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Motivation

= Underground caverns in salt formations are a promising approach to store
hydrogen (H,) because of salt’s extremely low permeability and self-healing
be h aVi or. Map of Salt Deposits in U.S.

In the United States, salt domes are
potential targets because of their
storage volumes, as well as their
proximity to critical markets and
infrastructure
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" However, there is still a gap in research by the salt cavern storage
community to understand the geomechanical behaviors of salt driven by

frequent operation cycles of H, injection-production, which may significantly
impact the cost-effective storage-recovery performance.



, ‘ Workflow of Geomechanical Analysis

Material constitutive model
Viscoplastic behavior of salt

Geomechanical lab test
Parameters for constitutive model

Geometric information
Cavern (sonar data)
Dome (seismic/borehole data)

Operation state
Well head pressure
Fluid interface depth, if needed

Cavern volume calculation

Subsidence survey
INSAR/GPS

U
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Geomechanical simulation
Sierra/SolidMechanics runs in

SNL's High-Performance Computing
platform

]

Geomechanical analysis
Evaluation of structural stability of
cavern/dome for current and future
operations

Evaluation of drawdown limits for
individual caverns

Analysis of cause and potential of
wellbore damage

Providing desirable operating
guidelines based on geomechanical
stability of cavern/dome

Model calibration
Setup of subroutine for Sierra/SM
Operating pressure within caverns

]

Geophysical survey
Microseismic monitoring
DAS/Fiber
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(A) Creep-driven Cavern Closure (B) Geomechanical Instability
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: ‘ Generic Multi-Cavern Model Setup

1 600 ft ,Axis of symmetry

| U e — 1
OVerbu Depth‘[i-0verburden : L7 / ..?:
"den 708 1600 X /2/500 ft P
Caprock - | 5,

Caprock ._—}400 ft 2000« L] R
== 5 2 I — —
P =
7’ : : —1|
_________ - 1 === |
Caverns : r=125 1 E
=
I | =

