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ABSTRACT

This Cooperative Research and Development Agreement (CRADA) between Oak Ridge National
Laboratory (ORNL) and ZEISS Industrial Metrology has demonstrated the transformative potential of
artificial intelligence (Al)-enabled x-ray computed tomography (XCT) to accelerate the qualification and
certification of additively manufactured (AM) parts. At the core of this effort is Simurgh, an Al-powered
XCT reconstruction framework jointly advanced by ORNL and ZEISS that integrates computer-aided
design (CAD) models, physics-based simulations, and deep learning to overcome the long-standing
challenges of metal artifact correction, long scan durations, and limited flaw detectability in dense and
geometrically complex components.

Simurgh enables high-throughput, high-quality 3D reconstruction from sparse and fast scans, which
reduces XCT acquisition times by more than an order of magnitude and simultaneously improves defect
detection limits by up to fourfold compared with industry-standard approaches. This capability reduces
scan costs by more than 50%, lowers labor overhead, and makes XCT characterization economically
viable for routine industrial use. By enabling reliable flaw detection in minutes rather than hours, Simurgh
facilitates real-time feedback loops for process parameter optimization, which was highlighted in a recent
npj Computational Materials (a Nature journal) issue. In the published study, more than 100 alloy
coupons were characterized within a single day. This work represents a tenfold acceleration in the
development of novel AM alloys and processes compared with conventional workflows.

The ZEISS collaboration has also demonstrated the scalability of Simurgh to diverse application domains,
including aerospace, nuclear, automotive, and biomedical components; in these applications, ensuring
structural integrity is paramount. By drastically reducing barriers to XCT adoption, this partnership has
laid the foundation for digital twins and data-driven certification pipelines and directly addressed
bottlenecks in qualifying new materials and designs. Together, ORNL and ZEISS have shown that
Simurgh advances the state of the art in nondestructive evaluation and aligns with the broader mission of
enabling Industry 4.0 manufacturing ecosystems, in which intelligent, cost-effective, rapid quality
assurance is integral to accelerating innovation and ensuring safety in critical applications.

viil



1. SIMURGH: ARTIFICIAL INTELLIGENCE-POWERED X-RAY COMPUTED
TOMOGRAPHY RECONSTRUCTION FRAMEWORK FOR X-RAY COMPUTED
TOMOGRAPHY

1.1 CHALLENGES IN X-RAY COMPUTED TOMOGRAPHY

X-ray computed tomography (XCT) is a cornerstone nondestructive evaluation (NDE) method for
inspecting manufactured components, particularly in safety-critical industries such as aerospace, energy,
and biomedical manufacturing. XCT reconstructs a 3D volume from 2D projection images to enable
dimensional inspection, flaw detection, and microstructural characterization. However, XCT faces
significant challenges when applied to dense metals and complex geometries:

o Artifacts and noise—Beam hardening, scattering, streaks, and blurring (Figure 1) compromise image
quality.

e Long scan times—High-density components often require hours of scanning to achieve sufficient
detectability limits.

e High cost and computational load—Extended acquisition times and postprocessing increase labor and
per-part characterization costs.

These limitations create bottlenecks for qualifying additively manufactured (AM) parts, in which rapid
feedback and reliable certification are essential.
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Figure 1. XCT Simurgh challenges current technology standards. (a) Metal artifacts, including beam hardening
(cupping/bright edges) and streaks. (b) A slice from a 3D reconstructed part, with white dots indicating detected
flaws. Arrows point to the effects of noise (flaws detected where no object is present), beam hardening, metal
artifacts (connected fins), and blurring (obscured fin) on characterization accuracy. (c¢) A metal part that was
scanned with three different fields of view (FOVs; see blue and red shaded subvolumes under 2.6H and 7H scans) at
different scan times. Bottom row shows a cross section from a quick scan (22 min) with a full FOV to locate defects;
a long scan (7 h) with a small FOV was necessary to understand the defects. (d) A slice from an XCT reconstruction

of a complex part (inset) and the associated artifacts.
1.2 THE SIMURGH FRAMEWORK

1.2.1 Overview of Simurgh

Simurgh is an artificial intelligence (Al)-powered XCT reconstruction framework designed to overcome
the limitations of conventional tomography and enable fast, accurate, and high-throughput
characterization. By integrating computer-aided design (CAD) models of scanned parts with physics-
based x-ray information, the framework guides deep learning algorithms to reconstruct high-quality
volumes from sparse and fast scans and suppresses noise and artifacts [1-6]. To train these models,
Simurgh uses a hybrid data generation strategy that combines oversampled reference scans, which are
downsampled to sparse views, with synthetic data created from CAD-based phantoms seeded with
realistic defect libraries and physics-informed simulations (Figure 2).
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Figure 2. Block diagram showing the flow of data for training and use of the Simurgh deep learning
framework for high-quality XCT reconstruction.

