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ABSTRACT 

Central to the work documented in this report is the capability of geocellular models to represent 

the geologic conceptual model updated with fault identification from machine learning and joint inversion 

modeling of microseismic data measured and recorded as a consequence of CO2 injection at a field 

demonstration site: the Illinois Basin - Decatur Project (IBDP). This work required seven unique geocellular 

models with 100s of simulated variations to gain a very high degree of confidence in the identification of 

geologic features present that contributed to induced microseismicity at IBDP. All forward modeling: 

pressure modeling, stress modeling, and seismic modeling used the same geologic conceptual model and 

representations of that model at different scales. The pressure modeling and poroelastic modeling 

created “snapshots” of pore pressure and stress field changes at different times during CO2 injection, in 

which microseismic events were clustered (in time). These pressure and stress snapshots, within the 

framework and architecture of the geologic conceptual model via the geocellular model, informed the 

single fault and fault network models to ascertain the likelihood of fault movement (seismic or aseismic). 

The outcomes of the pressure, stress, and fault/fault network (seismic) modeling confirmed that 

the faults in the geologic conceptual model in Task 2 were likely the source of microseismic events 

measured at IBDP and acted as conduits for pressure to be transmitted from the injection interval into 

the Precambrian crystalline basement rock. This closely coordinated and integrated unique modeling 

approach was conducted to prove the viability of our proposed workflow 1) to better resolve crystalline 

basement faults, 2) detect subseismic faults that could be activated by injection, 3) increase the certainty 

in fault detection and their susceptibility to release seismic energy, and 4) understand transmission of 

pressure vertically from the well to the underlying fractured crystalline basement. 

The proposed methodology was effective in guiding an iterative process of calibrating forward 

modeling results based on similar geocellular models while honoring the geologic conceptual model (i.e., 

characterization data and knowledge of regional geology); this led to higher level of certainty in the 

identification of fault/faults zones to control seismicity and transmission of pressure to the regions of 

recorded and located injection induced seismicity. 
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INTRODUCTION 

Predicting and controlling the subsurface seismic response to fluid injection continues to be a 

challenge to all subsurface injection, including CO2 storage. Research is ongoing to identify geologic 

features that contribute to injection-induced seismicity and the role of stress and pore pressure variations 

in triggering these seismic events. Pre-existing, critically stressed faults that underlie injection intervals in 

a crystalline basement rock tend to be the most likely geologic feature that may release seismic energy. 

The physical mechanisms associated with induced seismicity due to anthropogenic activities have 

been extensively studied in the past decade due to the increase in seismicity in central U.S. associated 

with wastewater injection in the subsurface (Segall and Lu, 2015; Keranen and Weingarten, 2018; Zhai et 

al., 2019; Alghannam and Juanes, 2020). Other anthropogenic activities associated with induced seismicity 

cases are natural gas storage (Dost and Haak, 2007; Cesca et al., 2014), hydraulic fracturing (Eyre et al., 

2019; Schultz et al., 2020), enhanced geothermal system stimulation (Deichmann and Giardini, 2009; 

Ellsworth et al., 2019) and, to a lesser extent, carbon capture and storage (CCS) in geological formations 

(White and Foxall, 2016). Although CCS programs have yet to store significant amounts of CO2 in the 

subsurface, its similarity with wastewater injection raises concerns regarding its potential to induce 

seismicity that might result in CO2 leakage to shallower formations (Zoback and Gorelick, 2012). Therefore, 

it is imperative to understand the hydraulic and geomechanical conditions that enable induced seismicity 

associated with CO2 injection activities (Juanes et al., 2012; Vilarrasa and Carrera, 2015). 

However, neither large nor pilot-scale carbon storage projects have induced any perceivable 

earthquake to date (White and Foxall, 2016; Vilarrasa et al., 2019). The Decatur, Illinois, carbon capture 

and storage (CCS) site—also called the Illinois Basin – Decatur Project (IBDP)—is the first commercial site 

in the United States. Since November 2011, over 1,000 tonnes of CO2 per day have been injected into the 

Mt. Simon saline reservoir. The reservoir targeted for CO2 injection is the lower part of the Mt. Simon 

Sandstone, which is laterally extensive with porosity as high as 28% and permeabilities of over 1,000 mD. 

During CO2 injection, microseismicity (magnitude 1.17) was detected (Birkholzer and Zhou, 2009; Leetaru 

and Freiburg, 2014). The formation covers the Argenta and Precambrian crystalline basement with a sharp 

unconformity (Leetaru and Freiburg, 2014). The keys to understanding the release of seismic energy are 

the physical, hydraulic, mechanical, and seismic characteristics of the fault and the magnitude and 

direction of the in situ principal stresses. However, the mechanisms of stress transfer from highly 

permeable storage units to very low (matrix) permeability but fractured and faulted crystalline basements 

to the locations in the earth where seismicity has been located is not well understood. 

During the three-year period (2011-2014) of CO2 injection and subsequent shut-in, 

microseismicity was recorded at the Illinois Basin Decatur Project (IBDP), and over 10,000 events were 

recorded, and 4,848 events were located (Bauer et al., 2019). Many of the locatable events were in the 

underlying crystalline basement, while very few were located in the relatively high permeability storage 

unit. The data from this site was used intensely for this work. 

For storage purposes, the deepest, porous, and permeable geologic formation has noted 

advantages. Generally, there are no mineral resources below or within this formation (e.g., oil or coal); 

consequently, there are fewer wellbore penetrations of the caprock, which is the most noted source of a 

caprock breach. Additionally, there are fewer legal issues when mineral ownership is not a part of the 

storage site development. Deeper storage units have higher pressure; therefore, CO2 can be stored with 

greater density, which increases storage efficiency. 
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Large-volume wastewater disposal into sedimentary rocks immediately overlying crystalline 

basement rocks has been directly attributed to earthquakes in the central US (Zoback and Gorelick, 2012; 

Ellsworth, 2013; Keranen et al., 2014; Hincks et al., 2018). CO2 injection, as part of a storage demonstration 

project, into similar formations has caused microseismicity (IEAGHG, 2013; White and Foxall, 2016; 

Makhnenko et al., 2020). With few exceptions, crystalline basement rocks (e.g., granites and rhyolites) 

are fractured and, depending on the geological history, include faults. Therefore, large-scale CO2 injection 

into basal sedimentary rocks is expected to exhibit similar seismic challenges associated with large-volume 

wastewater disposal. 

The term “fracture” includes two subsets: those with no movement or offset (joints) and those 

with movement or offset (faults). Characteristics of joints are limited to the fracture or discontinuity within 

the host rock and are expected to change the pressure distribution that causes fluid flow due to different 

hydraulic properties of the fracture compared to the surrounding host rock. The poroelastic effect of a 

fracture compared to the intergranular/intercrystalline porosity of a host rock will change the means by 

which changes to the stress field are distributed within the host rock. Unlike joints, faults may be 

associated with larger regions (i.e., fault zones) adjacent to the actual fracture. (In this report, use of 

“fault” includes any zone around the fault that causes alternation of rock properties from the host rock.) 

The hydraulic and mechanical properties of the fault zone can be grossly different from a host rock and a 

joint (Scholz, 2002). Fault zones may be more or less permeable (relative to host rock) and act as a partial 

or complete barrier to fluid flow. Moreover, a fault zone may be relatively softer or harder and transmit 

stress differently than the host rock. Because faults are a consequence of the movement of large bodies 

of rocks moving passed each other, there is likely a buildup of stress near the fault that can be released 

when the stress field is changed (e.g., through injection). This is a CO2 storage challenge: predicting and 

controlling injection-induced seismicity from changes to the stress field. 

