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Axion dark matter or any ultralight bosonic dark matter can go through Bose-Einstein condensa-
tion due to the large phase density, leading to the formation of axion stars or solitons in dark matter
halo centers. The formation rate is enhanced in the presence of the substructures expected in the
post-inflationary scenario for the QCD axion or axion-like particles. An axion star will continue to
grow until a critical mass is reached, after which it collapses and then explodes, with the emission
of relativistic axions, in a process called an “axinovae.” There can also be accompanying photon
emission due to the stimulated decay of axions in the coherent compact axion star. In axion models
with a modest enhancement (κ ∼ O(10)) of the axion-photon coupling gaγ = κα/(2πfa) axinovae
will contain a significant flux of radio photons. We determine the range of parameters over which
axinovae can be detectable with radio transient searches.

I. INTRODUCTION

Since the dawn of history, humans have looked up to the sky and pondered the nature of the luminous objects and
what governs their motion. In modern times, we have come to understand the evolution of stars, and the galaxies
in which they reside. The formation of galaxies is dominated by the gravitational potential of dark matter, whose
nature remains elusive. In considering scenarios for dark matter, we have become aware of a multitude of possible
phenomenological signatures, both subtle and striking.

Light scalar fields appear ubiquitously in field theories, arising as a result of spontaneously broken (approximate)
global symmetries. These “axion” fields can play important roles in particle physics, not least of which is an elegant
solution to the strong CP problem [1–7]. If these symmetries are broken after inflation, the density field naturally
contains O(1) isocurvature perturbations on small scales corresponding to the horizon size when the axion fields start
to oscillate. These can seed dense minihalos, whose cores can condense into dense “stars” of the scalar condensate.
These stars can evolve as they accrete material from the dense environment, growing until they reach a critical mass,
as which point they collapse and explode, producing semi-relativistic axions. This processing of material can lead
to important cosmological signals that are similar to decaying dark matter, constraining broad swaths of parameter
space [8], simply from the conversion of mass to relativistic energy. Notably, this process relies only on the axion’s
gravitational- and self-interactions.

In many models, there are couplings beyond just self couplings. If any heavy fields coupling to the axion carry SM
charges, it is natural for the scalar to couple via higher dimension operators to photons, gluons and other light fields.
An important question is whether these same collapse processes could produce visible SM radiation in the presence of
such couplings. In the presence of the CMB, we shall see that with sufficient coupling, these “axinovae” can become
interesting sources of electromagnetic radiation, providing new constraints and - possibly - new signals. We call such
sources visible axinovae, which emit electromagnetic radiation from axion star explosions. Visible axinovae provide
more detectable signals than the ordinary axinovae that only emit relativistic axions, expanding the model parameters
one can probe with various observations.

The layout of this paper is as follows: in section II we review the formation and collapse of axion stars, which will
yield our constraints. In section III we will study the process of EM emission from axinovae. We compile these in
section IV, and review what limits present and future observations can place on these scenarios. Finally, in section V
we conclude.

II. THE BIRTH AND DEMISE OF AXION STARS

An axion (a light pseudo scalar resulting from the breaking of a U(1)PQ global symmetry through non-perturbative
QCD effects) or axion-like particle (similar to the axion without the restriction that the potential comes from QCD)
provides an interesting dark matter candidate. We will focus throughout on the more generic axion-like particle (ALP),
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although we will simply refer to them as axions, whose properties we parametrize through the effective Lagrangian

L =
1

2
∂µa∂

µa− 1

2
m2

aa
2 +

λ

4!
a4 − gaγγ

4
aFµν F̃µν , (1)

with F̃µν = 1
2ϵ

µναβFαβ and gaγγ ≡ κ α
2πfa

where κ is a model dependent numerical factor and fa is the Peccei-Quinn

symmetry breaking scale. Note that the QCD axion also has some model dependence in its coupling to photons,

as well as having a coupling to gluons, and for the QCD axion λ ≈ 0.2
m2

a

f2
a
. For simplicity, from now on, we take

λ = m2
a/f

2
a and consider κ a free parameter; we discuss this more in section III. In addition to the couplings in (1)

there is the coupling to gravity, which can result in the formation of bound structures in dense axion environments.
These bound structures, dubbed axion stars, are compact objects that are made of localized and coherently os-

cillating axion fields; for a thorough review see [9] and references therein. They exist through a balance between
outward gradient pressure and either self-gravity or attractive axion self-interactions. Below a critical mass, the axion
star is stable and referred to as a dilute axion star. If these dilute axion stars find themselves embedded in a gas of
unbound axions the unbound axions can condense, increasing the mass of the axion star. Once the critical mass is
reached, the star becomes unstable and contracts to a dense star [10–14]. The dense star has a large central axion
field value and is short lived. In the absence of interactions with the standard model this large field value leads to
the production of relativistic axions and the star converts a substantial fraction of its mass into these relativistic
states [10] which can lead to cosmological constraints [8]. However, if the axion couples to the photon the dense star
can instead emit copious amounts of photons of frequency ν ∼ ma. This can occur through a parametric resonance
whereby an incoming CMB photon of the same frequency is resonantly amplified. We will discuss this process in the
next section, and determine the necessary size of the axion-photon coupling for the photon emission timescale to be
short enough that the dominant energy loss mechanism is to photons, not relativistic axions. Subsequently we will
determine the rate for this process to occur and in which regions of axion parameter space there will be a signal at
radio telescopes.

