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Abstract

Organic peroxy (ROO•) and hydroperoxy (•QOOH) radicals are key reactive intermediates
that are formed via the oxidation of volatile organic compounds during combustion or in
the Earth’s atmosphere. Their primary fate is continued unimolecular decay or bimolecular
chemistry, the relative branching for which is heavily structure- and temperature-dependent.
This article outlines a combined single- and multi-reference quantum chemical study
to characterize the near-UV accessible electronically excited states of the prototypical
ROO• and •QOOH intermediates, tert-butyl peroxy and hydroperoxy-tert-butyl radicals—
the ground-state chemistries of which have been well studied both experimentally and
computationally. Additionally, we simulate the electronic absorption profiles of these
ROO• and •QOOH intermediates with a variety of multi- and single-reference methods.
The results show an interesting conformer dependence on the electronically excited-state
character and electronic absorption maxima of •QOOH. The results show promise for
electronic absorption spectroscopy to be used as a selected probe for determining •QOOH
conformers. Additionally, electronic absorption may contribute to the daytime removal of
long-lived •QOOH intermediates formed in the troposphere. We expect that our studies
will motivate experiments on the electronic absorption spectra of experimentally achievable
ROO• and •QOOH.

Keywords: peroxy radicals; hydroperoxyalkyl radicals; photo absorption of radicals;
excited states

1. Introduction
Fuel combustion begins with the oxidation of hydrocarbons (RH) to form reactive

hydrocarbon (R•) radicals [1–3]. These R• radicals promptly react with atmospheric O2,
generating alkylperoxy (ROO•) radicals, which typically isomerize via H-atom migration
to form hydroperoxyalkyl (•QOOH) radicals [2,3]. This process is summarized in Figure 1.

•QOOH intermediates and their oxidation by O2 account for the radical chain reac-
tions that maintain autoignition during the combustion process in vehicle engines and
are implicated in secondary organic aerosol formation in the atmosphere [4–17]. In the
latter, atmospheric •OH radicals initiate the oxidation of volatile RH compounds (Figure 1)
emitted into the atmosphere via anthropogenic and biogenic sources. Methane, the most

Photochem 2025, 5, 26 https://doi.org/10.3390/photochem5030026

https://doi.org/10.3390/photochem5030026
https://doi.org/10.3390/photochem5030026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photochem
https://www.mdpi.com
https://orcid.org/0000-0002-6189-6272
https://orcid.org/0000-0002-0583-3824
https://doi.org/10.3390/photochem5030026
https://www.mdpi.com/article/10.3390/photochem5030026?type=check_update&version=1


Photochem 2025, 5, 26 2 of 20

abundant volatile organic compound in the atmosphere, is removed primarily via oxidation
with •OH radicals [18]. Given the abundance of solar radiation in the troposphere, the
eventual ROO• and •QOOH radicals may undergo solar photolysis, in competition with
their established ground-state unimolecular and bimolecular chemistry [19]. Despite this
recognition, the excited-state chemistry of ROO• and •QOOH radicals remains poorly
understood. Motivated by this, in this study, we employ high-level multi-reference quan-
tum chemical methods to characterize the electronically excited states and the evolving
excited-state chemistry of ROO• and •QOOH compounds. Our model ROO• and •QOOH
radicals are, respectively, the tert-butyl peroxy and tert-butyl hydroperoxyalkyl radicals
displayed in Figure 2.

 
Figure 1. Overview of the oxidation mechanism for forming ROO• and •QOOH, as well as a
representative •QOOH unimolecular decay process for regenerating •OH radicals.

Figure 2. Ground-state minimum energy structures of tert-butyl peroxy radical (ROO•) and tert-butyl
hydroperoxide radical (•QOOH).

