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Abstract 

Carbon capture and storage is one of the most promising methods for reducing greenhouse gases, and extensive 

research has been conducted to examine how to sequester CO2 into subsurface environments, such as depleted oil and 
gas fields and deep saline aquifers. The injection of CO2 into subsurface formations entails various risks, necessitating 

a comprehensive evaluation of several factors such as seismic activity, seal integrity, and CO2 leakage. Therefore, a 

CO2 injection project involves multiple objectives, and these objectives often exhibit trade-offs, rendering the 

optimization of CO2 injection challenging. Traditional multi-objective optimization requires hundreds of forward 

simulations, which is computationally prohibitive for large-scale field cases. In this study, we present an efficient deep 

learning-based workflow for CO2 injection schedule optimization during CO2 sequestration. A data-driven proxy 

model is developed to accelerate the optimization workflow, which makes it scalable to large-scale field applications.  

Our deep learning workflow utilizes a recently developed machine learning architecture, Fourier Neural Operator 

(FNO), as a data-driven proxy model. The input of the proposed FNO model is composed of permeability distribution 

and CO2 injection schedule, and it estimates pressure and saturation distribution in the reservoir. One of the difficulties 

of data-driven model is the requirement of large training datasets, involving thousands of numerical simulations. By 
leveraging the super-resolution feature of the FNO, the model can be trained using low resolution image, and the 

trained model can predict high resolution image. Therefore, coarse-scale reservoir models can be used for training 

data generation, resulting in a significant reduction in data generation costs. In our workflow, numerical simulations 

are run using a coarsened permeability and porosity models with different CO2 injection schedules, which provide 

coarse-scale pressure and saturation distributions as training data. The FNO model is trained using the generated 

coarse-scale data, and the trained model can predict fine-scale pressure and saturation distributions with minimal loss 

of accuracy. For CO2 injection schedule optimization, a multi-objective genetic algorithm is utilized, where the FNO-

based proxy model is used as a forward model. The optimization can include several different objectives, such as 

minimizing pressure increase in the reservoir, maximizing CO2 injection amount and storage efficiency. 

The power and efficiency of our approach are demonstrated using both synthetic and field applications. We initially 

demonstrate the advantages of our deep learning-based workflow using a synthetic case of gas injection into an aquifer. 

Next, we apply our workflow to the Illinois Basin Decatur Project (IBDP), which is a large-scale CO2 injection project 
into deep saline aquifer in Illinois Basin, USA. For the field application, training data are generated at the coarse-scale 

for computational efficiency and, 90% computational time reduction is achieved compared with the fine-scale 

simulations. The accuracy of the trained proxy model is verified by comparing with a commercial reservoir simulator. 

Finally, the multi-objective optimization workflow is conducted using the FNO-based proxy model. The optimization 

framework has shown significant improvement across multiple objectives, achieving orders-of-magnitude faster 

performance compared to traditional workflows that rely on numerical simulation as a forward model. 
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The novelty of this work is the development of multi-resolution FNO-based fast proxy model for reservoir 
simulation and its application to CO2 injection schedule optimization. The use of super-resolution feature in FNO in 

conjunction with coarse-scale models reduces substantially the training data generation cost. The proxy model 

accelerates forward simulation by orders of magnitude and enables evaluation of various optimization scenarios for 

large-scale field cases.  

 
Keywords: CO2 geological storage, Deep learning, Fourier neural operator, Injection optimization  

1. Introduction 

The Paris Agreement aims to limit global warming to below 2°C, ideally no more than 1.5°C above pre-industrial 

levels. As the 2018 report of the Intergovernmental Panel on Climate Change (IPCC) emphasizes, a 1.5°C to 2.0°C 

increase in global temperatures could have serious consequences for both human and natural systems [1]. Therefore, 

reducing greenhouse gas emissions is an urgent priority for current human being. Among the strategies for mitigating 

global warming, Carbon Capture and Storage (CCS) emerges as one of the most promising technologies. CCS 

technologies capture carbon dioxide (CO2) and permanently sequestrate them in subsurface geological formations. 

The progress of CCS deployment has not aligned with expected benchmarks [2] due to uncertainties in the assessment 

of storage and injection capacities that have hampered the deployment of CCS technologies. The injection of CO2 into 

geological formations is associated with an increase in pressure and the migration of the gaseous plume, necessitating 

accurate forecasts of these dynamic behaviors to evaluate various risks including seismic activity, seal integrity and 

CO2 leakage [3, 4].  

