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MOS, FILMS FOR EXTREME ENVIRONMENT LUBRICATION 4

view along basal planes

C=12.30A

‘ van der Waals ?l ii ! E\E .

-

-~
v..»’l /
»
e %
- I o
G

https://shop.sdp-si.com/

Aerospace / precision mechanisms share similar concerns | l I Lofﬁﬁ?‘:'ger?‘?;sfa”ngf Wasls) l I
e operate in vacuum (+atomic oxygen in low earth orbit), or inert gas near SSK Ky, Easy relative movement
P..., With trace O,, H,0, outgassing species ‘ Tkl
* store months — years before use; generally non-serviceable Wﬁk (s
e operating temperatures from 50 — 300K, depending on location I .éefore S"di;‘ 's° -Qgﬂer s“di;'
* huge investments of time and money | g :

doi.org/10.1016/j.triboint.2017.12.033
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PROBLEMS WITH CURRENT COATINGS

b Low-Density #2 (LD-2) € High-Density (HD-1)
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500 nm Substrate 1000M ¢ bstrate ! 10 C;S::S 1000 10000
 Films get worse with age
« Commercial coating are inconsistent! * Accentuated with low cycle applications
« doi.org/10.1007/511249-022-01642-y * Lubrication is important
e Same Companies 6 months apart ° Voyager 2, Keplar, Galileo all partlally failed

due to lubrication
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REAL PROBLEMS FOR TRIBOLOGY (AND NASA)

- Voyager 2: Science platform seized due to
mitigation of lubricant out of motor gear shaft,
delayed use for 16 months, all future
experiments ran at 0.083 deg/s instead of
1deg/s()

- Keplar: 2/4 reaction wheels seized due to
uneven lubrication of mechanical bearings
causing galling, prolonged mission delays, had
to use radiation pressure to compensate®

A

NASA-JPL .

- Galileo: sticking of 3/18 antenna ribs in stowed
position due to high friction between pins and
sockets, over 100 personal did simulations and
testing to report the MoS2 bonding failed®

[1] Physics Today 43, 7, 40 (1990); doi: 10.1063/1.881251

[2] Kepler Mission Manager Update: Kepler Returns to Science Mode. (2015, April 15). Retrieved June 10,
2018, from https://www.nasa.gov/mission_pages/kepler/news/keplerm-20132901.html

[3] Miyoshi, K. (1999). Aerospace Mechanisms and Tribology Technology: Case Studies.
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SNL MoS, Thin Film Synthesis Capability

Rapid turnaround for testing hypotheses

Filled a gap in capabilities for in-house research and production of PVD

solid lubricants

= Develop process-structure-property understanding to speed up
responses to mission needs

= Collaborate with production to solve production issues

= Increase efficiency vs external vendor

= Built for ~1/4 the price of a commercial tool

~150 deposition runs per year

= Supporting research and many development projects

Built for flexibility

Multiple RF, DC, Pulsed DC and HIPIMS power supplies with HIPIMS bias
capable stage with liquid cooling
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(B)

Throttle
Valve

To Turbo
Pump

Coupon Coated

 3in. sputter cathodes
« 2x RF, 1x DC, 1x P-DC, 2x HIPIMS



DEPOSITION FINGERPRINTING - RETARDING FIEND ENERGY ANALYZ
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Used industrially for “fingerprinting” - a method of transferring H—)— " A4 C
proven processes across different equipment setups Current Collector
= Sensor
Measures ion flux, the ion energy distribution, deposition rate o
and, deposition material ionization How does this thing work?
* Grid 0 (Gy) - holes less than Debye length to prevent plasma
Isolates the effects of varying deposition conditions on plasma formation. Held at stage bias (ground)
behavior «  Grid 1(G,) - Electron repulsion grid (-60 V)
_ _ - *  Grid 2 (G,) - Discriminator grid, sweeps to control ion flux based
Allows for direct correlation between plasma characteristics and on energy

film material properties «  Grid 3 (G3) - Secondary electron suppression grid (-70 V)

¢ Collector (C) - QCM and collector (-60 V)

Thursday, November 7th, 2024 6



WHAT ARE WE MEASURING
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-V Curves

« The“retarding potential” represents the voltage on
Grid 2 (ion repulsion) and the current is measured
by the collector.