At the algorithmic level, Simurgh employs a 2.5D convolutional neural network architecture (Figure 3)
that captures volumetric context but remains computationally efficient. Once trained, the framework can
rapidly process new XCT scans to produce reconstructions that overcome challenges such as beam
hardening and scattering artifacts.

=

€ RNXMXMx5 P centerX y € RNXMxMx1

| 128 1284256 - 64
I 28425 1

Qee
=
OB

Residual Target
(Target - Input)

Input

Y
e X
12
v

x

L f
256 + 512 128 L[] Conv. Layers + BN + RELU

> Skip connection

256
-|:| -D 3x3xf (Unless Noted) h Conv. Layers + RELU
" 1Max Pooling: 2x2
|| L e ' Up Conv.: 2x2 Conv. Layer only
D 'i__t_l P center: Projection to the center slice
512

from multiple neighboring slices

aal o

Figure 3. Architecture of the 2.5D convolutional neural network that learns the nonlinear mapping between
inferior input and high-quality ground truth pairs.

Copyrighted under US Department of Energy (DOE) Invention Reference Number 90000193, Simurgh
integrates seamlessly into industrial XCT workflows, including ZEISS scanning services, and represents a
major step toward scalable, Al-enabled NDE [7-8].

1.2.2  Verification of Simurgh on Low- and High-Density Alloys

To validate Simurgh against ground truth characterizations, controlled studies were performed on low-
density aluminum alloys (AICe) and high-density nickel-based superalloys (Inconel 718). These cases
provided direct comparisons between Simurgh reconstructions, standard industrial XCT algorithms, and
independent high-resolution imaging obtained through optical microscopy.

For aluminum alloys (low-density), Simurgh reduced scan times from nearly 40 min to just 13 min and
simultaneously improved reconstruction quality (Figure 4a). Standard algorithms blurred small pores and
defects, whereas Simurgh provided sharper contrast, enabling clear identification of flaws. Quantitative




analysis confirmed that in this regime, Simurgh achieved full detection of defects larger than 50 um with
a threefold reduction in scan time compared with the standard techniques, which required longer scans
and still missed finer flaws (Figure 5a).

The benefits were even more pronounced in high-density nickel-based alloys, where conventional
reconstructions struggled with severe beam hardening and scattering artifacts. For these alloys, Simurgh
produced reconstructions that closely matched independent optical microscopy data (Figure 4b). In a

10 min scan, Simurgh achieved near-complete flaw detection down to approximately 100 pm, whereas
standard reconstructions only reliably detected flaws larger than 400 um, even with much longer scans.
Figure 5b illustrates this fourfold improvement in detectability limits, demonstrating that Simurgh
accelerated inspection and pushed XCT performance toward the resolution of destructive microscopy.

Simurgh (10 min scan) Micrograph (Optical)

Standard Simurgh
(39 min scan) (13 min scan)
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10 min scan

17.3 m/pixel vi,um/pi;cel
a. Example from a low-density Al alloy b. Example from a high-density Ni alloy

Figure 4. Reconstructions for low- and high-density alloys using standard techniques versus the Simurgh
framework. (a) A 3D reconstruction for a low-density aluminum alloy. The slice (red box) through the object
compares a standard algorithm with the Simurgh algorithms. An expanded view (dashed green box) compares a
region of interest within the slices. The dark black spots in the images are pores and defects in the part. In the
standard algorithm’s reconstruction, the spots are smeared (blurry), but in the Simurgh reconstruction, they have
quite a high contrast. (b) A reconstruction for a low-density nickel alloy. To verify the quality of the reconstruction,
the sample was cut and scanned using high-resolution microscopy, then the flaws detected using XCT were
compared with the microscopy results. The figure shows the 2D optical microscopy cross section and the
corresponding slice from 3D volumes reconstructed from very sparse scans using a standard algorithm and Simurgh.
Furthermore, flaws extracted from the Simurgh XCT scan were projected on the 2D microscopy image. Notably, the
Simurgh scan for this dense sample was completed in 10 min, but a typical scan of a comparable thick, high-density
component takes more than 2 h.
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Figure 5. Probability of flaw detection for reconstructions using Simurgh and a standard algorithm. A flaw

was considered to be detected in the reconstruction of a fast (sparse) XCT scan if it coincided with a flaw detected

by high-resolution microscopy at 1 pm. The plots show results for a (a) low-density aluminum alloy and (b) high-
density nickel alloy. Both plots indicate that Simurgh significantly improved flaw detection.