An axion star of mass M∗ and radius R∗ has energy

E∗ = −GNM2
∗

R∗
+ c1

M∗

2m2
aR

2
∗
− c2

λM2
∗

12m4
aR

3
∗
. (2)

The terms in this expression are due to gravitational self energy, gradient pressure, and the internal energy from
self interactions and the ci, depend upon the details of the field profile and are found numerically [15–17] to be
c1 = 9.9, c2 = 0.85. A good approximation of the numerical solutions is given by a Gaussian field profile [18–20],

a(r)/fa = Θ(r) =
√
2Θ0exp(−r2/(2R2

∗)).
By minimizing the total energy, the mass-radius relation is

R±
∗ =

c1
2GNM∗m2

a

(
1±

√
1− c2

c21
λGNM2

∗

)
. (3)

The stability of the solution is determined by the sign of ∂2E∗/∂R
2|R=R± . Solutions in the dilute branch (R = R+)

are stable while those in the critical branch (R = R−) are unstable. In the dilute branch, the central field value
satisfy Θ0 ≲ fa/Mpl. The solutions of dilute axion star exist when the quantity below the square root in Eq. (3) is
positive. When that becomes negative, stable solutions of axion field configurations no longer exist. Therefore, axion
stars above a critical mass will collapse and enter the dense branch. The critical mass M crit

∗ at which this occurs is

M⋆
crit =

10.7Mplfa
ma

≈ 1.16× 10−11M⊙

(
10−5eV

ma

)(
fa

1012GeV

)
. (4)

We now turn to the rate of formation, and subsequent growth, of the axion stars from a background density of free
axions, as in a minihalo. The relevant timescale is determined by the axion scattering cross section, σ, the typical
density, n, and speed, v, of the background axions,

τ ∼ (fBEnσv)
−1

. (5)

The Bose-enhancement factor, fBE = 6π2n(mav)
−3, arises from the large axion phase space density. See Appendix B

for more discussion of the properties of minihalos.
In the region of parameter space we will be interested in the scattering cross section is determined by the axion self

interactions [21], σself = λ2/(128πm2
a) and the resulting timescale is

τself ≈
64m5

av
2f4

a

3πn2
. (6)
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This timescale determines the growth rate for axion stars inside minihalos, see Appendix C for how this depends on
minihalo mass. It has recently been shown [22] that the mass growth of an axion star is described by a self-similar

solution. Introducing the quantity ϵ ≈ 3M⋆/Mh with the saturation mass defined as M⋆ = 3G
−1/2
N m−1

a ρ
1/6
s M

1/3
h .

The ratio of star mass to halo mass x⋆ = M∗(t)/Mh was shown to evolve from x⋆(0) = 0 as

(1 + x3
⋆/ϵ

2)3

(1− x⋆)5
≈ t+ 0.1τ

1.1τ
. (7)

After an initial period of linear growth, and while the axion star mass remains a small fraction of the mass of the
halo it forms in, and t > τ , this growth is well described by a power law, M∗ ∼ M⋆(t/τ)

1/3. At late times when the
star has grown to be an appreciable fraction of the halo it is also a power law but of lower power, M∗ ∼ t1/9. The
total time for an axion star to reach the critical mass can be determined from (7), by solving for the time tcrit when
x⋆ = M crit

∗ /Mh.
Given that the self-similar growth is well approximated by a (changing) power law, and that a simple power law

results in closed analytic forms for various results, we choose to present our results for both a simple power law and
the more complicated self-similar growth of [22]. If the mass growth is in the power-law region, M∗ = M⋆(t/τ)

1/n,
then the timescale of forming a critical star is tcrit = τ(Mcrit/M⋆)

n and we consider n in the range from 2 to 5. As
we will see the qualitative results are very similar for power law and self-similar growth.

Once the mass of the star grows beyond the critical mass the axion self-interactions become important, the star
becomes unstable and starts to shrink. The evolution of the dilute star has been calculated under the assumption of
a Gaussian field profile [20], where it was shown that for an axion star just above critical mass the radius initially

shrinks slowly Ṙ∗ ∼ −t, while at late times it evolves quickly Ṙ∗ ∼ −(tcoll − t)−3/5 with total collapse time given by

τcoll ≈ 0.49
λ

ma

(
Mpl

ma

)2(
M∗ −M crit

∗
M crit

∗

)−1/4

. (8)

During the period where its radius shrinks and before it emits many axions Θ0 ∼ R
−3/2
∗ . Once this central field value

becomes order-unity Θ0 ∼ 1 it enters the dense axion star regime. The mass-radius relation become M∗ ∝ R3
∗ because

the energy density of axion star ρ ∼ θ2m2
af

2
a saturates. In particular [17],

RD
∗ ∼ 0.6

(
M∗

m2
af

2
a

)1/3

≈ 1.3

ma

(
Mpl

fa

)1/3

, (9)

where, in the second equality, we have taken the dense axion star mass to be the critical mass discussed in Eq. 4 since
stable axion stars will collapse to a unstable dense axion star once they accrete to a mass just above the critical value.