The fate of nascent ROO• radicals is temperature-dependent and may undergo bi-
molecular reactions with bath gases [20–38] or unimolecular decay [3,6,20,39–50]. At
atmospheric temperatures, the nascent ROO• radicals typically undergo bimolecular
reactions with atmospherically relevant molecules and radicals [20,21,38]. In contrast,
combustion-relevant temperatures provide ROO• radicals with sufficient internal energy
to undergo unimolecular decay. Under such conditions, the major unimolecular decay
path for small ROO• radicals involves HO2• radical elimination to form stable alkene
products [2,3,40–43,45,46,51–59]. For ROO• radicals with four or more carbon atoms,
hydrogen-atom migration becomes competitive, with transition state energies that show a
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strong dependence on the carbon atom radical site, the structure of ROO•, and the size of
the cyclic structure of the transition state [3,39,44,48,52,56,57,60–71]. The resulting •QOOH
intermediates are more reactive than their ROO• precursors [2,3,10,64,72–74] and may
undergo unimolecular decay to form •OH + epoxide or HO2 + alkene products, or reform
ROO• [2,75–79]. They may also undergo bimolecular reaction with O2 [2].

There are far fewer studies on electronically excited ROO• radicals, which have been
shown to exhibit a strong transition in the ultraviolet region and a substantially weaker
transition in the near-infrared region [80–86]. Some studies have explored electronic tran-
sitions of ROO• radicals in the ultraviolet region. Neumark and coworkers investigated
the photodissociation of tert-butyl peroxy radicals at 248 nm using fast-radical-beam co-
incidence translational spectroscopy [87]. They found the major channel to be three-body
fragmentation to O, CH3, and acetone, and minor two-body fragmentation channels leading
to the formation of O2 + tert-butyl radical and HO2 + isobutene. McGivern and co-workers
have undertaken photochemical studies on heavy (C12) ROO• radicals [12,19]. Following
irradiation at 254 nm, the resulting electronically excited ROO• radical primarily undergoes
intramolecular rearrangement to form •QOOH radicals, as well as unimolecular decay to
form R• + O2 and alkene + HO2 products. The large absorption cross sections of ROO•
radicals in the region that overlaps with the solar actinic flux indicate solar photolysis may
be competitive with bimolecular reactions in the atmosphere [19].

Other studies have explored the electronic spectroscopy of ROO• radicals in the
near-infrared region. Fittschen et al. [83] and Miller et al. [85] have reported the absolute
absorption cross section of the first electronic transition of the ethyl peroxy radical. An
earlier report by Vaida et al. [82] suggested that photolysis of ROO• radicals via their first
electronic transition could compete with rates for bimolecular reactions with NO and HO2,
depending on the magnitude of the absorption cross section. The small absorption cross
section measured for the ethyl peroxy radical (ca. 0.5–1.0× 10−20 cm2) aligns with the lower
limit used by Vaida et al. in estimating photolysis rates of simple ROO• radicals. Assuming
other ROO• radicals have similar absorption cross sections for their first electronic transition
suggests photolysis will play a small, but non-negligible role in the removal of ROO• from
the atmosphere. Furthermore, Schaefer and co-workers have modeled the ground and first
electronically excited states of the methyl peroxy and tert-butyl peroxy radicals, with the
aim of systematically refining their spectroscopic predictions [88,89].

In this article, we use single- and multi-reference quantum chemical methods to char-
acterize the electronically excited states of tert-butyl peroxy (henceforth ROO) and tert-butyl
hydroperoxyalkyl (henceforth QOOH) radicals and simulate their electronic absorption
spectra. We benchmark various methods of Time-Dependent Density Functional Theory
(TDDFT) to enable a future modeling study of the excited-state dynamics and spectroscopy
of ROO and QOOH radicals with increasing molecular complexity. Given that the ROO
and QOOH radicals studied in this article have previously been prepared in vacuum exper-
iments, our results should inform experimentalists on appropriate wavelength regions to
probe these transient reactive intermediates and enable future photochemical experiments
that may be of atmospheric relevance.

2. Methodology
The ground-state minimum energy geometry of ROO and QOOH was optimized

using the B2PLYPD3 functional of Density Functional Theory (DFT), coupled to Dunning’s
correlation consistent basis set of triple-ζ quality: cc-pVTZ. Normal mode analysis was
conducted to ensure that all optimized structures were minima. This functional and
basis set combination has been shown to perform well in providing accurate structures
and normal mode wavenumbers for various reactive intermediates, including QOOH
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intermediates [77–79,90–94]. Various rotational isomers of QOOH were also optimized and
scans connecting these various minima were computed by means of a linear interpolation in
internal coordinates at the explicitly correlated CCSD(T)-F12/cc-pVTZ-F12 level of theory.