In typical CCS operation, CO2 is injected into the subsurface space through an injection well, and the CO2 plume 

propagates through porous geological formations. At this point, we aim to inject largest possible amount of CO2 to 

maximize total CO2 storage amount in this CCS project. However, injecting CO2 into subsurface space is associated 

with the pressure increase which is regarding to risk of seismic event or integrity of sealing layer [3]. Large pressure 

rises could activate faults and cause cracks in the sealing layer. In addition, efficient utilization of the subsurface space 

is also an important key factor in terms of avoiding CO2 leakage or maximizing the storage capacity. This utilization 

efficiency is often referred to as storage efficiency of CO2 injection [4], which is basically representing the proportion 

of gas plume volume to the available reservoir pore volume. For optimal CCS project, considering these key factors 

is essential for project success.  

To accurately evaluate these key factors, classical reservoir simulation is commonly utilized. However, existing 

numerical methods for simulating CO2-water, multiphase flow are highly computationally expensive, requiring hours 

or days for large-field case. This is insufficient to perform the detailed computational analysis necessary to facilitate 

the global implementation of CCS projects. Rapid reservoir simulations have been investigated for several decades in 

oil and gas industry using data-driven model or reduced-order-model, which have been successfully applied to CCS 

deployment in several literatures [5-8]. However, these methodologies still have some problems in applying them to 

large fields, such as requiring significant computational effort for preprocessing. Especially, most of machine or deep 

learning-based proxy model requires thousands of training data, necessitating extensive reservoir simulation runs that 

can offset the speed advantages of a fast proxy model. 

In this work, we present an efficient deep learning-based workflow for CO2 injection schedule optimization during 

CO2 sequestration. To address the large training cost issues in existing deep learning-based proxy model, we have 

developed a multi-resolution machine-learning model that utilizes super-resolution capabilities of neural operators. 

The multi-resolution machine-learning model can train with coarse training data but predict at fine-scale. This multi-

resolution feature allows for the use of upscaled reservoir models, substantially reducing the cost associated with 

generating training data. The general workflow begins with the upscaling of the reservoir model to reduce reservoir 

simulation costs. Subsequently, training data are generated using the upscaled model. Although hundreds of reservoir 

simulations are required for this process, the computational cost is significantly reduced due to the upscaling. The 

proposed proxy model is then trained on the generated coarse-scale data, which will provide the fine-scale predictions 

of reservoir dynamic properties. This data-driven proxy model accelerates the optimization workflow, making it 

scalable for large-scale field applications. 
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2. Methodology 

2.1. Neural Operators 

Neural operator is a class of machine learning models designed to learn mappings between infinite-dimensional 

function spaces. Fig. 1 shows the comparison between classical neural networks and neural operators. While classical 

neural networks perform points to points mapping, the neural operators perform function to function mapping. 

Because neural operators predict continuous functions, it can obtain the any discretized points on that predicted 

function. This capability is referred to as the "zero-shot super-resolution" feature [9], which means that the neural 

operators can perform the resolution-invariant prediction. 

 

Fig. 1. Comparison between classical neural networks and neural operators. These figures are created after [10] 

Neural operators utilize linear integral operation to achieve this function to function mapping while classical neural 

networks utilize number of linear functions [10]. The neural operators consist of the following iterative architecture. 

𝑣𝑡+1(𝑥) = 𝜎 (𝑊𝑣𝑡(𝑥) +∫ 𝜅𝜙(𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦))𝑣𝑡(𝑦)𝑑𝑦
𝐷

) (1) 

where 𝑣: functions, 𝑊: linear operator, 𝜅: kernel function parametrized by parameter 𝜙. The universal approximation 

theorem of this operator learning is provided in several literatures [9, 11-13]. Recently, neural operators are applied 

to various scientific computing problems including seismic wave propagation [14], weather forecasts [15], and CO2 

sequestration problems [16]. 