Axions in such configurations have high momenta and they will emit relativistic axions via the self-interaction term,
causing the instability of dense axion stars. The life time of dense stars due to the emission of relativistic axions is
[17]:

τlife = O
(
103

ma

)
≈ 10−7s

(
10−5eV

ma

)
. (10)

It is worth noting that the collapse time, τcoll, is much longer than the dense axion star lifetime, τlife, by at least a
factor of (Mpl/ma)

2. However, the collapse time is still very short compared to cosmological timescales. So far the
evolution of the axion star has ignored all but self interactions. In the next section we will address what happens
during this collapse if there is a sizable coupling of the axion to photons.

III. PHOTON EMISSIONS FROM AXION STAR EXPLOSIONS

A crucial aspect of the study of axinovae is to determine if they will produce observable photons, which provides
new signals in the search of axinovae. It is known that a coherent axion field can experience stimulated axion decay,
which is a process whereby the axion decays are further stimulated by outgoing photons, due to Bose enhancements.
This stimulated decay of diffuse axion background has been extensively studied, and can lead to interesting radio line
signatures [23–29]. Dense coherent axion clumps such as axion stars will further increase the discovery opportunity.
Recently, there has been considerable progress on stimulated decay in axion clumps or solitons, and the rate estimates
of the axion star collapse [30–44].

There are competing effects that can stop the growth of the photon flux in realistic environments [45]. The
presence of charged particles (electrons and positrons) in the region with strong electromagnetic fields can lead to
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electromagnetic showers and the generation of a plasma, through strong field processes like photon-assisted Schwinger
pair production. This, in turn, leads to a mass for the photon which can make the stimulated decay of an axion
kinematically blocked [46, 47]. In what follows we first estimate the size of the field in a region with only axions and
photons, we call this Emax,vac, and then estimate the maximum field once the back reaction from charged particles is
included, Emax,plasma. This will allow us to determine the maximum expected photon signal from dense axion stars.
The coupling between axions and photons (1) modifies the equation of motion of photons in the presence of axion

fields, leading to the axion-electrodynamics equations [48]. For now, we will assume we are in a region which is free
of matter and ignore the charge and current densities. We treat the axion field as a fixed background and ignore the
back reaction on its dynamics, which remains valid until axions dominantly decay to photons. The profile of the axion
star is as described in the previous section and we consider the axion field to be coherent over the whole star,

a = faΘ(r) cos (mat+ δ) , (11)

where Θ(r) represents the dimensionless axion field value, which can reach order unity in dense axion stars. Further-
more, the profile of the star is slowly varying with |∂rΘ| ≪ ma, |k|, with k the wavevector of the light. In the dense
branch of axion stars, relativistic modes with momentum 3ma start to appear but do not dominate the axion profile
[17]. Also, dense axion stars are not as compact as black holes as long as fa ≪ Mpl, which is the parameter space we
focus on in this work that can lead to interesting observational signatures. Therefore, we expect the approximations
to hold even for dense axion stars in the parameters of interest.

These dense objects can lead to interesting lensing effects [30, 34, 49–52], dynamical heating of stars [53, 54] or
radio signals from encounters with neutron stars [41, 55–57]. We make the simplifying assumption that the light is
normally incident on the axion star and we take the direction of propagation to be along the z-axis so that the electric
and magnetic fields lie in the x − y plane and can be described in terms of left and right circularly polarized fields
B± = B±(t)e

ikzϵ± , and similarly for E. Using the assumption that the axion star profile is smooth we solve the
equations of motion in the adiabatic approximation i.e. we solve for constant axion field and then allow the axion
to slowly vary within that solution. The equation of motion for the electromagnetic field (focussing on the B-field)
becomes

B̈± + k2B± = ∓gaγγmafakΘ(z) sin (mat+ δ)B± . (12)

Defining η = (mat+ δ)/2 we see that (12) takes on the form of the Mathieu equation,

B
′′

± +

[(
2k

ma

)2

± 4gaγγfak

ma
Θ(z) sin 2η

]
B± = 0 , (13)

with primes denoting derivatives with respect to η. The Mathieu equation is known to exhibit the phenomenon of
parametric resonance. For 4gaγγfakΘ(z) ≪ ma parametric resonance can occur only for photon frequencies close
to half the axion mass. Both the ingoing and reflected photons receive amplification, B±(t) ∼ 1√

2

(
eikz + e−ikz

)
eµt,

with the growth rate µ, also called the Floquet exponent, given by [30]

µ =
1

2

√√√√(gaγγfaΘ(z)k
)2

− m2
a

4

(
1−

(
2k

ma

)2
)2

. (14)

The Floquet exponent is real, and thus parametric resonance occurs, only for photon momenta close to ma/2. For
such photons the maximum growth rate is

µ =
gaγγmafaΘ

4
≡ µ0Θ , (15)

which is linear in the coupling gaγγ . The width of the resonance band is thus ∆k ∼ mafagaγγ/4. Photons that
take a path of length L through the axion star, we ignore possible focussing effects and assume the photon’s path is

unaffected by the axion background, will have their amplitude boosted by exp(
∫ L

0
µ(η)dη). The typical path length

of photons through the star is L ∼ R∗.
Modeling the axion profile as a Gaussian within the axion star, i.e. Θ(r) =

√
2Θ0exp(−r2/(2R2

∗)), with the nor-
malisation given by Θ0 ∼ ( M∗

π3/2R3
∗ m2

af
2
a
)1/2 the enhancement in the amplitude of the electromagnetic field as a photon

pass through the axion star scales as ∝ e2
√
πµ0Θ0R∗ . For a dilute critical mass axion star where Θ0 ∼ fa/Mpl and