The primary objective of this project (herein referred to as the State of Stress project or SoS 

project) was to predict the presence of faults susceptible to movement in the presence of fluid injection 

as a consequence of vertical pressure migration from the storage unit to the crystalline basement. These 

faults included those difficult to resolve with traditional interpretations of surface seismic: faults with no 

or minimal offset, faults in the crystalline basement where no seismic reflectors are present, subseismic 

faults (due to size), and faults undetected (e.g., due to unfavorable orientation with surface seismic 

survey). To accomplish the primary objective, the following sub-objectives were to: 1) identify the 

presence of faults at a well characterized field site using traditional interpretations of surface seismic and 

interpretation of injection induced seismicity, 2) model changes to the in situ stress field before and after 

fault slippage, and 3) explain transmission of pressure and stress perturbations between the storage unit 

and the crystalline basement.  

CURRENT STATE-OF-THE-ART TECHNOLOGIES 

Surface seismic surveys are the most common technology used to identify faults that have vertical 

offset that is greater than the vertical resolution of the seismic data’s resolution. Faults identifiable with 

surface seismic data must have vertical offset of correlatable seismic reflections); consequently, there is 

always uncertainty related to the presence of additional faults (i.e., subseismic faults) from seismic 

interpretation. These challenges are known but have historically been of less importance because 

objectives were to find larger features that cause trapping of fluids and, to a lesser degree, injection-

induced seismic activity. However, large-scale injection projects necessitate understanding of the 

presence of all faults that may lead to seismic events. 
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Faults can be identified in drilled wellbores only when they coincidentally intersect the wellbore. 

Nevertheless, when this happens, the fault is a distinguishable feature in extracted core and on modern 

well logs (e.g., formation microresisitivity imaging tools) (Gaillot et al., 2007). However, this is usually 

limited to a single fault characterization and the happenstance that a drilled well crossed a fault zone. 

Various wellbore phenomena (e.g., wellbore breakouts) can indicate stress directions. After completion, 

injection tests (e.g., step rate tests) can measure fracture propagation pressure, which is related to the 

strength of rocks and may lead to understanding the characteristics of existing fractures. Single (e.g., 

injection fall-off) and multiwell (e.g., pulse) pressure transient tests may detect faults depending on the 

contrast of flow properties between the fault and the host rock. For a multiwell test, the fault would have 

to be located between two or more wells. 

In addition to the presence of a fault, the state of stress and orientation of the fault with respect 

to the stress field are of equal importance. Surface seismic surveys are not able to assess stress in the 

subsurface. Therefore, calculations are required based on geophysical surveys of drilled wellbores or 

laboratory tests on rock samples. From direct injection, analyses and interpretation of injection pressures 

are useful to understand near wellbore features but provide less unique results in the farfield primarily 

because numerous combinations of various geologic heterogeneities can yield the same injection pressure 

response. Most analyses of microseismic data have been limited to identifying and locating individual 

events from the recorded data, including estimates of the energy released. 

Our research used existing models that were tested in similar environments as separate and 

unique models but not as an integrated method, validated with field data from a CO2 injection storage 

site. 

SCIENTIFIC AND ENGINEERING PRINCIPLES 

The geologic conceptual model, which was derived from IBDP characterization data and well-

established regional geology, was the basis of every forward simulation model. In forward modeling, a 

geocellular model represented the geologic conceptual model. An essential part of the iterative 

methodology (Figure 1) was changing hydraulic and mechanical properties of the fault/fault zones and 

host rocks to improve each model’s calibration to IBDP data; however, before accepting the change in any 

property, a check was necessary to ensure consistency with the geologic conceptual model. If the change 

was not consistent, a rigorous review of the geologic conceptual model was made so that the change was 

believable and had geologic context supported by data. If the geologic conceptual model could not 

support the change, it was rejected, and the forward modeling calibration process continued in search of 

geocellular model that could be supported geologically. 

Machine learning and inversion modeling were used to develop the fault/fault zone aspect of the 

geologic conceptual model by applying new methods to the recorded IBDP microseismic data. There have 

been considerable advances in multivariate (joint) inversion methods that used coupled flow–

geomechanics to model the propagation of pore pressure, fluid saturations, and fault stresses. This 

permitted the assimilation of time-varying data, e.g., reservoir pressure (multi-level downhole pressures 

at wells), and passive seismic (i.e., microseismic data). Machine learning for fault detection and 

interpretation of microseismic wave fields explored a recent deep-learning success (Perol et al., 2018) in 

classification problems (e.g., convolutional neural network) to identify seismic phases from microseismic 

events and their wave patterns (Yoon et al., 2015; Rong et al, 2018). This extracted salient features in the 

data set, e.g., local discontinuity. All faults identified and characterized had to be consistent with the 



 

12 
 

geologic conceptual model through an iterative process before inclusion in a geocellular model used in 

forward modeling.  

We tested methodology that included a series of integrated forward and physics-constrained, 

data-driven (inverse) models of faults to estimate changes to the in situ stress field, and to explain 

pressure perturbations between the injection interval and the basement (Figure 1). 

Three forward modeling types were used: pore pressure modeling, poroelastic modeling, and 

seismic modeling. The pore pressure modeling used multiphase flow principles using relative 

permeability. The primary purpose of this modeling was to identify a finely gridded geologic model (of the 

geologic conceptual model) that would lead to the best calibration of IBDP pressure and saturation data. 

Compared to other models, the pore pressure model would run faster with smaller grid cells to improve 

the calibration. 

The poroelastic model couples multiphase flow with geomechanics capable of simulating static 

and dynamic stress evolution with localized deformation and frictional failure along faults. A distinctive 

feature is the geometric complexity, by adapting to the various sets of faults present, within and below 

the injection interval. We tested correlations between the spatio-temporal distribution of micro-seismic 

events at IBDP and propagation of the pore pressure perturbation as well as the elastic stress changes. 

For faults hydraulically connected to the injection interval, direct diffusion of pore pressure was assessed 

to destabilize faults. For isolated and sealed faults, direct diffusion ability to destabilize a fault was 

simulated by varying basement properties and injection operations. Indirect transfer of stresses to perturb 

faults without direct diffusion of pore pressure was studied. 

To understand the evolution and clustering of microseismicity in the context of fault movement, 

we forward modeled the relationship between injection and fault slip using a novel finite element-spectral 

boundary integral model of slip instabilities on a single fault (Hajarolasvadi and Elbanna, 2017). Our 

approach was unique in resolving near-fault heterogeneities by studying the response of a fault subjected 

to slow, long-duration tectonic loading, intermitted with different fluid injection scenarios. 

Using system modeling, we studied the response of interacting faults to fluid injection and the 

seismicity rate and magnitude based on the changes in Coulomb stress (Dietrich, 1994; Segall and Lu, 

2015; Kanamori and Brodsky, 2001; McGarr, 2014; Galis et al., 2017). This was done by using a fully 

coupled poroelastic model (Jha and Juanes, 2014) and simplified boundary element representation of fault 

slip coupled with the complex fluid pressure distribution from the injection process (Richards-Dinger and 

Dieterich, 2012). Physics of slip on each fault was approximated so that longer periods of time could be 

simulated, thereby producing statistically meaningful seismicity patterns. 