Together, these studies establish that Simurgh delivers high-fidelity flaw detection for both light and
dense alloys and significantly reduces scan times without compromising accuracy. By verifying its results
against high-resolution microscopy, Simurgh provides the reliability required for industrial adoption in
qualification and certification workflows.

2. PROCESS PARAMETER OPTIMIZATION WITH SIMURGH

The integration of Simurgh into XCT workflows has enabled a transformative shift in how process
parameters for additive manufacturing are developed and optimized. By delivering high-quality
reconstructions from extremely fast scans, Simurgh makes it possible to perform high-throughput,
scalable characterization of large batches of parts, each fabricated with different process conditions. As
illustrated in Figure 6, entire build plates (120 coupons used here) are designed so that each component is
printed with a unique process parameter. These components can then be rapidly scanned, reconstructed,
and characterized, which enables quick evaluation of how each parameter set affects porosity,
dimensional accuracy, and overall part quality. This level of throughput accelerates parameter studies by
more than an order of magnitude compared with traditional XCT methods.

A key innovation of this workflow is that the part design itself allows for isolating the effects of different
process parameters and for probing their geometric dependence. Features such as thin fins, inclined bars,
and bulk regions exhibit different solidification and porosity behaviors even under identical printing
conditions. With Simurgh’s consistent, artifact-free reconstructions, these geometry-dependent effects can
be systematically evaluated to provide deeper insights into how process windows shift across features.




Fast Automated Characterization for Process Parameter Selection

(o1 Design of 2. Print the build 3. X-ray CT at 4. Fast, consistent 5. Analysis
Experiment (DoE) plate. Remove parts fraction of optimal and accurate Al- (segmentation, flaw
Parameters (A from plate: (~100 scan time based on Based X-ray CT detection, porosity &
\__Novel Material) parts per plate) material Reconstruction morphology,Metrology)
io.aoo £~ /J?f\ - -~
0.225 / " o
0.150 f%q
0.075 -
Io.ooo
-0.075 .
-0.150 Y P
r 3000
-0.225 260 ‘\\r 2000 b Velocity(mm/s)
8 -0.300 2403 1500
— 1000
Deviation Map Segmented Flaws Window of desired process parameters for the new alloy [+
Geometry dependence | 15°ncline _| poragy 04
. w/ S/ waw o whw | owww \ W w0
of optimum process /, o & m ow mowow W oW ﬁl"j' -w 22
- * W om W ow ow W w w o
parameters : mom oW W owm W 'f’"v ue
Inclines a oo ol 4 u A oo w
n A 4
™ w
T 1 1 1T 17T J I T R U Y
Build Plate: Each coupon i e e e e e el e e e S v
a Process Parameter | é%éél '/é'ééééé?; EEEEELE
“Full Part Velocity (mm/s]

Figure 6. Fast, automated characterization for process parameter selection. A build plate is designed, and each
component is printed with a separate printing process parameter. The components are quickly scanned,
reconstructed, and characterized, leveraging the algorithms provided. This allows the researchers to quickly evaluate
and analyze the effect of process parameters and find regions of ideal process parameters, that result in minimum
porosity and geometric deviation among other metrics for ideal printed component. Furthermore, by analyzing these
ideal components and their individual geometric features, this study evaluated the effect of geometry on the
selection of the ideal region of process parameters.

Equally important, the streamlined nature of Simurgh’s output reduces the burden of postprocessing.
Conventional reconstructions often require extensive manual intervention and tuning to segment flaws
and extract porosity metrics. Simurgh delivers reconstructions that are consistent across large datasets,
which enables automated flaw detection and analysis pipelines with minimal human oversight. This
combination of fast scans, rapid reconstructions, and automated postprocessing allows researchers and
industry partners to identify regions of optimal process parameters, including those leading to minimal
porosity and deviation, and validate their reproducibility across diverse part geometries. In doing so in
this study, Simurgh revealed for the first time that optimal printing conditions are not universal but can
vary depending on component geometry, which is a critical insight for accelerating alloy qualification and
industrial adoption of additive manufacturing.

3. BROADER INDUSTRIAL AND PROGRAMMATIC IMPACT

The impact of Simurgh extends well beyond process parameter optimization, shaping DOE mission areas
and industrial practices across multiple sectors. Within the DOE Advanced Materials and Manufacturing
Technologies Office (AMMTO) and the DOE Office of Nuclear Energy’s Advanced Materials and
Manufacturing Technologies (AMMT) program, Al-driven NDE frameworks such as Simurgh are central
to accelerating the transition to clean energy and strengthening manufacturing competitiveness. By
enabling rapid, high-quality XCT characterization of dense and complex components, Simurgh directly
supports qualification and certification of advanced materials and promotes energy efficiency, material
efficiency, and resilience in domestic supply chains for critical clean energy technologies.