: I
I =
: .
I Salt dome : 1
salt Dome 6000 ft | | =
I ! ¥ EI
I S
| | =
I ! =)
I : =
I : I
~~~~~~~~~~ I : =
6400 ft = o =
ST =

Model geometry Numerical mesh

1000 ft = 0.3 km



‘ Result: CASE | - Unloading Impact
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 Initial production has the most significant impact.
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, ‘ Result: CASE 2 - Frequency of Operation
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. ‘ Result: CASE 2 - Frequency of Operation

Cavern closure
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; ‘ Result: CASE 3 - Magnitude of Cavern Pressure

Cavern closure
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Cavern closure

‘ Result: CASE 3 - Magnitude of Cavern Pressure
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Cavern closure

| Result: CASE 4 - Sequential Order of Operating Cavern
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Cavern closure

Deformation

| Result: CASE 4 - Sequential Order of Operating Cavern
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- ‘ Result: CASE 4 - Sequential Order of Operating Cavern

Deformation
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Cavern Interactions: The center cavern (Cavern 1) shows minimal lateral deformation due to
surrounding caverns, while the corner cavern (Cavern 2) deforms significantly in the direction free of
neighbors.

Deformation: Initial production leads to rapid displacements, with edge caverns (Cavern 3) constrained
in the x-direction but deforming in the y-direction, indicating that principal stresses are key to cavern
interactions.
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Conclusion and Future Work

v" Impact of Cyclic Loading: Our 3D simulation results highlight the effects of cyclic loading-unloading
on multiple storage caverns, revealing significant insights into salt creep behavior and geomechanical
deformation.

v' Cavern Volume Loss Dynamics: The most substantial volume loss occurs during the initial production
stage, but continuous cyclic operation stabilizes the rate of cavern volume change.

v'  Creep Closure Rate Convergence: Under consistent operational pressure, the creep closure rate
stabilizes across varying cycle frequencies, while larger pressure differentials accelerate cavern
volume closure and deformation.

v'  Sequential Cavern Behavior: The order of cavern operation influences the initial step-wise volume
decrease and subsidence, indicating that cavern arrangement is crucial for performance.

v' Lateral Interactions: The interaction between adjacent caverns can alter stress states, affecting
cavern performance and wellbore integrity, emphasizing the importance of cavern arrangement.

Need for Improved Models
» Current salt constitutive models overlook critical factors like transient reverse creep and damage-

>

healing mechanisms, potentially driven by cyclic operations.
Future work will focus on developing a physics-based salt material model informed by geomechanical
tests under cyclic loadings, enhancing guidance for underground energy storage in salt formations.
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Questions?




« | Approach

This project aims to develop a new salt constitutive model considering

1. Frequent cycles of operation
2. GaseousH,
3. Domal salt
based on
1. geomechanical core-testing results and pore-scale analysis with variation

in loading-unloading conditions,
2. which will be integrated into Sandia’s finite-element simulation code

(Sierra/SolidMechanics) for
3. the field-scale assessment of underground H, storage.
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Geomechanical lab test
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Operation state
Well head pressure
Fluid interface depth, if needed
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y ‘ Workflow of Geomechanical Analysis

Simple model validation
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» ‘ Workflow of Geomechanical Analysis
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M-D Creep Constitutive Equations (Steady State)

) Modeling utilizes M-D Creep and M-D Viscoplastic equations to model the behavior of salt.
3

 Steady state creep rate: &, = E Es, .}
=1 .%
1. Dislocation climb controlled creep mechanism at high @ Rupturs
temperatures and low stresses: Steady State
Primar i
— Aje R =" oo, prans
n(1-w)
2. Empirically specified but undefined mechanism at low /= Secondary creep -
temperatures and medium stresses (10 MPa — 25 MPa): i
0Q Initial strain
8 — A e R'?" [ ] (elastic+plastic)
Sy 2 ‘Ll( _ (1)) Y -
. . . . t (time)
3. Dislocation slip controlled mechanism at high stresses: Where:

A’s and B’s = structure factors,
Q’s = activation energies,
o =
(3,2 ) a(Z5-%) e & o
|H(O- _ O-O)l Ble RT + Bze RT Slnh u (= shear modulus,
g = stress constant,

0, = stress limit,

[M unson, et a | . 1989] . H = Heaviside step function with argument (o-0,)
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* Transient Creep Behavior: Transient creep initiates immediately upon loading, exhibiting a decrease in strain