The integration of these models’ results hinged on the geological/geocellular model. A 

comparison of the models’ output and available field data (e.g., microseismicity) informed the conceptual 

geologic model. The difference between numerical and conceptual model predictions was resolved 

iteratively by updating the geocellular models with new geological features identified from the numerical 

modeling results. In other words, all models were required to have complete basis in the geologic 

conceptual model. 
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GEOLOGY  

ILLINOIS BASIN SEDIMENTARY AND CRYSTALLINE ROCKS 

The Illinois Basin, as shown in Figure 2, contains over 4 miles (7 km) of sedimentary rocks, ranging 

from Cambrian to early Permian (Collinson et al., 1988). The Cambrian rocks are entirely underlain by the 

Precambrian crystalline basement with a sharp unconformity contact (Figure 3; McBride et al., 2016). The 

sharp unconformity between the Argenta and the Precambrian crystalline basement is estimated to 

represent a gap of 600 to 900 million years (Willman et al., 1975). The crystalline basement is primarily 

composed of granite, granodiorite, or rhyolite (Bradbury and Atherton, 1965; Atekwana, 1996). The 

crystalline basement beneath the Paleozoic sediments is constrained by scattered data sources, such as 

regional seismic profiles (Bertagne and Leising, 1991; Heigold and Oltz, 1991; Pratt et al., 1992; Bear et 

al., 1997; Potter et al., 1995, 1997; McBride and Kolata, 1999; McBride et al., 2003) and data of deep wells 

that penetrate the Precambrian rocks. Although the Illinois Basin can be categorized as a sag basin 

(Buschbach and Kolata, 1991), the geology of the deep subsurface includes a complex history of faulting, 

folding, and basement uplifts (Nelson, 1995; McBride and Nelson, 1999; Leetaru and McBride, 2009). The 

crystalline basement in the Illinois Basin is a part of the Eastern Granite-Rhyolite Province (EGRP), which 

formed between 1.48 and 1.38 billion years ago (Bickford et al., 1986; Lidiak, 1996; Van Schmus et al., 

1996). This province is characterized by undeformed, normomorphic rhyolite to granite of extensional 

tectonic origin (Bickford et al., 1986). Seismic reflection data also reveal that the EGRP is structurally 

complex in Illinois (Pratt et al., 1989). Furthermore, granites were intruded within the EGRP between 1.58 

Ga and 1.35 Ga (Van Schmus et al., 1996). High-resolution 2D seismic profiles and 3D seismic volume 

around the IBDP site, as studied by McBride et al. (2016), revealed new insight regarding the structures 

and composition of the crystalline basement. McBride’s findings indicated that the concentration of mafic 

igneous activity within the EGRP suggested an episode of Proterozoic crustal extension and rifting. The 

data from wells penetrating the crystalline basement and seismic profiles indicated that subsurface paleo-

topographic relief in the Illinois Basin can range from 500 ft (150 m) up to 1,400 ft (427 m) in southern 

and western Illinois, where the Mt. Simon Sandstone is either absent or very thin (Workman and Bell, 

1948; Dean and Baranoski, 2002; Reuter and Watts, 2004; Leetaru et al., 2009). The seismic profile around 

the IBDP site revealed the paleo-topographic relief between the Precambrian crystalline basement and 

the Argenta. The relief was influenced by the thickness of overlying sedimentary successions where, on 

the hills, the thickness of overlying formations significantly decreased and, on the trough, the thicknesses 

increased. The Precambrian crystalline basement at the IBDP site is composed of rhyolite, granite, 

granodiorite, and gabbro (Freiburg et al., 2020). The uppermost part of the crystalline basement consists 

of a maroon-colored, brittle rhyolite which is heavily weathered and fractured (Leetaru and Freiburg, 

2014).  

The crystalline basement is directly covered by the Argenta, which is composed of well-

consolidated, well-compacted, sub-lithic arenite to quartz arenite, formed in marine to fluvial 

environments (Figure 3; Freiburg et al., 2020). It has a maximum thickness of 50 ft (15 m) with an average 

porosity of 9% and permeability of 2.3 mD. The Mt. Simon Sandstone is a regional blanket-like sandstone 

that is primarily composed of quartz arenite with a small presence of shale and dolomite. The area where 

the Mt. Simon Sandstone is most extensively deposited is in the northeastern part of Illinois, where it 

reaches a thickness of 2,600 ft (790 m). 

The Mt. Simon Sandstone has been divided into three major intervals based on depositional 

environment and reservoir quality (Figure 3; Freiburg et al., 2020). The lower part of the formation mainly 
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consists of Arkose sandstone. The Arkose zone of the Lower Mt. Simon is considered a promising zone for 

CO2 injection, with an average porosity of 22% and average permeability of 200 mD. However, the 

intervals also contain interlayers of discontinuous siltstone, which have a porosity as low as 2% and 

permeability as low as 0.008 mD. 

 
Figure 2. Map showing the location of the Illinois Basin (brown color) and important regional structural features. The 

location of the IBDP site is labeled with a star (Leetaru and Freiburg, 2014). 

 

The Eau Claire Formation overlies the Mt. Simon and is considered the primary unit that prevents 

CO2 migration into shallow formations and surface. The lower part of the Eau Claire is primarily composed 

of thick siltstone and shale interval, transitioning to dense carbonate interlayers. The upper part consists 

of dense carbonates. The shale of the Eau Claire Formation shows the maximum transgression of marine 

system. The presence of interlayers of limestone, siltstone, and dolomite suggests that the Eau Claire 

Formation deposited in a shallow marine that was a tidally influenced marine environment (Freiburg et 

al., 2020). Mt. Simon has been divided into five distinct units, labeled A, B, C, D, and E, as determined by 

changes in the depositional environment and sedimentology (Freiburg et al., 2020). These units are 

situated within the Lower, Middle, and Upper Mt. Simon Formations, with units A and B located in the 

Lower Mt. Simon, units D and C in the Middle Mt. Simon, and unit D in the Upper Mt. Simon. 
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Figure 3. Stratigraphic column depicting the Precambrian crystalline basement, Argenta Formation, and Mt. Simon 

Sandstone at the IBDP site. The figure displays the lithology and depositional environments for each interval. 

 

MAJOR STRUCTURAL FEATURES AND REGIONAL FAULTS IN THE ILLINOIS BASIN 

The Illinois Basin, located within the interior of the North American craton, has undergone mild 

structural deformation as a result of mountain-building events including the Grenville, Taconic, and 

Acadian Orogenies that occurred within the craton (Nelson, 1995). It contains Phanerozoic sedimentary 

rocks that are underlain by the Precambrian crystalline basement. The Basin has several significant 

structural features, including the east-west-trending Rough Creek-Shawneetown and the Cottage Grove 

fault systems in the southern regions, the St. Genevieve Fault Zone and the Ozark Dome in west and 

southwestern regions, the Do Quoin Monocline and La Salle in the central and eastern regions, and the 

Sandwich Fault Zone and Plum River Fault Zone in the northern region. 
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The St. Genevieve Fault Zone has a northwest-southeast trend, formed during the Precambrian 

Era (Figure 4). It has a similar trend to other northwest-trending faulting and folding in Missouri, eastern 

Kansas, and southern Iowa (Guinness et al. 1982, Sims et al. 1987).  The St. Genevieve Fault Zone is 

composed of high-angle normal and reverse faults and has undergone two major episodes of reactivation 

during the Devonian and early Pennsylvanian periods (Weller and St. Clair, 1928; Nelson and Lumm, 1985). 

During the Devonian Era, the fault acted as a normal fault, but it reactivated as a reverse fault during the 

early Pennsylvanian period (Desborough, 1961b; Nelson and Lumm, 1985). 

Figure 4. Major structural features of Illinois during the Precambrian (adopted from Nelson, 1995). 

 

After Grenville Orogeny, which occurred 600 million years ago at the end of the Precambrian Era, 

the Laurentia continent separated from Gondwanaland, and the ocean basins formed between the 

continents. At that time, the Reelfoot Rift and its eastward extension, the Rough Creek Graben, developed 

in northeastern Arkansas, western Tennessee, and southern Illinois (Soderberg and Keller, 1981; Schwalb, 

1982). During the Precambrian Era and Cambrian Period, these areas were bounded by lystric normal 

faults that extended into the crystalline basement (Nelson, 1995). According to geophysical seismic data 

indicates that the Reelfoot Rift, located at the southern part of the Illinois Basin, is a graben that trends 

northeast and spans 40 miles (65 km) in width and over 200 miles (320 km) in length. The displacement 

of the graben is over 10,000 ft (3,000 m) (Howe and Thompson 1984; COCORP, 1988). The northeastern 

end of the Reelfoot Rift connects with the east-trending Rough Creek Graben, which, according to seismic 

data, is a normal fault with displacement of over 8,000 ft (2,438 m) that primarily affected the Upper 

Cambrian Eau Claire Formation (Bertagne and Leising, 1991). 

