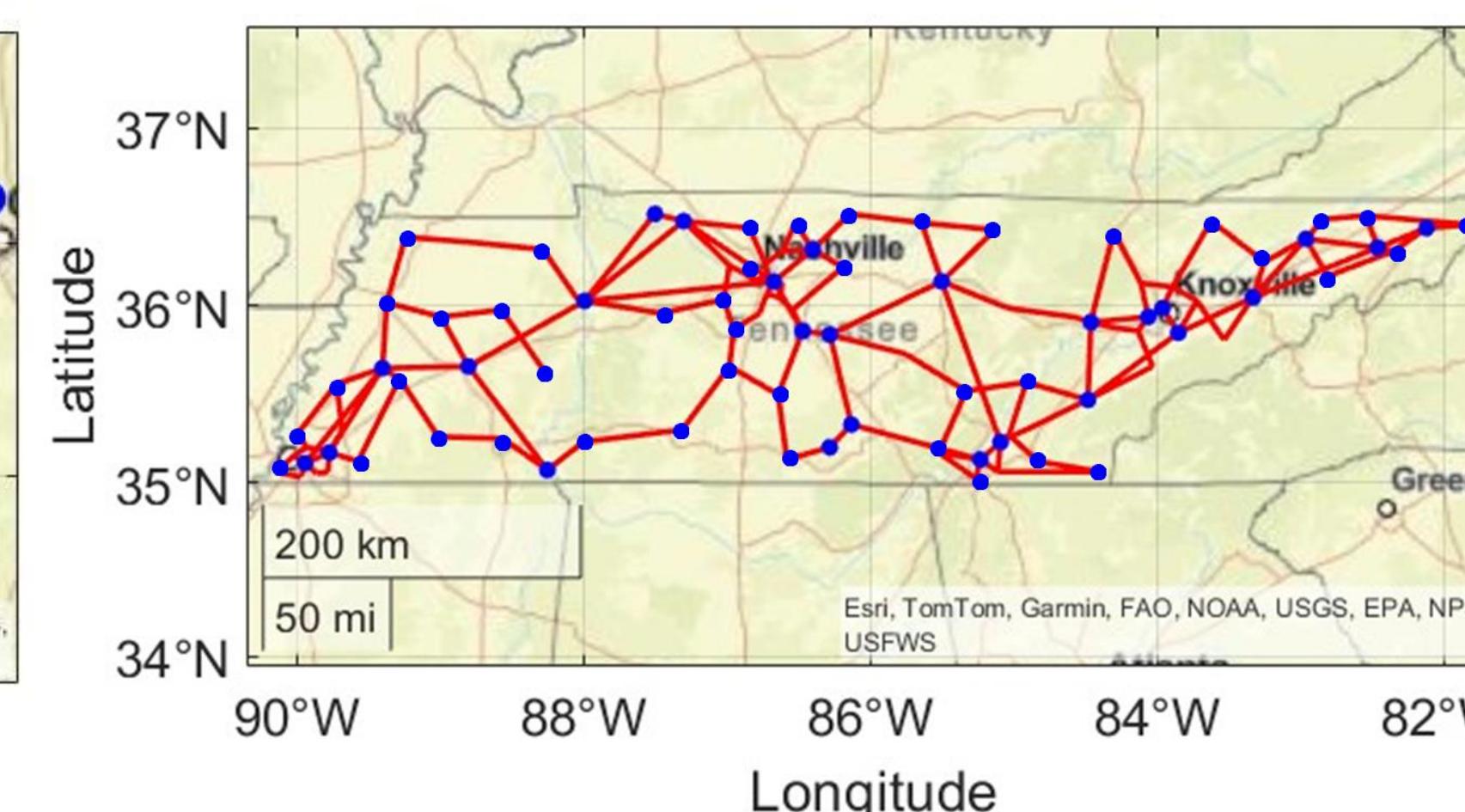
The Local Linear Quadratic Regulator (L-LQR):