R∗ ∼ Mpl/(mafa) this enhancement is small, µ0Θ0R∗ ∼ κα. However for (short lived) dense axion stars Θ0 ∼ 1,

resulting in a potentially large enhancement µ0Θ0R
D
∗ ∼ κα

(
Mpl

fa

)1/3
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This exponential enhancement of electric field strength may be seeded by either the incoming CMB photons are
spontaneous decay of an axion, but the enhancement can be so large that the final field is insensitive to the initial
field value. As an estimate we consider the initial field value to be that coming from CMB photons, with frequency
in the resonance band i.e.|k −ma/2| < µ̄. The incoming field strength is Ecmb = (Tcmbm

2
aµ̄/4π

2)1/2. This can result
in a very high photon field,

Emax,vac ≈
√
κ
( ma

10−6 eV

)3/2
exp

(
1.4κ

(
1010 GeV

fa

)1/3
)

× 10−33 GeV2 . (16)

The maximum possible E-field is exponentially sensitive to the axion-photon coupling, κ, and in models with enhanced
couplings this final E-field can be very large.

As discussed earlier, there is another effect that can potentially cap the production of photons in the axion star,
related to Schwinger pair production [58]. Although the field strength never gets large enough for the vacuum
Schwinger effect, which occurs when eE ∼ m2

e, there are additional catalysed-Schwinger effects that can occur at
lower electric field. In particular, in the presence of high frequency photons, with energy ωγ , there is the photon-
assisted Schwinger effect [59–61] which occurs when

E ∼ 2m3
e

eωγ
, (17)

for ωγ > me this is a lower field value than the vacuum Schwinger effect.
The interior of the axion star is likely to contain free charges, in which case the growing photon field grows will

accelerate them, giving them Lorentz factor γ. If they are accelerated perpendicular to their motion they in turn
will emit synchrotron radiation of frequency ωγ ∼ γ3v̇⊥. If these frequencies are high enough they can lead to pair
production and these electrons/positrons in turn will be accelerated. There is a run away process and the interior of
the star is rapidly filled with an electron-positron plasma. The resulting plasma mass for the photon blocks the decay
of axions. To estimate the maximum allowed E-field we need to determine ωγ .
We expect that the E-field inside the axion star is coherent over length scales of dE and thus that the radius of

curvature, dc, of electrons as they pass from one coherent region to another is also dc ∼ dE . Thus, their Lorentz
factor is γ ∼ eEdE/me and v̇⊥ ∼ 1/dc ∼ 1/dE . The bound from (17) means the maximum possible E-field is

Emax ∼ e−1

√
m3

e

dE
. (18)

Naively we expect the coherence length to be O(m−1
a ) which places a constraint on the maximal possible E-field of

Emax,plasma <∼

√
ma

10−6 eV
× 10−12 GeV2 . (19)

Alternatively, if the E-field is coherent across the whole star and the radius of curvature of its motion is similar then

Emax <∼
(

ma

10−6 eV

)1/2 ( fa
1010 GeV

)1/6
× 10−14 GeV2. We take the maximal possible E-field to be the smaller of (16) and

(19), i.e. Emax = min(Emax,vac, Emax,plasma). The corresponding energy emitted in photons, with frequency ma/2 is
E2

maxR
3
∗. This energy is released in a time of order 1000/ma, which is roughly the light crossing time and the lifetime

of dense axion stars.
In typical axion models the κ parameter is O(1). However, there are various classes of models with enhanced axion-

photon couplings. For instance, if there is a heavy vectorlike fermion carrying PQ charge QPQ and electromagnetic
charge Q then κ = 2QPQQ

2, although the requirement that there be no Landau poles below the Planck scale limits
κ <∼ 100 [62]. The clockwork mechanism can be used to generate a photo-philic axion [63]. Kinetic mixing between
multiple axions [62] or multiple U(1)’s [64] can increase the axion photon coupling. Alternatively, one could suppress
the axion self-interactions [65] which raises the critical axion star mass and consequently the radius of the dense axion
star, leading to greater enhancement of the electromagnetic field as a photon passes through the dense star.

Over the region of axion mass parameter space that present radio telescopes have access to, and thus we are most
interested in, the axion mass lies in the range 10−7 eV <∼ ma <∼ 10−5 eV. Thus, for moderately enhanced couplings,
κ ∼ 20− 30, the parametric resonance effect is large and the electric field is limited by the assisted Schwinger effect
i.e. (Emax,vac > Emax,plasma). In our result plot, Fig. 1, we will assume that κ is large enough that Emax = Emax,plasma

throughout the plotted parameter space.
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IV. BRIGHTNESS OF VISIBLE AXINOVAE AND OBSERVATIONAL CONSTRAINTS