2.2. Fourier Neural Operators (FNO) 

Although the linear integral operation equips neural operators with the ability to work across multiple resolutions, 

the integration process is notably time-consuming in the algorithm. It is not feasible to compute this process 

analytically, and it still have scalability issues in practical applications. Fourier Neural Operator (FNO), proposed by 

Li et al. [17], addresses this challenge by approximating integral operation using fast Fourier transform. By facilitating 

the fast Fourier transform as described in Eq. (2), FNO significantly accelerates the computational speed of neural 

operators, resulting faster and more effective function to function mappings. 

∫ 𝜅𝜙(𝑥, 𝑦, 𝑎(𝑥), 𝑎(𝑦))𝑣𝑡(𝑦)𝑑𝑦
𝐷

≈ ℱ−1 (𝑅𝜙 ∙ (ℱ𝑣𝑡)) (𝑥) (2) 

This approximation relies on the principle that convolution in the Fourier space corresponds to the integral 

operations in the original space. Consequently, FNO leverages this principle to structure its model architecture, as 

illustrated in Fig. 2. The FNO architecture can be described in three steps: First, it transforms the input physical 
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functions to Fourier basis (modes) in the Fourier space through fast Fourier transform. Next, it applies convolutions 

with weights of FNO model, which are calibrated during model training. Lastly, we transform the calculated output 

functions in the Fourier domain back into the physical domain. In addition to the convolution in Fourier space, FNO 

also utilizes local liner transformation in physical space as indicated in the operation 𝑊. The outputs from both the 

Fourier domain and physical domain are combined, and then an activation function is applied to introduce non-

linearity. This process is iterated for each layer.  

 

 

Fig. 2. Architecture of (a) Fourier Neural Operator (FNO) and (b) multi-resolution FNO 

2.3. Multi-resolution Fourier Neural Operators 

The multi-resolution capability of FNO has been demonstrated in a variety of studies, including oil-water two-

phase flow problems [18]. However, several previous studies showed that the original FNO model had poor prediction 

performance for complex physics [19] including CO2 injection scenario. This issue of prediction accuracy arises when 

we try to predict images that has finer scales than the generated training data images. 

To mitigate this issue, we updated the FNO architecture, which we call the updated FNO model as multi-resolution 

FNO. These modifications involve interpolation within both the physical and Fourier space, allowing the model to 

bridge predictions from coarse to fine scales. This strategy takes advantage of the fact that FNO provides the best 

forecasting performance at the resolution of generated training data images. In our algorithm, the training data is 

generated using upscaled reservoir model. Proposed FNO architecture is trained to predict the fine-scale output images 

from the coarse-scale training data images. The architecture of multi-resolution FNO is shown in Fig. 2(b) that 

employs “Upsampling Fourier layer” that perform interpolations. 

Fig. 3 outlines the training and testing workflow for the multi-resolution FNO. The process begins with coarse 

input data fed into the multi-resolution FNO. The model provides fine-scale output images through internal 

interpolation. These fine-scale images are subsequently upscaled back to the coarse-scale to compute data misfits 

against the coarse training data generated by numerical simulator. Based on the data misfits, the model conducts 

backpropagation to compute the gradients of the loss with respect to each model weights. These weights are then 
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updated in the direction of the gradient, with the magnitude of the updates regulated by the learning rate. Once training 

is completed, the model can predict fine-scale output images from coarse input images. 

 

Fig. 3. Workflow of training and testing in multi-resolution FNO 

2.4. Multi-objective Genetic Algorithms (MOGA) 

We utilize Multi-Objective Genetic Algorithm (MOGA) to optimize CO2 injection schedule while considering 

multiple objective functions. The primary advantage of MOGA lies in its ability to optimize each objective function 

simultaneously, unlike other optimization algorithms that simply aggregate all objective functions into a single 

function. The conventional approach does not guarantee to improve all objectives, and it is required to tune the weights 

associated with each objective function. On the other hand, MOGA guarantees to improve all objective functions 

simultaneously. As a result of MOGA optimization, we obtain a set of optimal realizations known as the Pareto front. 

This approach ensures that every realization on the Pareto front is optimal, as none are dominated by others across all 

objectives. This guarantees that the Pareto front exclusively contains the most optimal realizations. Users can select 

most desirable realization based on their specific requirements within the optimized realizations. 