The regional faults in the northern part of Illinois (Figure 5) include the Sandwich Fault Zone, which 

has a northwest-southeast trend and the Plum River Fault Zone, which has an east-west trend. Both regional 

faults exhibit similar structural styles, but do not interconnect (Nelson, 1995). The Sandwich Fault Zone is 

nearly parallel with the La Salle Anticlinorium, indicating that they formed simultaneously into the 

Mississippian or Pennsylvanian periods when the crustal block between them rose (Kolata et al., 1978). The 

Sandwich Fault Zone is found above the crystalline basement and disappears in Pennsylvanian shales 

(Neslon, 1995). Quarry exposures of the Sandwich Fault Zone revealed that the faults are primarily vertical 
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or steeply normal with some small thrust, and reverse faults are present within the shale (Nelson, 1995). 

The presence of different types of faults suggests that the Sandwich Fault Zone has undergone multiple 

episodes of deformation under different stress regimes. 

The Plum River Fault Zone is approximately 112 miles (180 km) long and has a slight east-west trend. 

The fault zone consists of sub-parallel to parallel high-angle faults with vertical offsets of about 500 ft (150 m) 

in surface rocks and up to 1,100 ft (335 m) in the Precambrian crystalline basement (Bunker et al., 1985). 

Another significant structural feature affecting the Precambrian crystalline basement and Cambrian 

is the La Salle Anticlinorium (Figure 6). The anticlinorium comprises several sub-parallel anticlines, domes, 

monoclines, and synclines, aligned with the overall trend of the system. The pattern of the La Salle 

Anticlinorium reflects a strike-slip subsidiary fault. The trend of folds is primarily parallel to the north-

northwest strike of the larger structure. The La Salle Anticlinorium is strongly asymmetrical, with west limb 

having a steeper dip and more significant structural relief compared to the eastern limb which has a less 

relief (Nelson, 1995). The La Salle Anticlinorium experienced two major uplifts before Pennsylvanian and 

Ordovician periods (Clegg, 1965a, 1970; Jacobson, 1985). Seismic profiles and the data of the drilled hole 

reveal that the uplift affected the Mt. Simon Sandstone and younger strata. Notably, the topography of the 

La Salle region remained unchanged despite increasing depths, as evidenced by the seismic profiles and 

borehole data. (Buschbach and Bond, 1974; Heigold, 1992). Seismic profiles also show high-angle reverse 

faulting along the western flank of domes at La Salle, which displaces seismic reflectors that are correlated 

with the top of the Precambrian and Cambrian intervals (Heigold, 1992). 

According to drilled hole data and seismic profiles, the La Salle Anticlinorium was created due to 

displacements that occurred in the Mississippian and Pennsylvanian periods over faults in the crystalline 

basement (Nelson, 1995). Although most of these basement faults extend upward into younger strata, 

the faults in the La Salle can be classified as either drape folds (Stearns, 1978) or fault-propagation folds 

(Suppe and Medwedeff 1984) and share structural similarities with monoclines that were formed during 

the Laramide orogeny in the western United States (Lowell, 1985). 

The southern part of the Illinois Basin is a heavily deformed region with several structural features 

(Figure 7), such as basement-rooted reverse, normal, and strike-slip faults, affecting the sedimentary 

successions. During the Mississippian period, pre-existing faults experienced recurrent movement due to 

different stress regimes, such as the southwest block of the St. Genevieve Fault Zone, which was a high-

angle normal fault during the Precambrian to Devonian periods (Nelson and Lumm, 1985) but uplifted and 

acted as a reverse fault during the late Mississippian and early Pennsylvanian periods (Nelson and Lumm, 

1985). Additionally, the Lusk Creek Fault Zone and Rough Creek- Shawneetown Fault System (Figure 7) have 

undergone multiple episodes of displacement, initially as normal faults in the Precambrian through early 

Cambrian periods (Soderberg and Keller, 1981; Nelson and Lumm, 1987; Bertagne and Leising, 1991) and 

later as high-angle reverse faults in the late Paleozoic period (Smith and Palmer, 1974). The Fluorspar Area 

Fault Complex (Figure 7) is composed of high-angle normal faults with a southwest-northeast trend, but 

some of the faults in the complex act as reverse and strike-slip faults. The Wabash Valley Fault System is 

composed of high-angle normal faults with up to 480 feet (145 m) of displacement (Bristol and Treworgy, 

1979; Ault et al., 1980) and is believed to be Precambrian basement faults that extend up to the 

Pennsylvanian sediments (Pratt et al. 1989; Nelson, 1990). The Cottage Grove Fault System developed in the 

late Pennsylvanian to early Permian periods (Nelson and Krausse, 1981) and impacted the Precambrian 

crystalline basement. It is a right lateral strike-slip fault with horizontal displacement of several hundred to 

a few thousand feet (Nelson and Krausse, 1981). The faults affected Pennsylvanian and Chesterian strata, 

with maximum dip-slip displacements of approximately 200 ft (60 m). 
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Figure 5. Major structural features in northern Illinois (adopted from Nelson, 1995). 
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Figure 6. Active major structures during late Pennsylvanian and early Permian times in south and southeast Illinois 

(adopted from Nelson, 1995). 

Figure 7. Structures active from late Mississippian through early Pennsylvanian periods (adopted from Nelson, 

1995). 
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INITIAL GEOLOGIC CONCEPTUAL MODEL 

The geologic conceptual model has multiple layers of crystalline basement rock, and sandstone 

with varying crystal and grain size. The complexity of the geology includes intrusive and extrusive igneous 

rock, alluvial, fluvial and eolian depositional environments These depositional environments have several 

orders magnitude difference in vertical permeability with continuous and discontinuous vertical flow 

barriers. The geologic conceptual model has faults/fault zones with and without offset in the crystalline 

basement and lower Mt. Simon; a network of fractures provides the permeability of the basement while 

intergranular connectivity provides the permeability of the clastics. 

The initial conceptual model of Precambrian, Argenta, and Mt. Simon at the IBDP site was based on 

the lithofacies study by Leetaru and Freiburg (2014). The Precambrian crystalline basement is composed of 

rhyolite, breccia, granite, diorite, and gabbro. The uppermost portion of the Precambrian crystalline 

basement comprises weathered rhyolite with a clay-rich matrix, while the lower portion consists of granite 

and gabbro. Although the matrix porosity and permeability of these rocks are quite low, the upper part of 

the crystalline basement exhibits fracture porosity and permeability that is part of a fracture network. 

 A sharp unconformity exists between the Precambrian crystalline basement and the overlying 

Argenta Sandstone. The Argenta Sandstone primarily consists of fine-to-medium-grained sandstones 

deposited in lower and upper shoreface environments with varying energy conditions. The thickness of 

the Argenta Sandstone is related to the paleotopography of the crystalline basement, resulting in greater 

thickness above troughs and lesser thickness above hills. Lithologies include conglomerate and fine-to-

medium-grained sandstone. The porosity and permeability of this sandstone are relatively low due to 

compaction and cementation diagenetic processes that occurred after the deposition of the sandstones. 

The Lower Mt. Simon Sandstone, as described by Leetaru and Freiburg (2014), was deposited in a 

braided river system, with distinct facies representing different depositional environments, such as distal 

alluvial fans, ephemeral sheet flood events, and floodplains or shallow ephemeral playas. These 

sandstones exhibit moderate sorting and rounding of fine to medium grain sizes. The type of porosity 

displayed in these sandstones is intergranular, with an average porosity of 19%. The connected pore 

spaces contribute to a high permeability, with an average value of 200 mD. However, this section also 

includes very thin interbedded layers of mudstone and siltstone with significantly low porosity and 

permeability, which were deposited in the floodplain of the fluvial system. 

The Middle Mt. Simon Sandstone comprises two depositional facies: braided river deposits with 

thin interbedded flood plain or playa deposits, and eolian deposits forming sand sheets, dunes, and 

interdune areas. Compaction and cementation processes have contributed to the destruction of primary 

porosity in this layer. 