In the previous sections we have demonstrated that, with a sufficiently large axion-photon coupling and in certain
environments, axion stars can form, grow, and then have an axinova event where they emit a large number of photons.
The rate for this signal depends upon the distribution of minihalos in the cosmos, since the growth rate of stars depends
upon the density and speed of axions in the core of minihalos. In what follows we will first determine the minihalo
mass spectrum, using the Press-Schechter technique applied to the white noise power spectrum expected for post-
inflation PQ breaking. Then with this spectrum in hand we can determine the rate of axinovae averaged over the
halo mass distribution. In determining the axinovae rate we will consider both a simple power law growth rate and
the self-similar growth rate [22] for the axion star mass. Since all axion stars go critical at the same mass, and thus
emit the same number of radio photons they are a standard candle [40] and the signal at a radio telescope will be
dominated by the closest axion star. The typical distance to an axinova can be determined once the rate of axinovae
is known. This distance will determine the fluence of radio photons at the telescope. We compare this fluence to the
noise level in a typical radio telescope, to finally determine which axion parameters produce a sufficiently large signal
(we take this to be a signal-to-noise ratio larger than 10) to be observed/excluded. Rather than attempt to predict
the signal at a particular radio facility we use parameters, like collection area, noise temperature, observing time,
frequency binning etc, of an SKA-like radio telescope when surveying the blank sky i.e. when not looking at a known
radio source.

For the breaking of PQ symmetry after inflation the initial spectrum of axion density perturbations at very small
scales follows a white noise power law i.e. ⟨δ2⟩ ∼ A0(k/k0)

3. After matter-radiation equality these perturbations
grow and will form axion minihalos. As minihalos merge this growth will continue up until late times, z ∼ 20, at
which time the minihalos will be absorbed by larger CDM structures, which have grown from the (approximately)
scale-invariant density perturbations of ΛCDM. After being absorbed their growth essentially freezes. To determine
the growth from matter-radiation equality to z ∼ 20 we follow the Press-Schechter approach [66] with a white-noise
spectrum to determine the halo mass function df0(Mh, z)/dMh. Similarly, the CDM halo mass function, dfcol/dMh,
can be calculated using Press-Schechter but with a scale invariant spectrum at large scales. The final, late time, halo
mass function is then calculated as

df

dM
(z) =

∫ z

zeq

dzi
dfCDM

col (zi)

dzi

df0
dM

(zi) + (1− fCDM
col (z))

df0
dM

(z) . (20)

This is discussed in more detail in Appendix A.
When determining the signal rate we take into account all these effects, but the evolution of minihalos is dominated

by what happens at z > 20 and thus depends mostly on df0(Mh, z)/dMh. In this range of z the growth function also
takes on a simple form Dgrow ∼ (1 + z)−2. This results in a relatively simple form for the halo mass function, which
is zero for M < M0 and for M > M0 is

df0
d logMh

(Mh, z) =
δc
3π

√
2Mh

A0M0

(
1 + z

1 + zeq

)
exp

[
− 2δ2c
9πA0

(
1 + z

1 + zeq

)2
M

M0

]
, (21)

where M0 is the the initial minicluster mass, determined by the particle horizon when the axion starts to oscillate
M0 ∼ k3oscρ0, which in turn can be determined from ma, fa, see Appendix C for details. Notice that df0

d logMh
only

depends on halo mass through the ratio Mh/M0. We will present analytic results below using this halo mass function,
although we emphasize the final (numerical) results use the full form outlined in Appendix A.

The rate of axinova per unit volume is equal to the number density of halos of a given mass divided by the time it
takes for those halos to nova,

dΓ

dMh
(Mh, z) = Θ(tH − tcrit)

ρ(z)

Mh

df(Mh, z)

dMh

1

tcrit(Mh, z,ma, fa)
, (22)

here ρ(z) = ρ0(1 + z)3 is the cosmological dark matter density at redshift z. Here tcrit is the timescale of forming an
axion star at the critical mass. The total rate can be found by integrating over all halo masses that contain a critical
star, i.e. from max(M0,M

crit
∗ ). This integral is dominated by the lightest halos.

The distance, D⋆, to the closest axinova within an observing period ∆tobs can be found from the total rate
D⋆ ∼ (Γ(z = 0)∆tobs)

−1/3. For instance, if M0 > M crit
∗ and for simplicity we take the growth of the star mass to

scale as a simple power M∗ ∼ t1/2 then tcrit = τ(Mcrit/M⋆)
2 the distance to the closest axinova is

D ∼
(
fsky∆tobs
10−3day

)−1/3 ( ma

10−5 eV

)1/3( fa
1010 GeV

)4/3

× 1.3 kpc . (23)



7

Note that we have replaced the cosmic dark matter density with the local dark matter density for consistency since
the distance is very small for axion masses at radio frequencies.

The radio signal from an axion star consists of a sizeable amount of energy (∼ E2
max,plasmaR

3
∗) released in a very

short period of time (τlife ∼ 103/ma ∼ 1µs) in the form of photons peaked around frequency (ν ∼ ma/2) with a
spread of δνs ∼ mafagaγγ/4 ∼ 10MHz, but the location on the sky is unknown. Due to the short duration and
small spectral spread the underlying flux is large. For instance, the fluence (spectral flux density integrated over the
duration of the burst) from this source, assuming the axion-photon coupling is large enough to obtain a saturated E
field (19), is given by