- LQR is an optimal feedback controller when acting within the system's linear regime
- L-LQR is a decentralized, decoupled feedback controller designed for each transformer with power flowing in and out of primary and secondary sides of transformer treated as disturbances
- Optimal feedback gains for each transformer as individual subsystems are found from

Cost function at i-th transformer


$$J_i = \int_0^{t_f} x_i^T Q_i x_i + u_i^T R_i u_i, \quad u_i = -K_i x_i$$

Control for cost minimization


- Values of Q are selected so that the system provides sufficient effort to keep the core magnetic flux within saturation bounds, ensuring that the system remains linear

Grid Models

Horton et al. Model [1]:

Birchfield et al. Model [2]:

Horton et al. Model:

Saturated values are shown in red

RESULTS FROM THE UNMITIGATED 20-BUS MODEL

Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)
1	1.975	6	-2.444	11	-1.620
2	-1.089	7	-2.444	12	1.290
3	1.171	8	1.385	13	-1.089
4	1.171	9	1.385	14	1.515
5	1.383	10	-1.620	15	1.383

RESULTS FROM THE MITIGATED 20-BUS MODEL

Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)
1	$5.599 \cdot 10^{-3}$	6	0.2814	11	0.6354
2	0.3839	7	-0.2814	12	0.3839
3	$4.020 \cdot 10^{-3}$	8	0.1631	13	0.3839
4	$4.020 \cdot 10^{-3}$	9	0.1631	14	0.3849
5	0.1614	10	-0.6354	15	0.1614

Birchfield et al. Model:

EXTREMAL PU VALUES OF UNMITIGATED TRANSFORMERS.

Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)
1	-1.640	21	1.427	41	-1.488
2	-1.873	22	1.427	42	-1.488
3	-1.321	23	-1.040	43	-1.488
4	1.802	24	-1.040	44	-1.283
5	0.8933	25	-0.9795	45	-1.283
6	-2.268	26	-0.9795	46	-1.283
7	1.457	27	1.183	47	1.592
8	2.041	28	1.183	48	1.592
9	2.041	29	-0.8466	49	1.592
10	-1.606	30	-0.8466	50	1.592
11	-0.1447	31	1.433	51	1.592
12	-0.1447	32	-1.587	52	-1.350
13	0.5280	33	-1.587	53	-1.350
14	-2.470	34	0.3204	54	-1.350
15	2.212	35	2.189	55	-1.350
16	-1.330	36	2.189	56	-1.250
17	0.8415	37	2.189	57	1.846
18	-1.525	38	2.189	58	-2.634
19	1.341	39	2.189	59	-2.634
20	-1.693	40	-1.488	60	-2.634

EXTREMAL PU VALUES OF MITIGATED TRANSFORMERS.

Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)	Txfrmr	Peak Flux (pu)
1	-0.6197	21	0.8434	41	-0.4825
2	-0.7918	22	0.8434	42	-0.4825
3	-0.2695	23	-0.4765	43	-0.4825
4	0.6878	24	-0.4765	44	0.0411
5	0.0598	25	0.0342	45	0.0411
6	-1.0203	26	0.0342	46	0.0411
7	0.3560	27	0.4641	47	0.4670
8	0.9923	28	0.4641	48	0.4670
9	0.9923	29	-0.3133	49	0.4670
10	-0.5937	30	-0.3133	50	0.4670
11	0.1099	31	0.5368	51	0.4670
12	0.1099	32	-0.8765	52	-0.3107
13	-0.0093	33	-0.8765	53	-0.3107
14	-1.1207	34	-0.0142	54	-0.3107
15	0.9530	35	0.8418	55	-0.3107
16	-0.1997	36	0.8418	56	-0.3107
17	-0.0431	37	0.8418	57	0.5375
18	-0.4911	38	0.8418	58	-0.8859
19	0.2958	39	0.8418	59	-0.8859
20	-0.6519	40	-0.4825	60	-0.8859