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Dissipative Total Energy Control System

(JComplete loss of thrust can result from bird strikes, mechanical

failures, or fuel exhaustion. (dSafe landing requires speeds that are neither too high or too low.
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| in flight Flight Path

JThe autonomous emergency landing algorithm was implemented
ol g g on a small fixed-wing radio-controlled aircraft.
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i S ( JThe algorithm was evaluated using the following protocol.

Infeasible Node

“ciﬁf.i‘;tfiode Esﬂ == O Aircraft is piloted to desired altitude and then put into autonomous waypoint mode.
| ' : "7 Rejected v;:i — ® 3 Propeller is turned off to create a loss-of-thrust event.
S O‘Qéﬁgoﬂ | S Predicted Path L Emergency landing planner is activated and uses a pre-loaded map featuring no-fly-zones and a runway.
] | %50 —~—— FlightPath O Aircraft flies to the next way-point to give the planner enough time to find a path.
I m . 50 2w Waypoint O Once a feasible landing plan is found, the plan is executed from the current way-point.
Examine loss of thrust Create a sampling-based 6-DoF Demonstrate rapid planning and L Aircraft autonomously flies the new trajectory and lands at simulated runway.
s o e wing O e e e e Peica Experiment process was repeated three times to illustrate

consistency of our approach.

(JEmergency power-out landing has several key needs described
BENEY P ® y Flights were performed under ideal outdoor conditions.
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