Fan ∼ (4π/3)(E2
max/2)R

3
∗

4πD2δνs
∼ 0.1

κα

(
∆tobs
day

)2/3(
fsky
10−3

)2/3 ( ma

10−5eV

)−2/3
(

fa
1010GeV

)−8/3

Jy ·ms, (24)

where Jy = 10−26W ·m−2 ·Hz−1 is the Jansky unit.
However, although radio telescopes can have very fine frequency resolution and µs timing resolution when looking

at a known radio source a broad sky survey does not collect data with such fine resolution. Typically the radio flux
is integrated over periods of order a second, ∆t ∼ 1sec and the frequencies are binned with ∆ν ∼ 100kHz − 1MHz
resolution. This time and frequency binning is considerably broader than the intrinsic duration and spectral spread
and so dilutes the signal. One must compare the energy collected from the axion star during a single bin in time
and frequency space to the expected background in the same bin. The background is often described in terms of
the noise equivalent temperature Tsys, which is the temperature a resistor with the same power output. The noise
level over the frequency range (∆ν) and duration of the observation (∆t), to which the signal needs to be compared,

is Tsys/
√
∆ν∆t. With typical noise temperatures of 50K the background fluence is ∼ 10−13Jy ms Hz−1. Thus, the

expected signal to noise ratio in a radio telescope of collecting area A is

S

N
= FanAδνs

√
∆ν∆t

Tsys
. (25)

Taking benchmark values for current radio telescopes the signal-to-noise ratio can be numerically expressed as

S

N
= 6.5× 103

(
A

1000m2

)( ma

10−5 eV

)−8/3
(

fa
1010 GeV

)−11/3(
fsky∆tobs
10−3day

)2/3(
50K

Tsys

)(
∆t

1ms

)1/2(
∆ν

100MHz

)1/2

.

(26)
Radio telescopes have sensitivity over a range of radio frequencies, with the lower edge (ν >∼ 10−2 GHz) set by the

opacity of the Earth’s atmosphere and the upper edge (ν <∼ 15GHz) determined by the observing window of, for
example, SKA[67]. In Fig. 1 we denote this approximate region of observability by gray shading and with dashed
lines indicating the frequency range of radio observations.

In Figs. 1 and 2 we present the region of parameter space that leads to a significant radio signal. As discussed
above, over the range of frequencies for which a radio telescope is sensitive, the size of the electric field that can be
generated in the axion star is limited by the assisted Schwinger effect, and this requires a modest enhancement of the
axion photon coupling. The necessary enhancement is slightly ma, fa dependent, and we assume κ is large enough
throughout the mass range shown in the plot. The pink shaded region is where the lighter halos in the halo mass
function can form a critical axion star within the present age of the universe. In Fig. 1 we follow [8] and take the
growth in mass of the axion star to follow a simple power law, with n = 2, in Fig. 2 we use the self-similar solution
for growth (7).

For smaller fa the formation and subsequent explosion rate can be high enough to cause changes to our cosmological
history, as discussed in Ref. [8]. This region is shaded blue, and we present a closed-form for the decay fraction, under
the assumption that n = 2, in the appendix (C5). Note that this region relies upon the decay rate of axion stars, which
does not depend on the electromagnetic interactions of axions, which only determines the energy fraction carried by
photons during axion star collapse. There is a slight difference between the recurrent axinovae constraint presented
in [8] and the blue region in Fig. 1, which is related to assumptions about the dependence of the axion mass on
temperature. In the present work we have fixed the initial axion minicluster mass by determining the oscillation time
from the relic abundance as shown in Eq. (C4) assuming the axion oscillates at its zero temperature mass, whereas in
[8] we fixed the temperature when oscillation began and altered form of ma(T ) to achieve the correct relic abundance.
The pink region below the blue region has critical axion star production, but not at sufficient rate to cause large scale
structure to be altered. There is a possible electromagnetic signal and we denote in gray the region where a radio
telescope with receiving area of 1000m2 observing 0.1% of the sky for 24 hours would see a signal-to-noise of 10, see
Eq. 26. If the photons emitted from axions in the pink region are not in the radio band, radio observation constraints
do not apply [68], which form the left and right vertical boundary of the gray region. Comparing the results of Fig. 1
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FIG. 1. Axion parameters that lead to axinovae in the current Universe for power law growth of axion star mass, M∗ ∝ t2.
The blue region is excluded by cosmological observations due to the large axinova rate. The pink region cannot be excluded by
cosmology but can lead to an observable rate of axinova. The gray region represents the axion parameters that lead to sizable
radio signals with a fluence above the detection threshold of radio telescopes, corresponding to a signal-to-noise ratio (S/N)
greater than 10.

and Fig. 2 we see that simple power law growth and self-similar growth give qualitatively similar results for the signal
at a radio telescope. We have not presented the cosmological signal in Fig. 2 for the self-similar growth because it
needs to be reparametrized to account for the recurrent axinova rate, which is not the focus in this work. The region
of axion parameter space with a potentially accessible radio signal, shown in Figs. 1 and 2, is not presently excluded
by other search techniques [69]. There are several proposals for future experiments that will have reach into the region
shown in Figs. 1 and 2.

V. CONCLUSION

In this work, we addressed the question of whether axion stars can form cosmologically and whether axion star
explosions (axinovae) can emit photons resulting in observable signals. The cosmological scenario of axions considered
in this work is the post-inflationary scenario where the Peccei-Quinn symmetry breaking occurs after inflation, we
leave the pre-inflationary scenario for future studies. In the post-inflationary scenario, the axion field is randomized
in different horizon patches before it acquires its mass, resulting in large isocurvature perturbations roughly at the
horizon size of initial axion oscillation. Such density perturbation will lead to the formation of dense substructures
called axion miniclusters, which subsequently merge and form larger objects called axion minihalos. These dense
substructures are ideal environments for axion star formation due to their large density and small virial velocity.