The Upper Mt. Simon Sandstone represents a transition from the underlying fluvial and eolian 

deposits of the Middle Mt. Simon Sandstone to a marine-dominated system. The upper portion features 

more heterogeneous, cross-bedded sandstones, indicative of deposition in tidal channels or a strandplain-

barrier island system. 
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IBDP DATA OVERVIEW 

INTRODUCTION 

Induced earthquakes have been associated with CO2 injection for enhanced oil recovery 

operations at the Aneth (Rutledge, 2010), Cogdell (Gan and Frohlich, 2013), and Weyburn oil fields 

(Whittaker et al., 2011). In the case of the Cogdell oil field, for example, events with magnitudes as large 

as Mw 4.4 were observed. Induced seismicity associated with dedicated CO2 storage in saline formations 

has only been observed at the In Salah, Algeria, storage site (Goertz-Allmann et al., 2014; White et al., 

2014) and at the IBDP CO2 storage site (Kaven et al., 2015; Bauer et al., 2016). In both cases, event 

magnitudes ranged from Mw -2 to 1. Here, we focus on the IBDP site, where more than 10,000 

microearthquakes have been recorded in the span of three years of CO2 injection. 

The pilot CCS program at the IBDP site has collected a comprehensive amount of data that have 

allowed detailed reservoir characterization of the injection interval and the units above and below it. In 

addition to well-log and core measurements, microseismicity monitoring during injection using borehole 

sensors has identified thousands of microearthquakes (Bauer et al., 2016). Previous investigations at the 

IBDP site have provided detailed microseismicity locations (Goertz-Allmann et al., 2017; Dando et al., 

2021) and focal mechanisms analysis (Langet et al., 2020). Other authors have identified fault planes 

where seismicity might have occurred, using microseismicity clustering (Dichiarante et al., 2021) and 

active surface seismic data (Williams-Stroud et al., 2020). Well-log and core analysis have clarified in detail 

the stratigraphy of the injection site (Leetaru and Freiburg, 2014; Freiburg et al., 2014). 

One of the main characteristics of the microseismicity at the IBDP site is its lack of clear temporal 

correlation with CO2 injection rate. Additionally, detailed reservoir characterization using core and well-

log data has shown that the Lower Mt. Simon formation, where injection occurs, is separated from the 

basement by a laterally extensive, low-porosity and permeability interval referred to as Argenta (Leetaru 

and Freiburg, 2014; Freiburg et al., 2014). This geological observation suggests that the Lower Mt. Simon 

formation is hydraulically disconnected from the basement section where the microseismicity is located, 

which implies that pore pressure diffusion through a stratified geological interval into the basement, by 

itself, cannot explain microseismicity occurrence associated with CO2 injection. 

Interpretation of surface seismic data collected at the IBDP site resulted in a complex set of non-

planar 3D fault surfaces that extend from the Lower Mt. Simon into the basement interval (Williams-

Stroud et al., 2020). Fault zones can hydraulically connect intervals of different depths and effectively 

allow pore-pressure diffusion from the injection interval to regions much further away from it (Caine et 

al., 1996; Faulkner et al., 2003, 2010). The extent to which pore pressure diffusion along faults can induce 

fault destabilization requires reservoir pressure and microseismicity monitoring that are available at the 

IBDP Pilot CO2 injection site, therefore making it an excellent field-case study to investigate the 

hydromechanical conditions for seismicity occurrence due to CO2 injection. 

This section summarizes the data and interpretations from the IBDP project that was used as the 

initial geologic conceptual model and the data used to support the iterations in models used to finalize 

the geologic conceptual model. Early in the SoS project, it was recognized that detailed analyses of a 

shorter period of time and fewer induced seismicity clusters was necessary. Therefore, the IBDP 

operational data used was the first nine months of injection pressure, CO2 saturation, and the two most 

significant seismicity clusters: #2 and #4 (Bauer et al., 2016). 
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GEOLOGICAL DATA 

IBDP data (Bauer et al., 2016) is from various sources: petrophysical logs from four wells at the 

Decatur site, interpreted faults from surface seismic interpretations, and literature of regional faults and 

structural features in Illinois. At the Decatur site, four wells penetrate the Mt. Simon, pre-Mt. Simon 

(Argenta), and Precambrian crystalline basement with a full suite of well logs, including gamma ray, 

resistivity, porosity, photoelectric, sonic logs, and borehole image logs. The formation top and major 

internal markers and boundaries were picked and traced using wireline logs to build structure and 

thickness maps. Rock characteristics were evaluated using gamma ray, density-porosity,  neutron-porosity, 

photoelectric, and density logs. Reservoir properties,  such as porosity and permeability, were derived 

from wireline logs. The cross-plot of porosity was calculated by averaging density-porosity against neutron 

porosity. Permeability data were estimated using the Illinois State Geological Survey’s (ISGS) method 

(Damico and Frailey, unpublished report). Borehole image logs (FMI) were analyzed in static and dynamic 

views to examine bed boundaries, fractures, and other geologic features. Natural fractures were 

interpreted as either conductive (open) or resistive (healed). Induced fractures and breakouts resulting 

from drilling operations were examined to determine the direction of the major and minor principal 

stresses. 

 

AVAILABLE GEOCELLULAR MODEL AND CALIBRATION DATA 

IBDP recorded pressure at the CCS1 injection well and multi-level monitoring VW1 well and CO2 

saturation estimates from repeat pulsed neutron capture logs, which was instrumental in geocellular 

model calibration/history matching. Prior to the start of the SoS project, a pressure modeling and history 

matching task was conducted by Schlumberger, and as such there was a static and dynamic model at the 

beginning of the SoS project, which was interrogated to determine if the results from the Schlumberger 

model could meet part of the SoS project objectives (i.e., predicting pressure results at microseismic event 

cluster location). 

The Schlumberger model was a heterogeneous model that covered an area of 2.3 x 2.3 mi (3.7 x 

3.7 km) with grid cell dimensions of 192 x 192 ft in the X and Y directions. The model comprised 132 layers 

and a total of 1,336,331 grid cells. It spanned from the top of the Eau Claire Formation to the top of the 

Precambrian crystalline basement. Furthermore, the model incorporated four faults that were interpreted 

from the initial version of surface seismic data. This model was calibrated to the entire 3 years of injection 

and 0.75 years of shut-in. 

 

MICROSEISMIC DATA 

Raw continuous microseismic data corresponding to microseismic event clusters #2 and #4 were 

from (1) January 14, 2012, to March 12, 2012, and (2) May 23, 2012, to August 23, 2012, respectively. 

Because the sample rate of continuous waveform data was changed to 2,000 Hz from 500 Hz on February 

21, 2012 (Jaques et al., 2019), the waveform data was processed from February 21, 2012, for the SoS 

project. The total data size was ~ 5 TB of SEG2 files of 10-second windows. Each SEG2 file contained a total 

of 94 channels, which included eight channels from the two active CCS1 PS3 geophones (PS3-1 and PS3-

2) and 86 channels from 22 geophones at geophysical monitoring well #1 (GM1). (See Jaques et al. [2019] 

for the detailed description of microseismic data). A total of 8,640 SEG2 files made up daily (i.e., 24 hours) 

recordings. The two CCS1 PS3 sensors had four channels from a tetrahedral configuration instead of the 

more conventional orthogonal three channels. For the SoS project, we converted the four channels of 
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each PS3 geophone associated with the geometric orientation of each tetrahedral channel to three 

orthogonal directions (V, H1, and H2), allowing us to project the contributing signal intensity of each 

channel onto the three directions.  
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TASK 2 - GEOLOGIC CONCEPTUAL AND GEOCELLULAR MODELING 

METHODOLOGY 

In this section, the methodology used in Task 2 is outlined, encompassing multiple steps to develop a 

comprehensive geocellular model from the geologic conceptual model of the study area. The subsequent 

paragraphs provide details on the procedures and techniques used in each step, ensuring a thorough and 

reliable analysis consistent with the workflow. 

• Constructing the structural framework: The initial step involved constructing the structural 

framework for the geocellular model. This was accomplished by using depth maps derived from 

the interpretation of surface seismic data, which spanned from the top of the Eau Claire Shale to 

the base of the Precambrian crystalline basement. 