Our MOGA software utilizes the Non-dominated Sorting Algorithm II (NSGA-II) [20], a widely recognized 

evolutionary algorithm for addressing multi-objective optimization challenges. The MOGA workflow begins with an 

initial generation, where the injection rates are randomly selected within a predefined range. Each realization is then 

evaluated using the FNO-based proxy model to compute the fitness in terms of objective functions. Realizations with 

superior objective function values are chosen as parents, and the next generation is created through crossover and 

mutation, which is inspired by principles of evolutionary theory. This process is repeated through several generations 

until convergence is achieved, resulting in an optimized set of realizations. Since MOGA produces multiple optimal 

solutions on the Pareto front, users can choose the most suitable realization based on specific requirements or 

constraints, such as target CO2 storage amount or maximum allowable pressure.  

3. Validation using a 2D synthetic case 

The CO2 saturation prediction performance of the proposed multi-resolution FNO model is validated by using 2D 

synthetic reservoir case and compared against the original FNO model. This 2D synthetic case has 64×64 uniform 

grid with heterogeneous permeability field. To test the prediction across the multi-resolution, the 64×64 heterogeneous 

permeability is upscaled to 32×32. A CO2 injection well is located at the center of both models. Training data are 

generated by changing CO2 injection schedule. 20 unit time intervals are defined where each interval has 30 days of 

time length. The injection rates in these intervals are sampled from the range between 100 to 1000 MSCF/day. 1000 

samples are generated using upscaled geologic model (32×32) and data are divided into 90 % for training and 10 % 

for validation. The input functions are permeability, porosity, well location, injection rates and grid information (x, y, 

z). The output function is gas saturation in all time steps. Using these training data, original FNO and multi-resolution 

FNO are trained to map from input properties to output properties. 
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Fig. 4 compares the predictive performance of CO2 saturation between numerical simulator and these two models. 

Referring to the error map shown in the right column of Fig. 4, large error was observed especially around the gas 

saturation front in the prediction of the original FNO. This is fatal as a proxy model for CCS operation because this 

error impairs the accurate assessment of CO2 leakage risks. On the other hand, multi-resolution FNO provides much 

less prediction error. Although it still has a relatively larger error in saturation front, the magnitude is reasonably small. 

The relative mean square errors of these two models are 0.336 for original FNO and 0.139 for multi-resolution FNO. 

 

Fig. 4. Prediction performance comparison between original FNO and multi-resolution FNO. CO2 plume image provided from proxy model 

(left), numerical simulator (middle) and their differences (right) 

4. Field Application 

4.1. Model Description 

The Illinois Basin – Decatur Project (IBDP) is a large-scale CCS project by the Midwest Geological Sequestration 

Consortium. This project involves injecting supercritical CO2 at a rate of approximately 1102 tons (1000 metric 

tonnes) per day for three years into the basal part of the Mt. Simon Sandstone unit [21]. Fig. 5 shows the IBDP 

reservoir model and satellite view of IBDP site. There are CO2 injection well (CCS1), monitoring well (VW1) and 

geophysical monitoring well (GM1). GM1 is shallowly drilled to obtain time-lapse 3D vertical seismic profile and 

micro seismic data, thus, not shown in reservoir model. The reservoir model consists of 1.73 million cells 

(126×125×110), structured in a tartan grid with higher resolution near the center. The model spans an area of 9.3 by 

9.7 miles laterally and is situated at a depth ranging from 4250 to 7800 ft. Fig. 6 illustrates the horizontal and vertical 

permeability and porosity of the IBDP model. The injection zone, located in the middle layer, exhibits higher 

permeability and porosity. Beneath the injection zone, there is a lower permeability zone that acts as a baffle for the 

CO2 plume and pressure. Additionally, some small baffles are modeled by adjusting vertical permeability. 

 

Fig. 5. IBDP reservoir model (left) and satellite view of IBDP site (right) 
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Fig. 6. Petrophysical properties in IBDP model: Horizontal permeability (left), vertical permeability (middle), porosity (right) 

In this work, we utilized ECLIPSE Compositional simulation with CO2STORE option, which is compositional 

isothermal flow simulator designed for CCS in aquifer. CO2STORE option allows the CO2 component to exist in 

water phase. The IBDP model includes three components: CO2, H2O, and NaCl. A hysteresis model is applied, 
providing separate relative permeability tables for drainage and imbibition. During CO2 injection, the water saturation 

decreases, necessitating the use of the drainage relative permeability curve. However, after CO2 injection is stopped, 

CO2 migration occurs due to gravity or diffusion effects, and under such circumstances an imbibition curve is used. 