Under the AMMT program, Simurgh has been deployed as a central tool for high-throughput
qualification of stainless steels (316L/316H) and advanced alloys. By coupling Al-enabled reconstruction
with specialized sample holders, Oak Ridge National Laboratory (ORNL) demonstrated the ability to scan
thousands of nuclear-relevant coupons in a fraction of the time required by conventional XCT. More than
400 samples fabricated on the Concept Laser M2 and Renishaw systems were systematically
characterized to generate quantitative porosity maps as a function of laser power, scan speed, and hatch
spacing. Optimization frameworks further accelerated alloy development by reducing the number of
required build iterations, which directly advances the qualification of nuclear-grade materials and
components [9].

Industrial adoption has been accelerated through collaborations with ZEISS, Boeing, General Electric
(GE), DMG MORLI, and other partners. ZEISS has shown that by integrating Simurgh into its XCT-as-a-
service platform, the cost of scanning can be reduced from over $750 per part to as little as $330 per part
while simultaneously improving reconstruction quality. This cost advantage is complemented by major
savings in postprocessing; expert-driven analysis that typically costs $250 per hour is significantly
reduced because Simurgh provides consistent, artifact-free reconstructions with minimal manual
intervention. Across institutions and companies, Simurgh has already contributed to a market impact of
nearly $19 million, which encompasses more than 17,000 scans, related XCT services, and the purchase
of three XCT systems by a company dedicated to high-throughput process parameter optimization.

Together, these achievements highlight how Simurgh enables faster and more accurate inspection as well
as significant economic and programmatic benefits. By reducing scan costs, accelerating throughput, and
simplifying workflows, the framework is driving large-scale adoption of XCT in applications ranging
from aerospace and nuclear to additive manufacturing. At the same time, Simurgh provides the
foundation for advanced materials discovery, digital manufacturing systems, and qualification pipelines
for nuclear energy, reinforcing DOE’s mission to couple cutting-edge Al with advanced manufacturing to
deliver sustainable, efficient, and competitive industrial capabilities.

4. CONCLUSION

This Cooperative Research and Development Agreement (CRADA) between ORNL and ZEISS has
demonstrated how sustained collaboration between a national lab and industry can deliver transformative
advances in NDE and accelerate the deployment of additive manufacturing technologies. Through
codevelopment of Al-powered XCT reconstruction tools such as Simurgh, the partnership has achieved
step-change improvements in the speed, accuracy, and cost-effectiveness of XCT characterization. These
advances now enable high-throughput qualification of AM parts, real-time process parameter
optimization, and robust certification workflows that were not previously feasible with conventional
methods.

The collaboration has already shown tangible economic and programmatic impacts. ZEISS has integrated
these algorithms into its XCT service offerings, cutting scan costs by more than half and reducing
dependence on manual postprocessing. ORNL has applied these algorithms in DOE AMMTO and
AMMT programs to accelerate alloy qualification and nuclear materials research. Together, these efforts
have supported industry partners such as Boeing, GE, and DMG MORI, with applications ranging from
aerospace to energy and nuclear systems. This work has generated measurable economic value in the
form of reduced inspection costs and increased throughput. The software developed through this CRADA
is now licensed by multiple organizations, including the University of Dayton Research Institute, Idaho
National Laboratory, National Institute of Standards and Technology, Air Force Research Laboratory, and
ZEISS and, in collaboration with the Raytheon Research Center, is used to optimize the printing of
Inconel 718 on EOS systems [10-11]. New collaborations and licensing opportunities are also in




development with Nikon, EOS, and GE Vernova. These accomplishments were recently recognized with
a 2025 R&D 100 Award, underscoring the impact and innovation of the work.

More importantly, this CRADA lays the foundation for something larger: a pathway to industrial
ecosystems in which digital manufacturing, Al-enabled inspection, and qualification are tightly
integrated. The advances realized through this partnership point toward the development of digital twins
for AM parts, data-driven certification pipelines, and Industry 4.0 manufacturing environments in which
qualification and certification are faster, more reliable, and more cost-effective. By aligning ORNL’s
scientific leadership with ZEISS’s industrial expertise, the collaboration exemplifies how joint innovation
can overcome technical bottlenecks and create scalable, economically viable solutions that will shape the
future of advanced manufacturing.
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