• Importing petrophysical log data: Petrophysical log data from four wells (CCS1, CCS2, VW1, VW2) 

were incorporated into the conceptual geological model to further inform its development.  

• Creating the geocellular model: A geocellular model was generated based on the conceptual 

geological model of the Precambrian crystalline basement, Argenta, and Mt. Simon Sandstone in 

the study area. 

• Distributing porosity and permeability data: Porosity and permeability data from the four wells 

were integrated into the geocellular model using stochastic algorithms to ensure a robust 

representation of these key properties. 

• Analyzing borehole image logs: Borehole image (FMI) logs were scrutinized to examine fractures 

and other geological features. Natural fractures were classified as either pen or healed, while 

induced fractures and breakouts were assessed to determine the orientation of major and minor 

principal stresses.  

• Constructing the fracture model: The porosity and permeability data extracted from the image 

logs were used to develop a fracture model for the Precambrian crystalline basement. This model 

was informed by the major and minor principal stresses identified in the previous step. 

• Appending porosity and permeability models: The porosity and permeability model for the 

Precambrian crystalline basement was combined with the models for the formations above it to 

create a comprehensive representation of the study area. 

• Incorporating faults: A total of 28 faults, extracted from surface seismic data, were integrated into 

the model. Additionally, as the model progressed, new faults identified through machine learning 

algorithms were incorporated, resulting in an updated geocellular model. 

• Updating the model through iterative feedback: The geocellular model was continuously refined 

based on feedback from history matching of pressure data (Task 4) and stress field model data 

(Task 5). This iterative process allowed for the creation of several versions of the geocellular 

model, each successively more accurate and representative of the study area. 

This methodology provided a robust and comprehensive geocellular model for Task 2, which served as a 

solid foundation for further analysis and interpretation in subsequent tasks. 

 

FMI INTERPRETATION  

To support the poroelastic modeling of the Methodology (Figure 1), stress orientation was needed; 

additionally, to develop the Precambrian permeability model, fracture orientation was needed. Therefore, 

the IBDP Fullbore Formation Microimager (FMI) logs were analyzed for the Mt. Simon, Argenta, and 

Precambrian crystalline basement. The FMI log data were imported into the Techlog Schlumberger Software 
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and analyzed, resulting in static and dynamic images. The dynamic images featured a range of contrasts, 

allowing for enhanced views of the small features, such as vugs and fractures, bed, and layer boundaries. 

The use of static images allowed for the visualization of relative changes in resistivity throughout the 

borehole. This approach provides a better understanding of large features, such as bed boundaries, 

unconformities, and significant fractures, as they are presented in a single contrast. High-resistivity features, 

such as cements, carbonates, and sandstones, were displayed as light colors, while low-resistivity features 

and lithologies, including shale and water-filled open fractures, were displayed as dark colors. Fractures in 

the wells were characterized as induced or natural features. The natural fractures were categorized either 

as healed or open. The dip and azimuth of fractures were represented using both tadpole plots and 

stereonets. The concentration of stress around the wellbores resulted in compressive or tensile failures, 

which indicated the direction of maximum and minimum stresses (Bell, 1996). The orientation of borehole 

breakouts and drilling-induced fractures were found to be parallel to the minimum horizontal stress (Shmin) 

and maximum horizontal stress (SHmax), respectively. 

 

FRACTURE ANALYSIS 

CCS1 

The CCS1 fracture analysis shows that there were 22 open fractures and 11 healed fractures 

interpreted from the top of the Mt. Simon to the bottom of the hole penetrating the Precambrian crystalline 

basement. Additionally, the fracture analysis revealed 89 induced tensile fractures, 23 induced fractures, 

and 11 breakouts (Table 1). Dynamic images of breakouts, open, and healed fractures, shown in Figure 8. 

The distribution of dip and azimuth of the fractures were displayed in stereonets in Figure 9. 

The 11 borehole breakout orientations were predominately NE-SW with azimuth of 67° and a 

standard deviation of 4° (Figure 9a). The breakouts were almost vertical with an average of 85° and a 

standard deviation of 4°. The orientation of the healed fractures was classified into two sets with azimuth of 

30°-40° and 150°-170° (Figure 9b). These fractures were considered sub-vertical with a mean dip of 61° and 

a standard deviation of 6°. The induced fractures were considered vertical with an average dip of 84° and 

standard deviation of 5° (Figure 9c). These fractures displayed a NW-SE orientation with an azimuth of 337°. 

The open fractures did not show a predominant orientation or dip with data scattered through the stereonet 

(Figure 9d); however, the fracture analyses indicated that the Argenta and Precambrian fracture orientations 

were between 0°-50° with an average dip of 50°. 

 

CCS2 

The CCS2 fracture analysis shows that there were six healed fractures, 16 induced fractures, 26 

induced tensile fractures, and 36 breakouts (Table 1) from the top of the Mt. Simon to the upper part of the 

Precambrian crystalline basement. Open fractures were not observed. Dynamic images of breakouts and 

healed fractures are shown in Figure 10. The distribution of the fracture orientations and the dip of these 

fractures are displayed in stereonets, shown in Figure 11. 

The breakout orientations were predominantly NE-SW with an average azimuth of 65° and a 

standard deviation of 8° (Figure 11a). The breakouts were almost vertical with an average dip of 86°. The 

induced fracture orientations showed a trend of NW-SE and an average azimuth of 154° and a standard 

deviation of 8° (Figure 11b). The induced fractures were vertical with an average dip 87° and a standard 

deviation of 9°. The healed fractures do not show a predominant trend, and the data is scattered through 

the stereonet (Figure 11c). 
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Figure 8. Interpreted FMI log of the CCS1 well at the IBDP site, showing a) breakouts, b) open fractures, and c) healed 

fractures. 

Figure 9. Bidirectional stereonet showing the density of the orientations of all fractures interpreted in the CCS1 well. 
a) Breakouts; b) healed fractures; c) induced fractures; d) open fractures. 
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Figure 10. Interpreted FMI log of the CCS2 well at the IBDP site, showing a) healed fractures and b) breakouts. 

 

 

Figure 11. Bidirectional stereonets 
showing the density of the 
orientations of all fractures 
interpreted in the CCS2 well. 
a) Breakouts; 
b) induced fractures; 
c) healed fractures. 
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VW1 

The VW1 fracture analysis indicates that there were 85 open fractures and one healed 

fracture from the top of the Mt. Simon into the top of the crystalline basement. Furthermore, the 

fracture analysis revealed 32 induced tensile fractures, 41 induced fractures, and three breakouts 

(Table 1). Dynamic images of the open and tensile fractures are shown in Figure 12. The distribution 

of the orientation and the dip of these fractures are displayed in stereonets, shown in Figure 1 3. 

The borehole breakout orientations were predominately NE-SW with an azimuth of 249° and 

a 2° standard deviation (Figure 13a). The breakouts were vertical with a dip of 88° and a standard 

deviation of less than 1°. The healed fractures were classified into two major sets, with azimuths of 

80°-100° and 100°-120° (Figure 13b). The average dip of the first set is 56°, and the average for the 

second is 67°. The FMI analyses indicate that the induced fractures trend NW-SE with an average 

azimuth of 160° (Figure 13c). The open fractures do not show a predominant direction (Figure 13d). 

 

 

 
Figure 12. Interpreted FMI log of the VW1 well at the IBDP site showing a) open fractures and b) induced tensile 
fractures. 
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Figure 13. Bidirectional stereonets showing the density of the orientations of all fractures interpreted in the VW1 

well. a) Breakouts; b) healed fractures; c) induced fractures; d) open fractures. 

 
VW2 

The VW2 borehole breakout orientations were predominantly NE-SW orientation, with an 

azimuth of 65° and a standard deviation of 7°, as shown in Figure 14a. The dip of the breakouts was 

classified into two groups, with average dips of 42° and 89°, respectively. An examination of the 

induced fractures revealed a trend of NW-SE, with an average azimuth of 159° and a standard 

deviation of 7°, as shown in Figure 14c. 