Vertical excitation energies and oscillator strengths for ROO and three isomers of
QOOH were computed on the optimized structures through TDDFT, using a variety of
density functionals and basis sets. To benchmark the TDDFT vertical excitation energies,
additional vertical excitation energies were computed using complete active space second-
order theory (CASPT2), utilizing an active space of nine electrons arranged in seven
orbitals (9/7), and a state-averaged complete active space self-consistent field (SA-CASSCF)
reference wavefunction. The lowest three states of doublet spin-symmetry were used in all
SA-CASSCF calculations. The active space orbitals are depicted in Figure S1.1–S1.4 of the
Supporting Information. Our active space was guided by the initial valence electrons of
the R + O2 reactants, coupled with a need to describe all relevant electronic effects of the
ROO and QOOH intermediates while maintaining a reasonable computational cost. An
imaginary level shift of 0.4 EH was used to aid convergence and mitigate the involvement
of intruder states. We note that other single-reference methods such as CC2 and ADC(2)
would also be appropriate for the present ROO and QOOH intermediates and provide
additional benchmarks, but these would become restrictive in our future studies on larger
and more complex ROO and QOOH intermediates.

Electronic absorption spectra were then simulated for ROO and three relevant con-
formers of QOOH. A thermal distribution of ground-state geometries was obtained using
ab initio molecular dynamics (AIMD) for each of the ROO and QOOH structures. In AIMD,
the time evolution of the nuclear coordinates is determined by numerically integrating
Newton’s equations, while at each time step, the energies and forces are computed explicitly
using electronic structure theory. First, the optimized ROO and QOOH structures were
equilibrated in the NVT ensemble (with T = 298 K) for 10 picoseconds. This temperature
was chosen to mimic the conditions of potential laboratory experiments under thermal con-
ditions. The subsequent equilibrated structure was propagated for a further 10 picoseconds
in the same NVT ensemble, with a step size of 1 fs. From the second simulation, 500 struc-
tures (every 10 fs) were extracted, and vertical excitation energies were computed at the
same CASPT2 level of theory as described above, as well as the best level of DFT identified
in the benchmark computations. The excitation energy dependent photoabsorption cross
section σ(E) was then obtained using Equation (1),

σ(E) =
πe2
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M
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, me and e are the mass and charge of the electron, respectively,

while c is the speed of light. The internal sum in Equation (1) is expressed over the set of
total geometries (NTOT = 500) while the external sum includes transitions from the initial
state i (the ground state) to final state j (i.e., S1, S2, S3, . . ., SM etc.) with respective oscillator



Photochem 2025, 5, 26 5 of 20

strength f N
ij as given by Equation (3). δ is a broadening factor, which is arbitrarily set to

0.2 eV for each of the calculated absorption profiles reported herein. All CASPT2 and
CCSD(T) calculations were performed in Molpro [95,96], while the DFT computations were
undertaken in Gaussian 16 [97].

3. Results and Discussion
Figure 2 presents the molecular structure associated with the ground-state minimum

energy geometry of ROO. As expected, the minimum energy geometry shows a staggered
conformation of the terminal oxygen relative to the methyl substituents. This conformation
is reminiscent of the expected stereochemistry of alkanes in which the staggered configura-
tion is favored. This geometry is reinforced by Figure 3, which presents the potential energy
(PE) profiles connecting the equivalent staggered conformations of ROO as illustrated by
the associated Newman projections at the minima. As evident in this figure, rotation about
the C-O bond (fCCOO), connecting two equivalent staggered conformations, traverses a
geometry in which the terminal oxygen eclipses a methyl substituent. As is well known and
confirmed by Figure 3, the eclipsed conformation is a saddle point along the PE surface. The
PE barrier along nuclear motions corresponding to staggered-to-eclipsed transformation is
~3.15 kcal mol−1, precluding free rotation around the C-O bond at tropospherically rele-
vant temperatures (~220–290 K) and minimal free rotation at low-temperature combustion
temperatures (500–700 K).