The calculation of the formation rate of axion stars and the event rate of their explosions extends our previous
work [8] to include the full mass spectrum of axion minihalos whereas before we focussed only on halos masses at the
peak of the mass spectrum. We systematically study the stimulated decay of axions within dense axion stars, taking
into account the effects of parametric resonance which enhances the photon emission as well as the photon-assisted
Schwinger effect which hinders the emission. Despite the fact that these dense axion stars are the short-lived end state
of an axion star and will decay away after a few thousand axion oscillations, we show that in models with moderately
enhanced axion-photon couplings there can be sufficient photon emission to allow detection. Existing radio telescopes
observing the blank sky for relatively short periods of time have the potential to see one of these transient objects.
Over much of the accessible parameter space, which is not presently excluded by other search techniques, the rate
for seeing these events is sufficiently high that the parameter space would likely be quickly excluded by a dedicated
search, or a signal would be quickly found. We advocate for such a search.

Note added: While this work was being finalised a related analysis appeared [70] using mergers of axion stars in
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FIG. 2. Axion parameters that lead to axinovae in the current Universe using the self-similar growth in Ref. [22]. The pink
region represents the axion parameter space that leads to axion star collapse and the gray region corresponds to radio emissions
with S/N > 10. Note that the result is very similar to that in Fig. 1 even though we have used a different formula for axion
star growth.

multi-axion models to produce radio signals from axinovae.
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Appendix A: The Mass Function of Axion Minihalos and the Decay Rate of Axion Stars

Enhanced substructures from white-noise perturbations can greatly accelerate the gravitational condensation of
axions because of the high density of those structures. Therefore it is crucial to determine the mass function of those
axion substructures to calculate the population of axion stars.

A simple model of collapsed halos by Press & Schechter [66] determines the probability that a halo forms as

df0
dMh

=
1

Mh

√
ν

2π
exp(−ν/2)

∣∣∣∣ d lnν

d lnMh

∣∣∣∣ , (A1)

where ν is defined as ν ≡ δ2c
σ2(Mh)D(z)2 , with δc = 1.686 the overdensity threshold for spherical collapse and D(z) is

the growth function. In a matter dominated cosmology the growth function takes the simple form D(z) = 1 + 3
2 (1 +

zeq)/(1 + z).The variance of the smoothed density field is denoted σ2(M) and is defined as

σ2(M) =

∫
dk

k

k3P (k)

2π2
|W (kR)|2 . (A2)
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There are many choices for the smoothing procedure. We use a simple top-hat filter function whose Fourier transform
is W (x) = (3/x3)[sin(x) − xcos(x)] and for which M = (4π/3)R3ρ0. For a white-noise dominated power spectrum
k3P (k)
2π2 = Aosc(k/kosc)

3 and the variance is

σ(M) =

√
3πAosc

2

M0

M
, (A3)

with M0 = 4π
3 k−3

oscρ0. The mass distribution of axions (i.e. Mhdf0/dMh) is peaked at mass scale

Mpeak =
3πAosc

2δ2c
D(z)2M0 , (A4)

which corresponds to ν = 1. The minihalo mass function (A1) predicted by the Press-Schechter approach agrees well
with N-body simulations with an initial white-noise power spectrum [71].

The above mass function applies for time before the formation of large scale structures that are seeded from
primordial density perturbation, which occurs at z ∼ 20. At later times the axion minihalos can be absorbed by
massive CDM structures, freezing the subsequent mergers of axion minihalos. The final axion minihalo mass function,
including infall minihalos that have been absorbed by standard CDM halos can be written as

df

dM
(z) =

∫ z

zeq

dzi
dfCDM

col (zi)

dzi

df0
dM

(zi) + (1− fCDM
col (z))

df0
dM

(z) . (A5)

where fCDM
col (z) is the collapse fraction of massive CDM halos formed from adiabatic fluctuations. The probability of

infall at a particular time slice z = zi is proportional to dfCDM
col (zi)/dzi, where we have assumed the axion minihalos

will be the building blocks of massive CDM halos during their collapse. This assumption is valid as long as there is a
mass hierarchy between CDM halos and axion minihalos. Again applying the Press-Schechter formalism for standard
CDM halos, their collapse fraction can be written as

fCDM
col (z) = erfc

(
δc√

2σCDM(Mmin)D(z)

)
, (A6)

where σ2
CDM(M) is the variance of the adiabatic fluctuations and Mmin is the minimal mass of CDM halos that

can absorb axion minihalos. With the above expressions, we can compute the full evolution of axion minihalo mass
function all the way from matter radiation equality to the current time.

Appendix B: Halo properties

The density profile and mass function of axion minihalos are needed if we want to compute the condensation time
scale and determine the fate of axion stars. Therefore, it is crucial to know the evolution of the mass and size of axion
miniclusters or minihalos over cosmic time. Axion miniclusters or minihalos are highly concentrated substructures
with a Navarro-Frenk-White (NFW)[72] density profile, which is parametrized by a scale density ρs and a scale radius,
rs. The density profile is

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 . (B1)

The circular speed at the scale radius, which we will take as indicative of the speed of particles forming the star is

v2s = 4πGNρsr
2
s (log 4− 1) . (B2)

It is conventional, assuming spherical collapse, to introduce the concentration, defined as c = r200/rs, where r200 is
the radius at which the average halo density is 200 times the background dark matter density i.e.

