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TMD-metal contact impacts device performance
• Transition metal dichalcogenides (TMD) is a new 

class of semiconductors with enormous 
technological implications

• TMD-metal contact is a critical component to 
incorporate 2D materials in electronic devices
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Questions:
• What are the difference of the TMD-metal interfaces 

fabricated via evaporation vs transfer? 
• Are there heterogeneities in the electronic structure 

at the TMD-metal interfaces? 
• Impacts of the microstructures of Au or TMD?

Liu, et al., Nature 557, 696 (2018)

Schottky–Mott limit

Challenges in examining TMD-metal contact using 
photoelectron spectroscopy:
• Object of interest is buried preventing direct access to 

the valence states
• Energetics of valence states are inferred from the core 

level assuming EVB
CL(sub) and EVB

CL(film) stay unchanged
• EVB

CL(sub), EVB
CL(film), & bandgap may not be constant 

since TMDs are susceptible to screening environment

• How about upside-down geometry? 

Hufner, Photoelectron 
Spectroscopy (1995)



Upside-down geometry enables access to the 
electronic structure of the TMD & interfaces 

Upside-down geometry enables access to: 
• valence band density of states in TMD
• electronic structure of a metal film 

(when TMD is thin) 
• atomic arrangement & 

microstructures of TMD & metal grains
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• A similar system (MoS2 on Au) shows local variations of 
the surface potential, conductance, & Raman response

• Direct probe the electronic structures is desirable
Velickyì, et al., J. Phys. Chem. Lett. 2020, 11, 6112

System 1: WS2 exfoliated on a freshly deposited polycrystalline Au film

Liu, et al., Nature 557, 696 (2018)

Schottky–Mott limit



Photoelectron spectra reflect the electron dispersion of the 
sample

• PEEM probes the occupied electronic states in 
real space & reciprocal space

• Deep UV-photoemission probes the states only near the 
Brillion zone center (i.e., Γ-point)
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Zeng, et al., Scientific Reports 3, 1608 (2013)
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Kang, et al., APL 102, 012111 (2013)

Reciprocal space PEEM 
Real space PEEM

Similar to angle-resolved 
photoemission spectroscopy

2 layer

1 layer

2 layer

2 layer

Γ-point 
states 



We observe submicron-scale work function heterogeneity in 
WS2 exfoliated on freshly-deposited Au5

• Contrasting μm sized domains in 
PEEM intensity 

• Present in 1-3L WS2 thickness

1L

2L

3L

3 layer

2 layer

1 layer

Low High

Photoelectron  intensity (arb. units)

• Large work 
function variation 
(>200 meV)

 
• Varying carrier 

density within the 
WS2 flake

1L

φ (eV)
Low High

2L

φ (eV)

Low High

PEEM contrasts arise from 
difference in work function

Boehm et al., Nano Lett., 23, 2792-2799, 2023



We determine submicron-scale carrier density variations in 
freshly-deposited Au-WS2 interfaces 6

• Same micron-sized domains from photoelectron 
intensity & work function (φ) maps

• Higher work function regions show 
corresponding upshift in VBM

• Low BE peak (-0.7eV) observed near fermi level 
only in high work function areas 

• Au (111) surface state:   impact of substrate? 

• Schottky barrier height appears to vary by 
~0.1eV across the metal contact 

Γ-peak EB (eV)

Low High

Au(111) 
Surface 
state

High φ 

Low φ 

2L

φ (eV)

Low High
within the single-
crystalline flake

More n-type More p-type

High work function, 
less n-type

Low work function, 
more n-type

Boehm et al., Nano Lett., 23, 2792-2799, 2023

Γ-point states 
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function
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: S = 0.29

: S = 0.56

: S = 1.13

Three predominant crystallographic orientations of the Au 
grains elucidated via EBSD

Au (110) (112) (111) ∆φAu (eV)
φAu (eV) 5.02 5.08 5.2 0.18

WS2 1L 2L 3L
∆φWS2 (eV) 0.18 0.16 0.13

Take-home messages:
• 3 different Schottky barriers within a single junction
• Crystal facets of Au grains govern the Schottky 

barrier height between Au & WS2

• Relatively high S (pinning factor or interface 
parameter) expected for van der Waals bonding

Scanning tunneling 
microscopy:

• Atomic terraces of Au & 
trapped blisters

• Hexagonal Moiré patterns 
indicate closely adhered WS2 to 
Au & van der Waals interface 

EBSD: Electron Backscatter 
Diffraction 

• Majority of Au grains have (111), 
(112), or (110) facets according to 
inverse pole figure

• Consistent with localization of 
Moiré patterns in STM and 
Au(111) surface state in PEEM

• Same length scale as 
heterogenous electronic 
structure domains

50 nm
5 nm

WS2 covered as-deposited Au

∆φAu≈ΔφWS2

Boehm et al., Nano Lett., 23, 2792-2799, 2023
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EBSD confirmed pseudo-epitaxial interface
Fonseca, et al., Nature Communications 11, 5 (2020)

• System 2: Reflow & recrystallization 
create WS2-Au(111) interface with  
pseudo-epitaxial relation

annealing Suspended WS2 
on pores

What happens if there are WS2-Au(111) interfaces only?