Figure 3. Potential energy (PE) profiles connecting the various minimum energy conformations and
transition state structure connecting the relevant conformers of (a) ROO calculated at the CCSD(T)-
F12b/cc-pVTZ-F12 level and (b) QOOH calculated at the same level of theory. Newman projections
of the various conformers are displayed alongside the relevant points along the PE profile. The filled
data points are optimized minimum energy and transition state structures while the dashed line is a
spline through the data points.
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As noted in the introduction, intramolecular hydrogen-atom migration from an alkyl
group adjacent to the terminal oxygen is a competitive unimolecular decay route for ROO in
low-temperature combustion conditions as well as for a subset of atmospherically relevant
peroxy radicals—particularly those derived from the atmospheric oxidation of isoprene.
In our prototypical ROO, the tert-butyl peroxy radical, 1,4-hydrogen migration forms a
2-hydroperoxy-2-methylprop-1-yl (QOOH) radical, inevitably shifting the singly occupied
molecular orbital (SOMO) that carries the unpaired electron (see Figure 4). Unlike ROO,
the inherent asymmetry of the nascent QOOH leads to three distinct staggered conforma-
tions, as illustrated in Figure 2. The relevant conformer formed following hydrogen-atom
migration is QOOH-1, as it is the lowest energy staggered conformation. The latter is seen
clearly in Figure 3b, which presents the PE profiles associated with the fCCOO coordinate
of QOOH—the coordinate that connects the three distinct staggered conformations. As
evident from these PE profiles, the QOOH-2 and QOOH-3 conformers are, respectively,
~0.5 kcal mol−1 and ~0.7 kcal mol−1 less stable than QOOH-1, consistent with the results
of Hansen et al. [76]. The relative stability can be understood by recognizing the loss of
hydrogen-bonding found in QOOH-1 between the terminal H-atom of the hydroperoxy
group and the SOMO lone electron.

Figure 4. Molecular structure and singly occupied molecular orbital (SOMO) of the ROO and
QOOH radicals.

We now turn our attention to the excited-state characteristics of ROO and the three
QOOH radicals. Such an analysis first warrants a brief discussion on the ground-state
electronic structure of these radicals. The valence electronic structure of ROO and QOOH
is depicted through the schematic molecular orbital diagram in Figure 5. As illustrated
in Figure 5, the valence electronic structure of ROO can be understood by combining
the valence orbitals of O2 with the tert-butyl radical. The ground state of O2 is of 3Σg

+

character—manifesting from an orthogonal and degenerate pair of singly occupied π*
orbitals. Formation of ROO occurs when an unpaired electron in one of these π* orbitals
interacts with the unpaired electron in the singly occupied 2p orbital of the tert-butyl
radical. The overlap of the 2p and π* orbitals, respectively, of the tert-butyl radical and
the O2 molecule leads to a new pair of σCO and σCO* (pyπy* and [pyπy*]* in Figure 5,
respectively) molecular orbitals in the resulting ROO orbitals. Given that the pre-existing
πOO* (πy* in Figure 5) orbital is now doubly occupied, the corresponding π electrons
transform into an O-centered lone pair (labeled py in Figure 5). The remaining πOO* orbital
in the resulting ROO radical is the SOMO (labeled πx in Figure 5).
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Figure 5. Schematic of the change in molecular orbitals upon the R + O2 reaction to form ROO, as
well as its subsequent rearrangement to form QOOH.

The hydrogen-atom migration that leads to the transformation of ROO to QOOH
involves C-H bond cleavage, followed by formation of an O-H bond. The change in
electronic structure upon ROO to QOOH transformation is described in Figure 5—wherein
homolytic bond fission of a methyl-centered C-H bond leads to a dehydrogenated ROO
(henceforth R(-H)OO) + H combination with singly occupied H 1s and C 2p orbitals,
isoenergetic with the valence orbitals of R(-H)OO. Formation of QOOH occurs via the
interaction of the H 1s electron and the unpaired electron in the px* orbital, leading to a sOH

and sOH* pair and a non-bonding electron in the C 2p orbital, which transforms to SOMO.
Given the pairing of the second unpaired px* electron, the O-O bond order decreases to 1,
thus transforming the pre-existing p electrons into oxygen-centered lone pairs.

