

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Reference herein to any social initiative (including but not limited to Diversity, Equity, and Inclusion (DEI); Community Benefits Plans (CBP); Justice 40; etc.) is made by the Author independent of any current requirement by the United States Government and does not constitute or imply endorsement, recommendation, or support by the United States Government or any agency thereof.

Abstract for Modification 50 between NETL and ExxonMobil Technology and Engineering Company to Multi-Project Cooperative Research and Development Agreement AGMT-0922 (AGMT-0922.PTS6)

Technical Feasibility of Recovering Critical Minerals from Oil and Gas Industry Produced Water

Economic recovery of critical minerals from solid and liquid streams produced from natural resource extraction operations including Oil and Gas production, Mining, geothermal, and other industries can help alleviate shortage of the minerals important to industry. It is important to develop techniques for extraction that can be utilized at large scale to be economically viable, and to minimize waste products that require special disposal procedures.

NETL and Participant will collaborate to develop and evaluate at the lab-scale, a process to recover and concentrate critical minerals from oil and gas industry produced water using a combination of physical and chemical methods, so that it may be converted into a valuable product. This effort promotes a circular economy by converting a waste stream into marketable products.