Munson-Dawson (M-D) Model with Loading-Unloading Condition

over time until a steady state is achieved, where the transient strain limit is established.

* Response to Unloading: Upon unloading, the total strain rate decreases initially; however, the salt creep
gradually approaches a new steady state that corresponds to the adjusted stress level.
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Transient strain ¢,” dominates during large
pressure change activities; Coetficient K,
also determined from lab tests.



25 ‘ Technical Accomplishments - Task |
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» Validation test for Helium use (SNL) 3000
@ 6000 \
7
o
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0
@ —Hydrogen
()]
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a) ——Helium
. )
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Axial Strain (%)

Core to 3.5” diameter sample jacketed with UV cure polyurethane
Initially held at 2000 PSI confining pressure, 50°C to allow salt to heal
Pore space evacuated, exposed to gas flow across sample length
For axial deformation, pressure dropped and temperature reduced to
ambient

v' as set to constant, static pressure

v’ Effective pressure of 2 Mpa
Investigating dilatant behavior, fracture driven deformation

Tests ended after reaching limits of Schuler gages (only 1 Schuler gage functional)
High strain reached

Sample starts dilating after 2000 PSI differential stress; Heavily fractured samples
Similar behavior up to 2% strain (similar unload-reload loops)

Max stress attained within 5% for both samples

YVVVVYVYY

Mechanical behavior similar for salt saturated with hydrogen, helium



y ‘ Generic Multi-Cavern Model Setup

*  Munson-Dawson creep model with (1) 3 steady-state (SS) creep

mechanisms and (2) transient mechanism

v" SS mechanism 2 dominates at low temperatures and medium equivalent
stresses, is dominant mechanism measured in laboratory creep tests of SPR
and Waste Isolation Pilot Plant (WIPP) salts [Munson, 1998].

. . a ni
gfs = A; exp (—&)( eq) fori =1,and 2
u

v" Transient strain g,” dominates during large pressure change activities;

Coefficient K, also determined from lab tests.

T J 1
e ()
I VTE S

*  Elastic behavior in all layers except salt

*  Simulation timeline — 1003 years + 14 days
v" Equilibration phase — 1001 year
Leaching phase — 1 year

v
v"Injection to fill all caverns — 14 days
v

Operation phase — 1 year for cyclic injection and production

Table 2: Parameters of the M-D creep model for salt rock

Parameter Value

Density [Ib/ft?] 143.58 (2300 kg/m?)

Elastic modulus [Ib/ft?] 6.48x10% (31.0 GPa)

Shear modulus (G) [Ib/ft?] 2.59x108 (12.4 GPa)

Poisson’s ratio (v) [ 0.25
Steady-state mechanism 1

Primary creep constant (A;) [1/sec] 9.81x10%

nyt 5.5

Q1" [cal/mol] 25
Steady-state mechanism 2

Secondary creep constant (As)* [1/sec] 11.32x1012

TLQ* 5.0

Q2" [cal/mol] 10
Steady-state mechanism 3

By [1/sec] 7.12x108

By [1/sec] 3.55x1072

oo [Ib/ft?] 4.29x10% (20.57 MPa)

q 5.335x10°

Transient mechanism

mt 3.0

Ky 6.275x10°

c 0.00511

o' -17.37

B -7.738

) 0.58

w 0




. ‘ Generic Multi-Cavern Model Setup

Munson-Dawson creep model with (1) 3 steady-state (SS) creep

mechanisms and (2) transient mechanism

v

SS mechanism 2 dominates at low temperatures and medium equivalent
stresses, is dominant mechanism measured in laboratory creep tests of SPR
and Waste Isolation Pilot Plant (WIPP) salts [Munson, 1998].

. . a ni
E_;:SS = A; exp (—&)( eq) fori =1,and 2
u

Transient strain €,” dominates during large pressure change activities;

Coefficient K, also determined from lab tests.
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Elastic behavior in all layers except salt

Simulation timeline — 1003 years + 14 days

v

v
v
v

Equilibration phase — 1001 year
Leaching phase — 1 year
Injection to fill all caverns — 14 days

Operation phase — 1 year for cyclic injection and production

Sensitivity test

* 600 psi operating pressure difference (Ap)
» 7-day cycle (7 days of injection followed by
7days of production, totaling 14 days per

cycle).

CASE 1

CASE 2

CASE 3

CASE 4

* 3,7,and 14 days to assess the impact of
high-frequency operations (weekly to
monthly)

* Ap at 200, 600, and 1000 psi (max pressures
of 1000, 1200, and 1400 psi) over one year

e Gradual changes from 0 to 1000 psi over
two years (400 to 1400 psi)

Sequentially operates multiple caverns with 3
scenarios:

1) center cavern only (Cavern 1)

2) Center/corner caverns (Caverns 1/2,4,6,8)
3) Center/edge caverns (Caverns 1/3,5,7,9).
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. Future Work

1. Geomechanical salt-core tests
a. Validation of helium use (SNL)
b. Viscoplastic/Healing-damage behaviors with cyclic loading-unloading (TAMU)

2. Development of a new salt constitutive model for Sierra/SolidMechanics code with
material property calibration based on experimental outputs (SNL+TAMU)

3. Field-scale simulation with multiple cavern system and variation in operation
scenarios (SNL)
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