Figure 6 illustrates the relevant molecular orbitals involved in the highest three con-
tributing electronic configurations (Ψ1(D0), Ψ2(D0), Ψ3(D0)) to the ground state (D0) of
ROO. When compared to Figure 5, these three relevant orbitals are equivalent to the πx, πx*
and σCH orbitals and are thus labeled as such in Figure 6; πx* is the SOMO. As Figure 6
shows, D0 is dominantly of Ψ1 electronic character with a very minor (3%) contribution
from Ψ3. Although 91% Ψ1 character includes some multi-reference character, a 91% contri-
bution from Ψ1 indicates that ROO radicals may be adequately represented by high-level
single-reference electronic structure methods. The D1 and D2 states of ROO are primarily
of, respectively, Ψ2 and Ψ3 configurations, and are formed via, respectively, πx*← pyπy*
and πx*← πx excitations. As Table 1 shows, the D1 ← D0 transition is predicted to absorb
at near-IR wavelengths but with zero absorption cross section, as implied by the predicted
zero oscillator strength. The latter manifests from the poor spatial overlap between the πx*
and pyπy* orbitals involved in preparing the D1 state. In contrast, the D2 ← D0 transition
is expected to strongly absorb at mid-UV wavelengths. The accompanying high oscillator
strength is a manifestation of the favorable spatial overlap between the parallel πx and
πx* orbitals.
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Figure 6. Orbitals and orbital promotions associated with ROO.

Table 1. Vertical excitation energies (VEEs) and oscillator strengths associated with the D1 ← D0 and
D2 ← D0 transitions of ROO and three relevant conformers of QOOH. These are computed at the
CASPT2/aug-cc-pVTZ level of theory.

Species
D1 ← D0 Transition D2 ← D0 Transition

VEE Oscillator
Strength VEE Oscillator

Strength

ROO

1.20 eV
(1033.2 nm) 0.0000 5.70 eV

(217.5 nm) 0.5259

QOOH
(conformer 1)

4.55 eV
(290 nm) 0.0183 5.37

(234 nm) 0.0110

QOOH
(conformer 2)

4.63 eV
(268 nm) 0.0000 5.72 eV

(217 nm) 0.0008

QOOH
(conformer 3)

3.52 eV
(352 nm) 0.0003 4.55 eV

(272 nm) 0.0001
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The excited-state characters of the QOOH conformers are less clear cut. Table 1 lists
the vertical excitation energies and oscillator strengths of the lowest three conformers of
QOOH (labeled QOOH-1, QOOH-2, and QOOH-3 from most to least stable). The D1 ← D0

and D2 ← D0 electronic transitions are predicted to occur upon absorption of near- and
mid-UV wavelengths, respectively. For the global minimum energy conformer, QOOH-1,
both D1 ← D0 and D2 ← D0 electronic transitions are predicted to contain appreciable
oscillator strength, while QOOH-2 and QOOH-3 are predicted to contain comparatively
weaker oscillator strengths. Understanding these latter changes in conformer-dependent
absorption cross section requires close analysis of the orbitals involved in the D1 ← D0

and D2 ← D0 electronic transitions. Starting with the most stable QOOH-1 conformer,
Figures 7–9 present the relevant orbitals and orbital occupancies associated with the highest
three contributors to the electronic configurations of the D0 and D1 states of the QOOH
conformers. Again, these orbitals are labeled according to their equivalents in Figure 5. As
with ROO, the three most probable electronic configurations of QOOH-1 are the same for
both the D0 and D1 states, with the domineering electronic configuration predicted to be
Y1 for the D0 state. In contrast to ROO, the D1 state of QOOH-1 involves a mixture of Y2

and Y3 configurations, both of which involve electron promotion from an oxygen-centered
lone-pair (px or py) to SOMO. This mixed configuration can be understood by recognizing
that px and py are a near-degenerate set of orthogonal lone pairs centered on the oxygen
atoms—analogous to those in water and hydrogen peroxide. Given the similarity in the
starting orbital, the D1 ← D0 and D2 ← D0 transitions are accompanied by appreciable
oscillator strength.

Figure 7. Electronic structure contributions to the D0 (black) and D1 (red) states of QOOH-1.