Mh
4π
3 r3200

= 200(1 + z)3ρDM,0 . (B3)

This then allows rs to be determined in terms of halo mass and concentration and ρs to be determined in terms of
concentration,

ρs =
200c3

3

log(1 + c)− c
1+c

(1 + z)
3
ρ0 . (B4)
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Thus, the timescale for axion star formation can be determined once the mass and concentration of the minihalo
is known. From numerical simulations [71, 73] is has been shown that the earliest halos form with c ≈ 4 and
subsequently those that grow into the largest halos keep this concentration while lighter halos that form later have
higher concentration, due to the redshift of the dark matter density. This behaviour is well fit by

c(Mh, z) =
1.4× 104

(1 + z)
√

Mh

A0M0

. (B5)

Appendix C: Axion Star Formation Time and Axion Minihalo Formation Mass

The timescale for an axion star that grows inside a minihalo depends upon the density and speeds of axions in the
halo. The distribution of axions inside NFW halos is discussed in Appendix B. The axion star is likely to form at the
center of the halo, but to be conservative we estimate the condensation time at the scale radius where the density
is lower and the speed higher, both of which raise the estimate of the evolution timescale τ . For a scattering cross
section dominated by self interactions the timescale, relative to the Hubble time is,

τselfH0 ≈ 64H0m
3
av

2f4
a

3πρ2
≈
(

ma

µeV

)3(
fa

109 GeV

)4(
M0

10−12M⊙

)2/3(
Mh/M0

10

)19/6

, (C1)

where M0 is a characteristic mass scale for initial axion miniclusters, and Mh is the axion minihalo mass. We have
suppressed a weak dependence on z.
The characteristic mass, M0, which appears throughout these discussions, is determined by when the axion first

starts to oscillate which, for the vacuum misalignment mechanism, occurs when mosc ≡ ma(Tosc) = 3H(Tosc)/2. Thus,

M0 =
4π

3
(a(Tosc)Hosc)

−3
ρ̄a,0 . (C2)

The exact oscillation temperature is model dependent and in some sense the characteristic mass of axion minihalos,
M0, remains a free parameter in the theory. However, M0 can be determined from the oscillation time of axions,
which is related to its relic abundance. The relic abundance is given by

Ωa =
mamoscf

2
a ⟨θ2⟩

2ρcrit

g∗(T0)T
3
0

g∗(Tosc)T 3
osc

, (C3)

where T0 is the current CMB temperature and mosc is the mass of the axion when it starts to oscillate, at T = Tosc.
For simplicity, we assume mosc = ma, which is a good approximation for an axion mass which rapidly changes from
0 to ma during the phase transition of the dark confinement sector. Thus, as ma, fa vary the requirement of the
correct relic abundance determines Tosc which in turn determines M0. We only consider the relic abundance from
vacuum misalignment and take ⟨θ2⟩ = π2/3. While axions from axion string decays might also contribute to the relic
abundance these are not expected to dominate [74]. Therefore, the initial minicluster mass can be determined by the
ALP mass as

M0 ≈ 1.5× 10−12M⊙

( ma

10−6 eV

)−2
(

fa
1011 GeV

)−2(
g∗(Tosc)

100

)−1/2

. (C4)

Once we have the minicluster mass, as well as the mass function, the fraction of axion stars per redshift that has
become critical and collapsed can be calculated. We can obtain an analytic formula assuming a power-law mass
growth M ∝ t1/2 [8]:

dfdecay
dz

∼
∫ ∞

M0

dM
df

dM

M3
plρcol(M)2

Mf5
am

4
a

1.5× 106 π2/3κ

(1 + z)5/2H0

[
1 + 6.8π4/3

(
fa

M1/3ρcol(M)1/6

)4
]
H (M −M⋆

crit) , (C5)

where H(x) is the Heaviside unit step function, κ = 0.1 is the efficiency of mass conversion to radiation during
axinovae, df/dM is the mass function of axion minihalos discussed in Appendix A, zc is the redshift axions start to
collapse and form axion miniclusters, which we take as zc = zeq, and ρcol(M) ≈ ρeq(M/M0)

−3/2 is the scale density
of axion minihalos for given halo mass M with ρeq being the matter density at matter radiation equality. M⋆

crit is the
critical mass of axion stars calculated in Eq. 4. Calculating the above expression at the current time, we can obtain
the axion parameter space that will lead to axion star explosions.
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Now we can compute the decay rate of axion dark matter induced by axinovae as a function of axion parameters
ma, fa using Eq. C5, which gives the result in Fig. 3. A lower fa, indicating a stronger self-coupling and a smaller
critical mass, will result in higher axinova rate. However, a larger fa will correspond to an earlier oscillation time
when we fix relic abundance, which gives a smaller axion minicluster mass and subsequently an enhanced axion star
formation rate. One could also consider exotic cosmological scenarios [75–77] or other production mechanism [78–83],
which will lead to a different result on the axion minicluster mass.

FIG. 3. Axion parameters that lead to different decay fraction of axion dark matter from axinovae assuming power law growth.
We added a few more contours that indicate different decay fraction. The blue region is excluded by cosmological observations.
This plot presents a wider range of parameters compared to Fig. 1 and more contours on different decay fraction but otherwise
showing the same physical results.
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