The gap between the drainage and imbibition curves facilitates the residual trapping of CO2 within the rock. The 

initial condition is modeled using hydrostatic equilibrium with a datum depth of 6345 feet and a datum pressure of 

3205 psi. To simulate a typical aquifer reservoir, infinite-acting boundary conditions are assumed. To maintain 

constant pressure at the boundary, a large pore volume multiplier is applied to the side boundary cells. For the upper 

and bottom boundaries, no-flow boundary conditions are assumed. 

4.2. Investigation of Coarsening Scheme 

To fully leverage the prediction benefits of the multi-resolution capabilities of the FNO-based proxy model, optimal 

coarsening scheme is crucial. While the proposed multi-resolution FNO-based proxy model outperforms the original 

FNO, it still experiences performance degradation when tested at resolutions significantly different from those which 

the model was trained on. On the other hand, the extent of coarsening directly impacts the acceleration achieved in 

the data generation process, as it reduces the number of active cells in reservoir simulations. Therefore, the primary 

strategy of coarsening is to coarsen the model as much as possible while maintaining high prediction performance at 

the original fine scale. In this research, horizontal and vertical coarsening schemes are considered separately. Vertical 

coarsening is investigated considering the bias-variance trade-off, which determines the optimal upgridding based on 

the geological model proposed by King, et al. [22]. This approach sequentially examines the number of layers, and 

the heterogeneity preserved in coarsened model. More details about the vertical coarsening can be found in these 

references [22-24]. For horizontal coarsening, 2×2 areal coarsening is utilized which is uniformly merging every two 

cells into one cell in x and y directions. In other words, the 2×2 square cell is combined to single cell.  

Fig. 7 shows the pressure response in wells, including injection BHP, pressure at monitoring wells (WB1 to WB3). 

For the 2×2×1 coarsened model, the well response is almost identical to that of the original fine-scale model. However, 

for the horizontal and vertical coarsened model, the error in each well response is at most 50 psi. The coarsening 

upscales the petrophysical properties by pore volume weighted averaging, which potentially underestimates the high 

permeability region such as channels. Consequently, the pressure rise starts more quickly compared to the original 

well response. The IBDP model is highly heterogeneous in the vertical direction, making this phenomenon particularly 

noticeable with vertical coarsening. Consequently, 2×2×1 coarsening is utilized throughout this work. Multi-

resolution FNO could potentially address the errors associated with the vertical upscaled model. Therefore, the use of 

the vertical upscaled model remains a topic for future work. Fig. 7 also shows the comparison of CPU time required 

for single numerical simulation, demonstrating that the coarsened model reduces simulation costs more than an order 

of magnitude. While the number of active cells is reduced by 75 % in 2×2×1 coarsened model and 90 % in SWIFT 

coarsened model, more acceleration is obtained with respect to CPU time. This is likely because the reservoir 

simulation achieves faster convergence because of the smaller number of variables, which reduces the number of 

matrix calculations and significantly reduces the required computational time. 
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Fig. 7. Pressure responses at injector and monitoring wells (left) and comparison of CPU time required for single simulation (right) 

4.3. Training Data Generation and Training of FNO-based Proxy Model 

To construct the multi-resolution FNO-based proxy model, 500 realizations were created by changing CO2 

injection schedules. To effectively reduce the data generation costs, coarsening is applied to the reservoir model. The 

model before and after coarsening is shown in Fig. 8(a). An order of magnitude speed up is achieved by this 

coarsening. After completing the simulations, the simulated static and dynamic reservoir properties are extracted and 

used as training data. In this application, the training data comprises 4D data, encompassing 3D spatial dimensions 

plus the time domain. Including the complete 4D data of the entire model is not feasible for a standard computer due 

to memory limitations. To this end, we have defined the following area of interest. Since the IBDP model is designed 

for CO2 sequestration in a deep saline aquifer, its boundary condition is configured to act as nearly infinite. Hence, 

the CO2 plume will not distribute throughout the entire reservoir, as depicted in Fig. 8(b). The area of interest is 

defined to capture the entire CO2 plume, and the simulation results within this region are utilized as training data. The 

proxy model predicts the dynamic properties within this defined area. In this work, permeability field, CO2 injection 

schedule, and grid coordinate information are used as input function data. Gas saturation and pressure increases are 

used as output function data.  