Figure 8 illustrates the highest four contributing electronic configurations of the D0 and
D1 states of QOOH-2. As with QOOH-1, the D0 state involves an electronic configuration
that is ~90% Ψ1—with minor contributions from Ψ2 and Ψ3 configurations. Unlike QOOH-
1, a new electronic configuration—Ψ4—has a minor contribution to the electronic structure
of ground-state QOOH-2. Although a minor component, an increased % contribution
of the Ψ4 configuration may be understood by visualizing the SOMO and LUMO of
QOOH-1 (Figure 7) and QOOH-2 (Figure 8) and recognizing that while the electron density
distribution of the SOMO and LUMO is primarily localized around the 2p and σ*OO orbitals,
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respectively, they each contain a minor component attributable to the orbital character of
its partner pair. This implies that upon QOOH-1 to QOOH-2 transformation, the SOMO
and LUMO orbitals couple, which is plausibly explained by the smaller energy difference
between SOMO and LUMO (0.46 EH for QOOH-1 and 0.21 EH for QOOH-2) and thus an
increased contribution from electronic configurations that involve electron promotions
to LUMO.

 

Figure 8. Electronic structure contributions to the D0 (black) and D1 (red) states of QOOH-2.

Figure 9. Electronic structure contributions to the D0 (black) and D1 (red) states of QOOH-3.

The D1 state of QOOH-2 is a complicated mixture of several electronic configurations,
with the Ψ7 and Ψ8 configurations identified as the largest contributors. These configura-
tions are doubly degenerate equivalents, distinguishable by the spin symmetry of the odd
electron in the SOMO and LUMO. This observation aligns with near equal contribution
of the Ψ7 and Ψ8 configurations. Formation of the Ψ7 and Ψ8 electron arrangements most
likely involve a HOMO to LUMO transition from the Ψ1 configuration—manifesting in
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a 2p← n transition. Given that the participating orbitals in the dominant transition are
orthogonal, their poor spatial overlap manifests in zero oscillator strength for the D1 ← D0

transition given in Table 1.
The highest energy QOOH-3 conformer is the relevant conformer implicated in the

thermal unimolecular decay of QOOH intermediates to form the chain propagating OH +
epoxide products. In contrast to QOOH-1 and QOOH-2, the ground state of QOOH-3 is
highly multi-reference, as reflected by the significant reduction in the contribution of the
Ψ1 configuration and an enhanced contribution from the Ψ4 configuration (see Figure 9).
The enhancement of the Ψ4 electronic configuration can be understood by considering
the greater coupling between the SOMO and LUMO and the favorable orientation for an
eventual intramolecular SN2 reaction to leads to OH elimination and epoxide formation.

The D1 state of QOOH-3 can be described as a mixture of three electronic configura-
tions, Ψ2(D1), Ψ3(D1), and Ψ5(D1)—with the former two dominating the D1 state character.
Upon D1 ← D0 transition, the Ψ2(D1) configuration is formed via a SOMO← HOMO elec-
tron promotion, while the Ψ3(D1) configuration is formed via a SOMO←HOMO-1 electron
promotion. The minor Ψ5(D1) configuration may be formed via LUMO← HOMO electron
promotion from the Ψ4(D0) parent configuration. The small but non-negligible oscillator
strength that accompanies the D1 ← D0 transition is a manifestation of the low spatial
overlap between the participating orbitals in the three electron promotion combinations
identified above, i.e., SOMO←HOMO, SOMO←HOMO-1, and LUMO←HOMO, which
are orthogonal in all cases. It is particularly noteworthy that while the absorption cross
section of QOOH-3 is smaller than QOOH-1, the peak absorption maximum (λ = 352 nm)
and thus the long wavelength onset is predicted to align better with the tropospherically
relevant solar irradiance.

Having described the vertical excitation energies of the three QOOH conformers
and their striking variations upon rotational isomerization, we now turn our attention to
presenting the expected electronic absorption profiles of ROO, QOOH-1, QOOH-2, and
QOOH-3. Our prior simulations of the electronic absorption spectra of Criegee inter-
mediates [98–101] involved a Wigner distribution of starting structures and subsequent
computation of the vertical excitation energies and oscillator strengths. Although the
electronic absorption profile was in excellent agreement with the experimentally measured
spectra, recent studies have shown that Wigner distribution is unsuitable for low-frequency
motions such as methyl rotational motions, which are found in our present study [102]. We
have therefore elected to sample the thermal distribution of ground-state geometries using
ab initio molecular dynamics. The resulting geometries are used to compute VEEs and
oscillator strengths at the CASPT2 level of theory, from which the blue electronic absorption
profiles in Figure 10 for ROO and the three conformers of QOOH are derived.

