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2 I TMD-metal contact impacts device performance

Transition metal dichalcogenides (TMD) is a new
class of semiconductors with enormous
technological implications

TMD-metal contact is a critical component to
incorporate 2D materials in electronic devices

Questions:

What are the difference of the TMD-metal interfaces
fabricated via evaporation vs transfer?
Are there heterogeneities in the electronic structure
at the TMD-metal interfaces?

* Impacts of the microstructures of Au or TMD?
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Challenges in examining TMD-metal contact using
photoelectron spectroscopy:

the valence states

« Energetics of valence states are inferred from the core
level assuming E£VB_ (sub) and EVB. (film) stay unchanged

«  EVB_(sub), EVB. (film), & bandgap may not be constant
since TMDs are susceptible to screening environment I

How about upside-down geometry?

Object of interest is buried preventing direct access to l



Upside-down geometry enables access to the |
s 1 electronic structure of the TMD & interfaces m

B Evaporated metal -
ransferred Au

B Transferred metal

Upside-down geometry enables access to:
+ valence band density of states in TMD

‘53’ ’“"’*ﬁiﬁwﬁ  electronic structure of a metal film
(when TMD is thin)

- atomic arrangement &
microstructures of TMD & metal grains
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« Asimilar system (MoS, on Au) shows local variations of
the surface potential, conductance, & Raman response

 Direct probe the electronic structures is desirable
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« PEEM probes the occupied electronic states in
real space & reciprocal space |

« Deep UV-photoemission probes the states only near the
Brillion zone center (i.e., I-point)



We observe submicron-scale work function heterogeneity in |
WS, exfoliated on freshly-deposited Au m
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We determine submicron-scale carrier density variations in |

s | freshly-deposited Au-WS, interfaces @!
[-point states _ _ .

' | ! Same micron-sized domains from photoelectron
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Three predominant crystallographic orientations of the Au

grains elucidated via EBSD

WS, covered as-deposited Au
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Scanning tunneling
microscopy:

« Atomic terraces of Au &
trapped blisters

* Hexagonal Moiré patterns

indicate closely adhered WS, to
Au & van der Waals interface

EBSD: Electron Backscatter
Diffraction

« Majority of Au grains have (111),

(112), or (110) facets according to

inverse pole figure

« Consistent with localization of

Moiré patterns in STM and

Au(111) surface state in PEEM

« Same length scale as
heterogenous electronic
structure domains
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Take-home messages:

« 3 different Schottky barriers within a single junction I
«  Crystal facets of Au grains govern the Schottky

barrier height between Au & WS,

. Relatively high S (pinning factor or interface I
parameter) expected for van der Waals bonding I




g I What happens if there are WS,-Au(111) interfaces only?
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Photoelectron spectra show characteristic splitting of
the highest occupied states at [-point in this pseudo-
epitaxial WS,-Au system
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We found local variations of the ['-point peak positions in
o I multilayer WS,
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« The variations of the -point peak position are 30-50meV

*  Shape & size of the variations match the crystal grains in the Au-film
« Thevariations found in multilayer, but absent in single layer

Hypothesis: layer slippage due to the strong adhesion between WS, & Au?

Thomas, et al., ACS Nano, 15, 18060, 2021




|
1o I DFT modeling supports the layer slippage model m
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- Compared stacking sequences for 2L: AA, AB’, and AB
*  AA common for bulk WS,

« Alignment of one layer is slightly shifted with respect to another

« 20-50meV variations of -point state depending on the stacking sequence
«  Similar to the PEEM result of 30-50meV variations

. Suspport the metal adhesion-induced layer slippage model resulting in the
WS.'s local electronic structure variations

Conclusion: electronic properties of TMD is
altered mechanically by the metal
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Take-home message:

*  Microstructures of Au films plays important role in |
the electronic properties of the WS,-Au contacts I
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I Concluding remarks

Upside-down geometry allows direct access to
semiconductor electronic properties & help us
understand the metal contacts

Microstructures of Au films plays important role at
WS,-Au contacts

« Au grains' facet govern the local electronic
structures of WS,
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*  WS,-Au interface interactions
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Announcement:

Looking for postdoc candidate: investigating the
optical resonances in TMD disk structures

Thank you for your attention!
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TMD on OPEN and Plasma-treated Au yield more uniform electronic
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‘ Reimagining what we can do with photoelectron imaging
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lectric effect

Photoelectron yield varies strongly due to electromagnetic

field distribution & occupied electron density of states

Light-matter interactions & electronic properties are probed based

on the photoelectron intensity from the nanoscale materials



‘ We examine electronic & optical properties using PEEM

Electromagnetic field imaging

*  Probing Fabry-Pérot resonance of
dielectric cavities in UV <
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Electronic structures of interfaces\

between WS, & gold

Crystal facets of Au grains govern
the local electronic structures of WS,
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Strong interaction induced layer
slippage between WS, & Au grains
resulting in stacking varlatlon
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