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O2- reacts with Lanthanides to form insoluble products 
in chloride-based molten salts

Two key interests in reactions of species with O2- 

1. Oxygen impurities are ever-present

• Molten salt reactor (MSR) operation 

changes with precipitate formation

• Precipitate formation removes fuel and 

fission products 

2. Metallic lanthanide/actinide products can be 

converted into easily separable oxides[3-4]

2 m

Example of oxide or oxychloride precipitates 

in LiCl-KCl (eut). Image adapted from Cho 

et al. [2]

[1] Y. Katayama, et al., Journal of The Electrochemical Society 142, 2174 (1995).

[2] Y.-Z. Cho, et al., Journal of Nuclear Materials 384, 256 (2009). 

[3] H. C. Eun, et al., Journal of Nuclear Materials 408, 110 (2011).

[4] V. A. Volkovich, et al., Journal of The Electrochemical Society 168, 046513 (2021).

LnCl3(l) + Li2O(l) ⇋ LnOCl(s) ↓ + 2LiCl(l)

LnCl3(l) + 1.5Li2O(l) ⇋ 0.5Ln2O3(s) ↓ + 3LiCl(l)

O2- reacts with lanthanides (Ln) or actinides to 

form insoluble oxides or oxychlorides

• Ln generally thought to form oxychlorides

• Temperature and lanthanide dependent[1,2]



Online sampling and absorption spectroscopy have 
been used to track reaction kinetics/conversions

[5] .Y-J. Cho, et al., Journal of Nuclear Science and Technology 43, 1280 (2006).

Extract samples during oxygen sparging[5]

Sampling Port

Apparatus for removing 

samples for analysis of 

insoluble products. 

Adapted from Cho et al.[5]

High-temperature absorption spectroscopy[4]

Absorption spectra of the reaction of Nd3+ with sparged O2(g) and 

concentration of Nd3+ with time. Adapted from Volkovich et al.[4]

[4] V. A. Volkovich, et al., Journal of The Electrochemical Society 168, 046513 (2021).



Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 

Techniques provide real-time clues 

1. reaction kinetics 

2. product conversion

3. product formation (oxide/oxychloride)



Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 



Tracking concentrations: spectroscopy

High-temperature transmission setup

Light delivery 

and collection
1cm x 1cm 

Cuvettes

Transmission allows 

concentration monitoring

Abs10 = -log10(𝑇) = ɛ L c𝑇

Intensity ∝ [Nd3+]

Nd3+ in LiCl-NaCl-KCl eutectic (500oC)



Add Li2O to solutions of Nd3+ 

in LiCl-NaCl-KCl eutectic salt

Precipitates form: 

Nd2O3 or NdOCl

NdCl3(l) + Li2O(l) ⇋ NdOCl(s) ↓ + 2LiCl(l)

NdCl3(l) + 1.5Li2O(l) ⇋ 0.5Nd2O3(s) ↓ + 3LiCl(l)

Oxide or oxychloride precipitates form after Li2O addition

24 ppm 66 ppm 152 ppm 1567 ppm

Can we use absorption 

spectroscopy to track the 

rates and conversions of 

these reactions?

• Controlled addition of O2- impurities

• Nd products precipitate out of solution

• Yields loss of  Nd3+ absorbance intensity
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[Nd3+] decreases with time after adding Li2O: What information 
does absorption spectroscopy yield?

[Nd3+](t) = 
Absmax 𝑡

Absmax 0
Nd3+

o

 

Estimate fraction of 

Nd3+ consumed

Estimate initial 

reaction rate over 

first ~100 minutes

Rate = 1.8 × 10-4 [M min-1]

Nd consumed = 0.19 [fr.]



[Nd3+] decrease is tracked for various Li2O loadings

152 ppm1567 ppm

66 ppm 24 ppm



Loading 

Li2O [ppm] 

Ratio 

[O2-]/[Nd3+]

Rate 

[M min-1]

Nd Conversion 

[fr.]

24 0.006 1.8 ± 0.9 × 10-5 0.004 ± 0.001

66 0.016 4 ± 1 × 10-5 0.019 ± 0.008

152 0.037 6.3 ± 0.5 × 10-5 0.039 ± 0.007

1567 0.387 1.8 ± 0.1 × 10-4 0.187 ± 0.003

[Nd3+]o = 0.204 M

Low Li2O loadings yield oxychloride products

• Rates are similar compared to literature[3]

• Approximate equimolar loss of Nd3+

Not conclusive, but strongly 

suggests the formation of 

oxychloride products

NdCl3(l) + Li2O(l) ⇋ NdOCl(s) ↓ + 2LiCl(l)

NdCl3(l) + 1.5Li2O(l) ⇋ 0.5Nd2O3(s) ↓ + 3LiCl(l)

[3] V. A. Volkovich, A. A. Ryzhov, A. B. Ivanov, A. V. Shchetinskiy, and D. S. Maltsev, 

Journal of The Electrochemical Society 168, 046513 (2021).
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Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 

• Absorption spectroscopy works well to track Ln3+ 

concentrations in real-time

• Low loadings of O2- product primarily oxychlorides



Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 

• Absorption spectroscopy works well to track Ln3+ 

concentrations in real-time

• Low loadings of O2- product primarily oxychlorides



Tracking lower absorbing species: Pr3+

3P2 3P1

1I6

1D2

3P0

1G4

3F3

3F4

3F2
3H6

Pr has an ~7x lower absorption 

coefficient than Nd

Similar reactions as Nd3+ with O2-

Tracking with optical spectroscopy is 

possible, needs to be supplemented

PrCl3(l) + Li2O(l) ⇋ PrOCl(s) ↓ + 2LiCl(l)

PrCl3(l) + 1.5Li2O(l) ⇋ 0.5Pr2O3(s) ↓ + 3LiCl(l)



[Pr3+] can be reasonably monitored with spectroscopy
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• Optical spectroscopy yields reasonable monitoring capabilities

• Can this data be supplemented with electrochemistry?