 

Fig. 8. Coarsened IBDP model and defined area of interest  

Multi-resolution FNO was trained with T4 GPU in Google Colaboratory. Training the model takes approximately 

20 minutes per epoch, and our investigations indicate that proper number of epochs to achieve loss convergence lies 

between 20 and 40. It should be noted that the calculated loss during the FNO training is the error against the upscaled 

model. To validate the prediction performance in the original fine scale, the trained proxy model was compared against 

a commercial numerical simulator, ECLIPSE Compositional Simulator (E300), at original fine scale. Fig. 9 depicts 

the comparison between two models, showing good agreement between them in terms of both gas saturation and 

pressure increase. The proxy model provides less continuous figure since the model is pure data-riven, which does not 

account for physical continuity. However, it still has good enough prediction performance, as the mean absolute errors 

are 0.89 for gas saturation and 3.38 for relative pressure increases which is normalized pressure increases. The trained 
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proxy model can make forward estimation with this accuracy in 11.5 seconds while fine scale simulation requires 

about 3.8 hours.  

 

Fig. 9. Comparison between multi-resolution FNO and E300 in gas saturation and pressure increase 

4.4. CO2 Injection Schedule Optimization with Multiple Objectives 

Utilizing developed proxy model, MOGA is applied to IBDP model to optimize its well control for CO2 

sequestration operations. In this work, the following three objective functions are employed: maximizing CO2 storage 

amount, maximizing sweep efficiency, and minimizing average pressure increases. Sweep efficiency is a ratio of gas 

volume to the CO2 footprint volume, which is the areal extent of the CO2 plume [3]. Higher sweep efficiency leads 

to a smaller footprint, which in turn reduces the risk of leakage and allows for more efficient utilization of subsurface 

space. 

To optimize the CO2 injection schedule, the entire injection period is divided into 10 equal time intervals, with the 

injection rates in each interval optimized. Over the 500-day period, the injection rates are adjusted within a range of 

10,000 to 50,000 [MSCF/day]. MOGA is performed with 15 generations and a population size of 40. In a genetic 

algorithm, each cycle of optimization is called a generation, and within each generation, a specified number of 

realizations, referred to as the population, are processed. Therefore, this optimization involved approximately 600 

forward simulations. Utilizing the proxy model, two orders of magnitude speed up is achieved, where it took only 4 

hours for the entire optimization workflow. Fig. 10(a) presents the results of the multi-objective optimization, 

displaying all realizations on a 3D axis, with each axis representing an individual objective function. Population from 

different generation is represented by different color and we can observe that as generation increases, the population 

become closer to the ideal points at the right upper corner. Since the MOGA generates the next generation considering 

population diversity, all subsequent generation do not always converge towards the ideal point. This phenomenon can 

be observed in Fig. 10(a), where some populations in larger generations remain distant from the ideal point. This 

characteristic is deliberately implemented to prevent the algorithm from getting stuck in local optima, thereby 

enhancing its ability to search for the global optimum. Consequently, we obtained more diverse populations as shown 

in Fig. 10(b). Because three objective functions have strong trade-off, it is not guaranteed that each realization in the 

pareto front simultaneously improve all three objectives. However, MOGA provided superior realizations within the 

Pareto front compared to the other realizations, in which users can select the most desirable realization based on their 

specific requirements. 

 

Fig. 10. Result of MOGA in 3D axis (left) and distribution changes from initial generation to pareto front (right) 
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Next, we validate the optimized cases using numerical simulator. The objective function evaluated during MOGA 

workflow is provided by FNO-based proxy model which contains the prediction errors. Hence, a numerical simulator 

is used to accurately evaluate the performance of the optimized case. For better interpretation, a 2D plot with CO2 

amount and pressure increase is created. For comparison, a base case is prepared which is constant injection scenario. 

From the pareto front in Fig. 11(a), an optimized case is selected, and their injection schedules are also provided above 

the 2D plot. Reservoir simulations for these two cases are performed using a commercial simulator (E300). These 

results are shown in Fig. 11(b), where we can observe a slightly larger CO2 plume and clearly smaller pressure in the 

optimized case compared to the base case. 