• Photoelectron spectra show characteristic splitting of 
the highest occupied states at Γ-point in this pseudo-
epitaxial WS2-Au system

Zeng, et al., Scientific Reports 3, 1608 (2013)

Thomas, et al., ACS Nano, 15, 18060, 2021
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We found local variations of the Γ-point peak positions in 
multilayer WS2 

• The variations of the Γ-point peak position are 30-50meV
• Shape & size of the variations match the crystal grains in the Au-film
• The variations found in multilayer, but absent in single layer 
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Hypothesis: layer slippage due to the strong adhesion between WS2 & Au? 
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Thomas, et al., ACS Nano, 15, 18060, 2021



DFT modeling supports the layer slippage model10

• Compared stacking sequences for 2L: AA’, AB’, and AB
• AA’ common for bulk WS2

• Alignment of one layer is slightly shifted with respect to another

• 20-50meV variations of Γ-point state depending on the stacking sequence 
• Similar to the PEEM result of 30-50meV variations 

Conclusion: electronic properties of TMD is 
altered mechanically by the metal

He, et al., PRB 89, 075409 (2014)

• Support the metal adhesion-induced layer slippage model resulting in the 
WS2’s local electronic structure variations 

Take-home message:
• Microstructures of Au films plays important role in 

the electronic properties of the WS2-Au contacts 
Thomas, et al., ACS Nano, 15, 18060, 2021



Thomas, et al., ACS Nano, 15, 18060, 2021

Concluding remarks
• Upside-down geometry allows direct access to 

semiconductor electronic properties & help us 
understand the metal contacts 

• Microstructures of Au films plays important role at 
WS2-Au contacts

• Au grains’ facet govern the local electronic 
structures of WS2

• Layer slippage induces stacking variation & 
polymorphic WS2
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Boehm et al., Nano Lett., 23, 2792-2799, 2023
More n-type 
on Au(110)

More p-type 
on Au(111)
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Special thanks: 

• WS2-Au interface interactions 

N. Bartelt, C. Smyth, F. Leonard, C. J. Thomas, T.-M. 
Lu, R. G. Copeland, P. Mantos 

Announcement: 
Looking for postdoc candidate: investigating the 
optical resonances in TMD disk structures 

Thank you for your attention! 
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TMD on OPEN and Plasma-treated Au yield more uniform electronic 
structures13

Blisters

Photoelectron intensity (arb. units)

Low High

Suspended 
WS2

Photoelectron intensity (arb. units)

Low High

Γ-peak EB (eV)Γ-peak EB (eV)

WS2 on 
plasma-

treated Au

WS2 on OPEN 
Au

Plasma-treated AuAs-deposited Au

as-deposited Au as-deposited Au
1 SBH for each 

WS2–Au junction

“Plasma-treated” “OPEN”

Boehm, et al., Nano Letters, 23(7), 2792–2799. (2023) 
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Reimagining what we can do with photoelectron imaging 

Light-matter interactions & electronic properties are probed based 
on the photoelectron intensity from the nanoscale materials
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Photoelectron yield varies strongly due to electromagnetic 
field distribution & occupied electron density of states



• Evaluating light-matter 
interaction & inelastic mean-free 
path (~35 nm) in Mie metasurface 
in UV-visible range 

We examine electronic & optical properties using PEEM
• Electromagnetic field imaging 

• Probing Fabry–Pérot resonance of 
dielectric cavities in UV

• Electronic structures of interfaces 
between WS2 & gold

• Crystal facets of Au grains govern 
the local electronic structures of WS2

• Strong interaction induced layer 
slippage between WS2 & Au grains 
resulting in stacking variation 
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φ (eV)
Low High

Boehm et al., Nano Lett., 23, 2792-2799, 2023

Thomas, et al., ACS Nano, 15, 18060, 2021

• Imaging visible-near IR resonances in Bound 
states in the continuum metasurfaces  

Boehm, A. et al., APL Photonics, 9, 066103, 2024
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Berg et al., Phys. Rev. Applied, 12, 064064, 2019
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