Tracking concentrations: spectroscopy and electrochemistry

High-temperature transmission setup

Light delivery 

and collection

Electrodes

Ag/AgCl Ref. 

in mullite tube

Working: Tungsten (0.5 mm wire)

Counter: Graphite (1 mm rod)

Light collection 

(~0.9 cm spot size)

Modified rack for simultaneous measurements

Pr3+→ P 0

Li+→ Li0

Cyclic Voltammetry (CV)



[Pr3+] can also be reasonably monitored with CV
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Use Ip
Red

Ip
Red  ∝ C reactant

Assuming diffusion coefficient of reactant, 

Pr3+ remains similar at all Li2O loadings
Can be compared to optical data

Can not be measured with optical 

spectroscopy due to turbid solution



Loading 

Li2O [ppm] 

Ratio 

[O2-]/[Pr3+]

Rate, Optical 

[M min-1]

Conversion, 

Optical [fr.]

Rate, CV 

[M min-1]

Conversion, 

CV [fr.]

177 0.042 4.5 ± 0.9 × 10-5 0.025 ± 0.005 1.46 ± 0.07 × 10-5 0.019 ± 0.002

1153 0.281 2.3 ± 0.2 × 10-4 0.19 ± 0.02 8.1 ± 0.9 × 10-5 0.14 ± 0.01

9648 2.436 -- -- 4 ± 1 × 10-4 > 0.8

CV analysis yields rates ~3x lower than spectral analysis



Loading 

Li2O [ppm] 

Ratio 

[O2-]/[Pr3+]

Rate, Optical 

[M min-1]

Conversion, 

Optical [fr.]

Rate, CV 

[M min-1]

Conversion, 

CV [fr.]

177 0.042 4.5 ± 0.9 × 10-5 0.025 ± 0.005 1.46 ± 0.07 × 10-5 0.019 ± 0.002

1153 0.281 2.3 ± 0.2 × 10-4 0.19 ± 0.02 8.1 ± 0.9 × 10-5 0.14 ± 0.01

9648 2.436 -- -- 4 ± 1 × 10-4 > 0.8

Pr3+ conversion results are similar for CV and spectral analysis

PrCl3(l) + Li2O(l) ⇋ PrOCl(s) ↓ + 2LiCl(l)

PrCl3(l) + 1.5Li2O(l) ⇋ 0.5Pr2O3(s) ↓ + 3LiCl(l)

Conversions are less than 

stoichiometric with O2-



Loading 

Li2O [ppm] 

Ratio 

[O2-]/[Pr3+]

Rate, Optical 

[M min-1]

Conversion, 

Optical [fr.]

Rate, CV 

[M min-1]

Conversion, 

CV [fr.]

177 0.042 4.5 ± 0.9 × 10-5 0.025 ± 0.005 1.46 ± 0.07 × 10-5 0.019 ± 0.002

1153 0.281 2.3 ± 0.2 × 10-4 0.19 ± 0.02 8.1 ± 0.9 × 10-5 0.14 ± 0.01

9648 2.436 -- -- 4 ± 1 × 10-4 > 0.8

Pr3+ conversion results are similar for CV and spectral analysis

PrCl3(l) + Li2O(l) ⇋ PrOCl(s) ↓ + 2LiCl(l)

PrCl3(l) + 1.5Li2O(l) ⇋ 0.5Pr2O3(s) ↓ + 3LiCl(l)

Conversions are less than 

stoichiometric with O2-

Conversion ratios match more 

closely with expected conversion of 

Pr3+ to predominantly oxide species

Conclusion remains tentative



Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 

• Absorption spectroscopy works well to track Ln3+ 

concentrations in real-time

• Low loadings of O2- product primarily oxychlorides

• Spectroscopy and electrochemistry provide 

complementary methods of analyte monitoring

• Techniques point to similar conclusions

• Pr3+ suggested to react with O2-
 to form primarily 

oxides



Track reaction of Nd3+ with controlled O2- 

impurities: Absorption spectroscopy 

Track reaction of Pr3+ with O2- using both 

absorption spectroscopy and electrochemistry 

• Absorption spectroscopy works well to track Ln3+ 

concentrations in real-time

• Low loadings of O2- product primarily oxychlorides

• Spectroscopy and electrochemistry provide 

complementary methods of analyte monitoring

• Techniques point to similar conclusions

• Pr3+ suggested to react with O2-
 to form primarily 

oxides

Future work is focused on more direct 

structural probing of precipitates in melt



Thank you!
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