 

 

Fig. 11. Base and optimized case in 2D plots (left) and the reservoir simulation result of these cases (right) 

4.5. Rate Allocation Optimization 

In the previous application, the CO2 injection rate was adjusted only with the constraints of the maximum and 

minimum injection rate, without considering the CO2 supply limitations. However, in a typical CCS project, CO2 

injection site is designed to handle a predefined total amount of CO2, which is sourced from a nearby power plant. 

Therefore, it is more practical to fix the total CO2 storage volume and assign that volume to each time interval than 

to vary the injection rate without constraints on the total CO2 storage volume. As a result, the optimization settings 

are updated as follows. The optimization variables are the same as before, the injection rates at 10 time intervals, but 

in addition to the existing constraints of maximum and minimum injection rates, a constraint of total CO2 storage is 

added. This optimization task is to allocate the injection rate between interval to interval. The variation of the injection 

schedule affects the CO2 storage performance as shown in previous literature [25]. In this case, MOGA is performed 

with 10 generations and a population of 40, which is fewer generations than that in the previous case. This is because 

this scenario involves a two-objective optimization, whereas the previous one involved three objectives. 

Consequently, the optimization problem is relatively simpler and should converge more quickly, therefore, the number 

for generation is reduced from 15 to 10. Since the number of optimization variables remains the same, the population 

size is also kept the same. 

Fig. 12(a) shows the result of two-objective optimization where we can see MOGA successfully optimizes the CO2 

injection schedule while considering two-objective. Same as previous application, the optimized case is selected to 

compare with base case. These two cases are evaluated using a commercial simulator (E300). Fig. 12(b) shows result 

CO2 plume and pressure after injection. Similar to the previous optimized results, optimized case has slightly larger 

CO2 plume while it has smaller reservoir pressure. One observation is that Fig. 12 has smaller pressure than Fig. 11. 

This is because the three-objective optimization case includes the maximizing the CO2 storage amount, while this 

two-objective optimization case does not. The amount of CO2 stored in the previously optimized case is approximately 
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1.016 Mt, which is greater than the 0.824 Mt observed in the current optimized case; consequently, a lower pressure 

is noted in this scenario. In this research, rate allocation optimization across time intervals is demonstrated. However, 

this application requires that CO2 be stored in surface facilities to inject CO2 at the desired time interval. A future 

topic being considered is the optimization of injection rates across multiple zones, which would determine the CO2 

injection rate for each injection zone. This approach would eliminate the need for CO2 storage at the surface, making 

it a more viable solution. 

 

Fig. 12. Base and optimized case in two-objective optimization (left) and the reservoir simulation result of these cases (right) 

5. Conclusion 

We have developed a fast and efficient optimization workflow for CO2 injection schedule optimization. Our 

proposed approach is applied to the IBDP field case. The injection schedule of IBDP model is successfully optimized 

considering multiple objective functions simultaneously. 

• A multi-resolution machine learning model has been developed to train with upscaled training data while 

predicting at the fine scale. This model is based on Fourier Neural Operators, with modifications made to enhance 

prediction across multiple resolutions. The performance of the developed model has been validated in a 2D 

synthetic case, demonstrating superior CO2 saturation predictive accuracy compared to the original FNO. 

• The trained FNO proxy model can perform forward estimations in around 11 seconds, significantly accelerating 

the optimization workflow. The multi-resolution capability of the FNO allows for the use of a upscaled model to 

generate the training data, leading to a simulation cost reduction of 90%. The trained model has been subsequently 

validated in a commercial reservoir simulator at the original fine scale. 

• Using MOGA, the CO2 injection schedule has been optimized in IBDP field case. This optimization considers 

three objective functions: maximizing CO2 storage amount, maximizing sweep efficiency, and minimizing 

pressure increase. MOGA effectively optimizes well control by improving each objective function and provides 

multiple optimized cases along the Pareto front. Engineers can select injection schedules from the Pareto front 

based on their specific situations and constraints, such as target CO2 storage amounts or maximum allowable 

pressure increases. The optimized case has been validated through a numerical simulator, revealing a smaller 

CO2 plume and lower pressure increases. 

• Rate allocation optimization is also investigated. This optimization is two-objective optimization with fixed CO2 

injection amount. The proposed approach successfully optimizes the allocation of CO2 injection between interval 

to interval.  
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