« Adropin current represents ion repulsion at that

potential.

The total drop in current is proportional to the total

ion flux.

dl

IEDF = — = f(E)

Where | is ion current, V is retarding potential and E is

ion energy

« Savitzky-Golay smoothing is employed to minimize
distortion in the ion energy distribution function
(IEDF).”

» The IEDF represents the probability an ion has a
specific kinetic energy.

7 Caldarelli, A. et al. Data processing techniques for ion and electron-energy
distribution functions. Physics of Plasmas 30 (2023).



PRESSURE SERIES DATA
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210 0 10 20 30 40 50 60
Retarding Potential (V)

Deposition Conditions
Base pressure: <1x10° Torr
Target to substrate distance: 4 in.
Target diameter: 3 in.
Ti adhesion layer thickness: 100 nm
MoS, thickness: 1 pm
Sensor Conditions
« Positioned directly under the target - in line with the deposition
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- Secondary peak at pressures lower than
S5mtorr ~10 eV

= Arions + the start of MoS2 ionizatio
« Peak lon density ~4 mtorr
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AVG ™ Epmax B dE ion — voltage and amperage.
fEmm f(E) « Lower deposition pressure dramatically increases average ion

Where | is ion current, V is retarding potential and E is ion energy, A is the
area of the aperture and T is the transmission of each of the 4 grids
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energy - resulting from an increased mean free path.

Lower pressure / higher power conditions produce higher energy
ions - a well studied phenomenon.?

Garofano, V., Montpetit, F., Glad, X., Gangwar, R. K. & Stafford, L. Experiments and kinetic modeling of the ion
energy distribution function at the substrate surface during magnetron sputtering of silver targets in radio
frequency argon plasmas. Journal of Vacuum Science & Technology A 37 (2019).
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RELATING TO MATERIAL AND TRIBOLOGICAL PROPERTIES
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» Increased ion bombardment increases hardness of the film < This can be directly seen in TEM of the deposited films
« This is well established for more controlled ion beam « Low bombardment films as significantly more
assisted depositions® porous

(9) Smidt, F. Use of ion beam assisted deposition to modify the microstructure and properties of thin films. International
Materials Reviews 35, 61-128 (1990).
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QUESTIONS
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BACK UP SLIDES




POWER SERIES DATA
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energy distribution function at the substrate surface during magnetron sputtering of silver targets in radio
frequency argon plasmas. Journal of Vacuum Science & Technology A 37 (2019). 13



Coefficient of Friction
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 Starting friction is virtually unchanged in the aged
film relative to the as-deposited film

* Oxygen is incorporated into the top ~5 nm of the

TRIBOLOGICAL BEHAVIOR OF MULTILAYER PVD MOS, PR

POST-AGING
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DETAILED STRUCTURE OF MULTILAYER MOS, NEAR SUR
PRE- AND POST-AGING

As-Deposited

disruption
of lamellae

Relative Int. (arb units)

20 30 40
26

* Accelerated aging causes disruption of the crystalline lamellae at the surface, poorer crystallinity in
the nanocrystalline cap, and coarsening of Au nanoparticles in the bulk



'®  REALIZATION OF EBC ON AMORPHOUS PVD MOQOS

nanocrystalline
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Amorphous Mo, S, Sb
and O with Au NPs

(wu) s2uelsiq

: concentration
substrate gradient through bulk

of film is an artifact of
- - section thickness

* A dense nanocrystalline pure MoS, layer was deposited on top of a dense, amorphous Sb,0; and
Au-doped layer



Low Friction Persists When the Nanocrystalline Cap i
Worn Through

S Wear Track Profiles
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friction and environmental stability, while stress-induced
transformation below the sliding interface enables a smooth
transition to low-wear bulk behavior

* Noincrease in friction is observed when the nanocrystalline layer is worn through over most of the
track width at ~100 cycles

o capping of the amorphous coating allows combination of the low start-up friction of nanocrystalline pure MoS,
with the wear resistance of amorphous coatings
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