Further analysis of the induced fractures revealed an average dip of 82° with a standard 

deviation of 5°. However, the distribution of healed and open fractures was found to be scattered 

throughout the stereonet, with no predominant dip or azimuth being observed, as shown in Figure 

14b and 14d. 
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Figure 14. Bidirectional stereonets showing the density of the orientations of all fractures interpreted in the VW2 
well. a) Breakouts; b) closed fractures; c) induced fractures; d) open fractures. 

 

 
Table 1. Number of open fractures, healed fractures, breakouts, and drilling-induced fractures for the wells at the 
IBDP site. 

Wells 
Number of Open 

Fractures 
Number of 

Healed Fractures 
Number of 
Breakouts 

Number of 
Drilling-Induced 

Fractures 

CCS1 22 11 11 23 

CCS2 - 6 36 16 

VW1 85 1 3 41 
VW2 103 14 3 68 

 

The results of the maximum and minimum horizontal stress (SHmax and Shmin) measurements from the four 

wells were found to be consistent with the orientations of horizontal and minimum stresses outlined in 

the 2008 World Stress Map (WSM) (Figure 15, in Hurd, 2012). 
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Figure 15. Spatial variation in horizontal principal stresses. Note, the Illinois Basin is located in a strike-slip region 

(SH > SV >Sh; 1.5, green color) with NE-SW direction of SHmax and NW-SE direction of Shmin. 

 

GEOCELLULAR MODEL 

Geocellular Model Area 

The model boundary encompasses an area of 5.6 × 5.6 miles (9.1 × 9.1 km) with CCS1, CCS2, VW1, 

and VW2 near the center of the model (Figure 16). The model comprises of 290 cells in the X direction 

and 290 cells in the Y direction, and 379 layers, with a grid spacing of 103 × 103 ft (31 × 31 m). The total 

number of cells in the geocellular model is 31,873,900. 

Figure 16. Dimensions of the geocellular model and the locations of wells at the IBDP site. The structure contour map 

shows the statistically generated top of the Mt. Simon Sandstone based on 3D surface seismic interpretation. 
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The structural and stratigraphic framework of the IBDP site was defined based on the surfaces 

and faults derived from the interpretation of the reprocessed 2019 3D seismic survey, which has a higher 

resolution compared to 2012 3D seismic survey. However, the seismic data only covers an area of 1.9 × 

1.9 miles (3 × 3 km), which is about 10% of the size of the model. Therefore, the topography outside the 

seismic area were extrapolated using the Sequential Gaussian Simulation algorithm. The depth surfaces 

imported into the geocellular model include the surfaces of the intervals and formations from the top of 

the Eau Claire Formation to a depth of -10,000 ft in the Precambrian crystalline basement (Table 2). 

Twenty-eight fault surfaces derived from 3D surface seismic interpretations were integrated into 

the static model. The interpretation of faults and depth maps was aided by tracking the seismic reflectors 

line by line manually and using an ant-tracking processing technique that automatically extracts fault 

surfaces from the 2019 IBDP Seismic Reprocessing Volume (Williams-Stroud et al., 2020). However, ant-

tracking was not able to recognize small faults and strike-slip faults without vertical displacements. Using 

ML algorithms, nine additional faults were extracted and incorporated into the model (see Tasks 3 [Fault 

Identification] and 4 [Pressure and Stress Modeling]). 

The Precambrian surface assessment indicates that the crystalline basement consists of several 

paleo-highs and troughs. Over the troughs, the thickness of the Argenta increases to about 50 ft (17.9 m), 

but over the hills is less than 10 ft (3.05 m). Due to the seismic resolution, it is difficult to know if the 

Argenta is present or not over some of the paleo-highs. Over some of the paleo-highs, the Mt. Simon 

directly covers the Precambrian crystalline basement or a thin interval of Argenta is present between the 

Mt. Simon and Precambrian crystalline basement. 

The assessment of the fault heights interpreted from 3D seismic data showed the faults are across 

the Mt. Simon and Argenta. Since tracking the faults through the Precambrian crystalline basement is 

difficult, the major faults were extended into the basement. After adding the faults to the geocellular 

model, most of the faults have a displacement ranging from 0 to 30 ft (9.1 m), but nine faults have 

displacement ranging from 30 to 59 ft (9.1 to 18.0 m). Most of the interpreted faults extend into the Mt. 

Simon B (Table 2). Figure 17 shows the location of the faults extracted from surface seismic interpretations 

as well as their corresponding displacements on the surface of the Precambrian crystalline basement. 

Figure 17. Map depicting the spatial distribution of faults (a) and their displacements (b) on the Precambrian surfaces, 
as interpreted from surface seismic data. 

 

The correlation between interpreted faults from surface seismic data and microseismic events is 

observed to be low. Using ML algorithms for the interpretation of faults resulted in the identification of 

several small faults associated with cluster #2 and cluster #4 of microseismic events. These faults traverse 
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the Precambrian surface with a NE-SW trend. Most of the small faults are characterized as strike-slip and 

exhibit a stronger correlation with the trend of microseismic events (Figure 18). 

 
Figure 18. Map illustrating the distribution of microseismic data, wells, and faults as extracted by ML algorithms at 

the IBDP site. 

Zone and Layering  

The Lower Mt. Simon A (injection zone) and Argenta were divided into model layers, with average 

thicknesses from 2.3 to 3.8 ft (0.7 to 1.15 m), using the onlap layering method based on interpretations 

of the conceptual model (Table 2). The layer thicknesses were determined to account for contrasts in 

porosity and permeability in well data. The proportional layering method was used for the intervals 

between the top of the Lower Mt. Simon A and the top of the Mt. Simon E. To keep the overall number 

of cells within the model below 4 million, the zones between the top of the Mt. Simon E and the top of 

the Lower Mt. Simon A-Upper were divided into coarse layers in relation to the layers of the Lower Mt. 

Simon. The model covered the interval from the top of the Eau Claire Formation to a depth of -10,000 ft 

within the Precambrian crystalline basement, which is approximately 3,000 ft of the basement. 

Precambrian crystalline basement model layers were represented with 34.5 ft (10.5 m) thick layers. The 

intervals that were modeled and the thickness, average porosity, and average permeability of model 

layers for each interval are summarized in Table 2. Upscaling was applied to 0.5 ft resolution well logs to 

produce one value for each model layer. The porosity and permeability of the four wells were upscaled 

into the model layers. The arithmetic averaging method was selected because it matched the core 

porosity, while the geometric averaging method was selected to match the horizontal core permeability, 

and the harmonic averaging method was selected for the vertical permeability. The results of this process, 

including the model layers and comparison of the porosity and permeability log data to the upscaled data, 

are shown in Figure 19. 
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Table 2. Thickness, average porosity, and average permeability of model layers within the formations and intervals 
modeled. The intervals closer to the base of the Mt. Simon and Argenta have smaller thickness to improve resolution 
of predicted pressure and saturation data nearest to the locations of this data used for calibration. 