Given the inherent computational cost of the non-black-box CASPT2 level of theory,
we computed additional VEEs and oscillator strengths at the TDDFT level of theory to
assess the agreement between single- and multi-reference quantum chemical methods
and thus the potential for extending the present studies to ROO/QOOH radicals with
increased molecular complexity. Table 2 lists the VEEs and oscillator strengths computed
with various DFT functional/basis set combinations, alongside the CASPT2 benchmark.
For ROO, Table 2 indicates that VEEs calculated with the LC-BLYP functional show the best
agreement with CASPT2, alongside a small but noticeable variation with changes in the
basis set. While the smallest basis set, 6-31G(d), shows the best agreement, this observation
is most likely due to fortuitous cancelation of errors that are inherent to DFT-derived
energies. One key observation from Table 2 is that the inclusion of long-range correlation
shows an overall better agreement with CASPT2. While the BLYP pure functional shows
the best agreement with CASPT2, the PBE pure functional shows poor performance, which
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may plausibly manifest from its inability to sufficiently model organic molecules. Given the
good performance of LC-BLYP, the electronic absorption spectrum for ROO was simulated
using VEEs computed with this functional—the resulting spectra for which are depicted in
orange in Figure 10a. As evident from this figure, the agreement between the CASPT2- and
LC-BLYP-derived electronic absorption profiles is excellent.

Figure 10. Simulated electronic absorption spectra for (a) ROO and (b–d) the three conformers of
QOOH computed at the CASPT2 (blue) and TDDFT (orange) levels of theory.

Analogous benchmark studies were undertaken on the three QOOH conformers.
Table 2, alongside Figure 11, lists and pictorially illustrates the VEEs of the various DFT
functional/basis set combinations and their deviations from the benchmark CASPT2 level.
Inspecting both Table 2 and Figure 11, the performance of the TDDFT-derived VEEs is
heavily conformer-dependent. For QOOH-1, VEEs calculated with functionals corrected
for long-range correlation (e.g., CAM-B3LYP, ωB97XD, etc.) appear to provide better
agreements with the CASPT2-derived VEE, although LC-BLYP shows an over-estimation
of the VEE. This latter observation indicates the importance of including Hartree–Fock
exchange in the components of the functional. Computing the VEEs using CAM-B3LYP
on the equivalent AIMD-derived structures yields the orange electronic absorption profile
displayed in Figure 10b, which shows excellent agreement with the CASPT2 electronic
absorption profile. Conversely, the CAM-B3LYP electronic absorption profiles for QOOH-2
and QOOH-3 (Figure 10c,d, respectively) are in noticeably poorer agreement with the
CASPT2-derived profile. Upon inspecting Table 2 and Figure 11, all DFT functionals
underestimate the VEE (cf. CASPT2), except for LC-BLYP. In contrast, all DFT functionals
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overestimate the VEE (cf. CASPT2), except for the PBE- and B3LYP-based functionals.
Interestingly, as Figures 7–9 indicate, there is a progressive increase in the multi-reference
character of the ground state. Moreover, the D1 state of QOOH-2 involves a significant
mixing of electronic configurations that corresponds to doubly excited configurations
(Ψ7 and Ψ8), when viewed from the dominant ground-state configuration Ψ1. Given the
inherent inability of linear-response DFT to describe double excitations, it is unsurprising
that the electronic absorption profiles and VEE are in poor agreement with CASPT2. We
also note that the TDDFT simulated absorption profile of QOOH-2 (and to a lesser extent,
QOOH-3) is bimodal, which arises via the inability of adiabatic TDDFT to describe double
excitations. As illustrated in Figure 8, the leading electronic configurations involve double
excitations while the highest single excitation contributions are from configurations Ψ2 and
Ψ4—both of which contribute 9%. The bimodal character in QOOH-2 is a manifestation
of the interplay between these single excitations with subtle changes in geometry in the
AIMD ensemble. Future studies will involve modified TDDFT methods, such as spin-flip
TDDFT, to describe double excitations.

Table 2. Benchmark calculations of vertical excitation energies (DE) computed at various TDDFT
levels of theory and their energetic difference relative to CASPT2 (d). The energies are reported in eV.

Level of Theory
ROO QOOH-1 QOOH-2 QOOH-3

∆E δ ∆E δ ∆E δ ∆E δ

CASPT2/AVTZ 5.70 - 4.55 - 4.63 - 3.52 -

CAM-B3LYP/6-311+G(d,p) 5.30 0.40 4.51 0.04 4.51 0.12 3.93 0.42

CAM-B3LYP/6-31+G(d) 5.31 0.39 4.56 0.01 4.54 0.09 3.95 0.44

CAM-B3LYP/AVDZ 5.28 0.42 4.50 0.05 4.50 0.12 3.91 0.39

CAM-B3LYP/VDZ 5.52 0.18 4.48 0.07 4.54 0.08 3.92 0.40

ωB97xD/6-311+G(d,p) 5.27 0.43 4.38 0.17 4.52 0.11 3.89 0.37

ωB97xD/6-31+G(d) 5.28 0.42 4.44 0.11 4.57 0.06 3.92 0.40

ωB97xD/AVDZ 5.26 0.44 4.37 0.18 4.50 0.13 3.87 0.35

ωB97xD/VDZ 5.47 0.23 4.35 0.20 4.49 0.14 3.86 0.35

B3LYP/6-311+G(d,p) 5.04 0.66 3.91 0.64 4.04 0.59 3.42 0.10

B3LYP/6-31+G(d) 5.05 0.65 3.96 0.59 4.08 0.54 3.45 0.07

B3LYP/AVDZ 5.03 0.67 3.90 0.65 4.00 0.63 3.39 0.13

PBE/6-311+G(d,p) 4.31 1.39 3.01 1.54 3.01 1.69 2.43 1.09

PBE0/6-311+G(d,p) 5.15 0.55 4.24 0.31 4.35 1.61 3.70 0.18

LC-BLYP/6-31G(d) 5.69 0.01 5.10 0.55 4.67 0.28 4.41 0.89

LC-BLYP/6-31+G(d) 5.50 0.20 5.02 0.47 4.68 0.04 4.33 0.82

LC-BLYP/6-311+G(d,p) 5.49 0.21 4.99 0.44 4.77 0.06 4.32 0.80
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Figure 11. Benchmark vertical excitation energies of various DFT functional/basis set combinations
and their energetic difference (orange bars) to that determined with CASPT2 (black dashed line).

4. Conclusions
In the present article, we have undertaken a robust quantum chemical study to charac-

terize the excited states of the simplest ROO and QOOH intermediates—tert-butyl-peroxy
and tert-butyl-hydroperoxy radicals, respectively. These specific ROO and QOOH radicals
were chosen due to their experimental convenience, as they have been previously gener-
ated in jet-cooled vacuum experiments. Such vacuum experiments may be extended to
those that probe excited-state dynamics (specifically, velocity map imaging—VMI). The
Lester group have successfully generated the tert-butyl-hydroperoxy QOOH radical and
undertaken energy-dependent kinetic studies [76,103]. Such experimentation could be
trivially extended to VMI experiments as demonstrated in their past studies on Criegee
intermediates [100,101,104–108]. Our present study is intended to motivate such experi-
mental studies, specifically using electronic absorption spectroscopy as a probe for QOOH
intermediates. Moreover, our studies demonstrate that QOOH intermediates undergo
absorption at tropospherically relevant near-UV wavelengths, which may contribute to the
removal of atmospherically relevant QOOH intermediates derived from the emission of
alkenes into the troposphere (e.g., isoprene).
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Our studies are also exciting from a physical and theoretical chemistry perspective, as
the QOOH intermediates show conformer-dependent changes in the ground-state multi-
reference character, as well as the excited-state character. Given these compelling obser-
vations, our future studies will focus on the excited-state dynamics of these conformers.
Additionally, we will also extend to photochemical studies of ROO and QOOH radicals of
increasing molecular complexity—particularly those derived from atmospherically rele-
vant volatile organic compounds. We expect that our studies will motivate experimental
physical chemists to carry out experimental measurements of the electronic absorption
spectra of experimentally achievable ROO and QOOH.
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Table S2.2: Normal mode wavenumbers of ROO conformer 2; Table S2.3: Normal mode wavenumbers
of ROO conformer 3; Table S2.4: Normal mode wavenumbers of QOOH conformer 1; Table S2.5:
Normal mode wavenumbers of QOOH conformer 2; Table S2.6: Normal mode wavenumbers of
QOOH conformer 3.
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