Intervals and Formations Average layer 
thickness (ft) 

Average layer 
thickness (m) 

Average 
porosity (%) 

Average 
permeability 

(mD) 

Mt. Simon E 44.0 13.4 10.7 9.3 

Mt. Simon D 27 8.7 8.7 2.5 

Mt. Simon C 16 4.8 9 2.2 

Mt. Simon B 10.5 3.20 15.8 22.4 

Mt. Simon A-Upper 3.5 1.1 21.9 54.9 

Mt. Simon A-Middle 3.5 1.1 16 29.1 

Mt. Simon A-Lower  2.3 0.7 19.4 163.8 

Argenta 3.80 1.15 7.4 0.8 

Precambrian 34.5 10.5 0.71 1.782  
1Fracture porosity; 2Fracture permeability 
 

 

Figure 19. From left to right, well log correlation of CCS1, VW1, VW2, and CCS2. Datum is the top of the Precambrian 

crystalline basement. The log data includes gamma ray (GR), total porosity (PHIT), and horizontal permeabilities 

(Perm_F and Perm_Kh) as raw data and scaled-up data, respectively. The red dots on CCS1 log indicate the core 

porosity and core permeability. The layers and their thickness can be observed on the scaled-up logs. Note, there is 

a strong correlation between the scaled-up porosity and permeability data with their raw data. 
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Variogram Analysis and Petrophysical Modeling 

The porosity and permeability data of the four wells was available for 0.5-ft intervals. However, 

there were uncertainties related to modeling the porosity and permeability values between the wells. To 

reduce these uncertainties and properly distribute the petrophysical data between wells, geostatistical 

algorithms were used in a way that distributed data represented the geologic conceptual model of the 

formations. To distribute the data between wells, variogram analysis was used on the porosity and 

permeability data, and major, minor, and vertical ranges for each interval were identified. Different 

methods of geostatistical algorithms were tested, and the histograms of modeled porosity and 

permeability were compared against the original data and upscaled log data. Finally, the distribution of 

data was checked against the geologic depositional setting of each interval to pick the final method. The 

histograms provided for each geostatistical algorithm revealed that Kriging and Sequential Gaussian 

Simulation (SGS) performed better in comparison to other algorithms for the distribution of interval 

porosity and permeabilities. 

Figure 20 a-b depicts CCS1 and VW1 cross-section. CCS1 is located toward the downside of a 

paleo-high, where the Argenta thickness increases relative to the Argenta thickness at VW1. The intervals 

with high and low permeabilities are shown with warm and cold colors, respectively (Figure 20). The 

distribution of permeability suggests that the permeability of the sandstones at the lowermost parts of 

CCS1 is higher compared to equivalent intervals in VW1. However, as the stratigraphy of the Lower Mt. 

Simon A formation progresses upward, an increase in the thickness of the lower permeability baffles is 

observed at VW1. There are several thin baffles in the middle and upper parts of the Lower Mt. Simon A. 

While a few of the baffles are continuous, most pinch out between the wells. 

Figure 20 c-d is the CCS1 and CCS2 cross section. Both wells are located on the west and east sides 

of a paleo-high with the same thickness as the Argenta Sandstone. The reservoir quality and thickness of 

Mt. Simon A-Lower are similar in both wells. However, the thickness of baffles in CCS1 is less than in CCS2. 

 

Fracture Model 

A fracture model was constructed using detailed data collected from the top of the Precambrian to 

the base (-10,000 ft) layer. The data collected includes FMI logs of the four wells, CCS1, CCS2, VW1, and VW2, 

which were used to extract natural fractures and trends, providing a comprehensive understanding of the 

subsurface fractures. The natural fractures, combined with the knowledge of the rock formation and tectonics 

of the area, enabled the model to accurately represent the distribution of fractures in the subsurface. 

The permeability values of the fracture model in the X, Y, and Z axis were also determined from the 

FMI logs, which provides insight into the effective permeability of the reservoir in different directions. 

Furthermore, the porosity and permeabilities were distributed stochastically throughout the model, which 

allows for a more realistic representation of the subsurface rock formation. 
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DISCUSSION 

Maximum and Minimum Horizontal Stress Orientations 

Maximum and minimum horizontal stress orientations were determined by interpreting the 

directions of borehole breakouts and drilling-induced tensile fractures obtained from image logs. A total 

of 76 breakouts and 235 drilling-induced tensile fractures were analyzed in four wells at the IBDP site. The 

results of the analysis indicated that the average orientation of SHmax derived from breakouts was 

approximately N66°E. Additionally, the plotted data of the drilling- induced fractures also revealed an 

average orientation of N23°W, indicating the direction of Shmin at the IBDP site. The direction of Shmin can 

also be determined by measuring a perpendicular orientation to the SHmax of a borehole breakout, as the 

alignment of borehole breakout is congruent with the maximum horizontal stress. Results obtained from 

analyzing FMI breakouts are recognized as more accurate in determining the direction of horizontal 

Figure 20. Cross-sections derived from the geocellular model, showing the visual representation of the 

distribution of porosity and permeability between the wells CCS1 and VW1 (a, b) and CCS1 and CCS2 (c, d). 
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stresses than those obtained from drilling-induced fractures (Bell, 1996). As a result, the orientation of 

Shmiin calculated using the perpendicular orientation of the breakouts is N24°W. 

The 2008 World Stress Map (WSM) indicates that the SHmax orientation is N65°E in nearly all 

foreland basins on the western side of the Appalachian Mountains (Zoback and Zoback, 1989; Zoback, 

1992). The WSM shows a transition from compressional faulting regimes (i.e., strike-slip and/or reverse 

faulting) in eastern North America to strike-slip faulting in the mid-continent and predominantly extension 

in western intraplate North America, which suggests that IBDP is located in a transition zone, dominated 

by a strike-slip faulting regime with the SHmax direction in a NE-SW orientation. The orientation of SHmax 

indicates that the primary source of the horizontal stresses are forces deriving and resisting plate motion 

in North America (Sbar and Sykes, 1973; Yang and Aggarwal, 1981; Gough, 1984; Zoback and Zoback, 1980, 

1981, 1991). Surface fracture data from outcrops in Indiana also indicate patterns of SHmax with small 

variation in the mean orientation of the horizontal principal stresses across the state; overall orientation 

of the SHmax is N60°E (Powell, 1976; Engelder, 1982; and Ault, 1989). 

A small variation in the orientation of the breakouts may be related to anomalies in magnetic 

declination measurements by the FMI tool (Yildirim, 2014). Additionally, the presence of major and minor 

faults and fold contribute to small rotations (1° to 4°) in the orientation of the SHmax. Despite the presence 

of large structural features in Illinois, such as the Wabash Valley Fault System, La Salle Anticlinorium, Du 

Quoin Monocline, and the Rough Creek–Shawneetown Fault System, the orientation of SHmax does not 

appear to be significantly affected by these structural features, which is supported by the fact that the 

orientation of SHmax is equivalent to the calculated SHmax by Zoback (1992). Examination of the fault systems 

and the trend of the structural features in Illinois suggests that the orientation of stress regimes has 

changed throughout geological time due to fault movements and reactivations (Nelson, 1991). The trend 

and type of fault movements indicate that the orientations of stress regime were different throughout 

geological time relative to the contemporary stress regime. The orientations of the fractures in the 

crystalline basement and the Paleozoic rocks are a result of at least four compressive events (Grenville, 

Taconic, Acadian, and Alleghenian/Ouachita) and two tensional tectonic events (Keweenawan and Pangea 

rifting) (Lahann et al., 2017). The orientation of the SHmax is not significantly impacted by the large 

structural features present in Illinois, as it aligns with the trend of principal horizontal stresses observed 

in the WSM. However, the orientation of the stress regimes has undergone changes throughout geologic 

time, as evidenced by the presence of healed and open fractures with varying orientations. 

 

CONCLUSION 

Task 2 project conducted an examination of the major structural features and regional faults that 

have played a crucial role in shaping the geology and tectonics of Illinois. These major structural features 

were identified as the Rough Creek-Shawneetown and Cottage Grove Fault Systems in southern regions, 

the St. Genevieve Fault Zone and the Ozark Dome in western and southwestern regions, the Du Quoin 

Monocline and La Salle Anticlinorium in central and eastern regions, and the Sandwich Fault Zone and 

Plum River Fault Zone in the northern region. We emphasized the significance of these structural features 

in comprehending the subsurface rock formation and planning future drilling and injection operations. 

Furthermore, we provided a thorough analysis of the orientation of maximum and minimum horizontal 

stress at the IBDP site. This analysis was achieved by utilizing borehole breakouts and drilling-induced 

tensile fractures. The results of the analysis indicated that the average orientation of SHmax as inferred 

from borehole breakouts is approximately N66°E and the average orientation of Shmin as inferred from 

drilling-induced fractures is approximately N24°W. Previous research on horizontal stress orientation, 
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such as the 2008 WSM that illustrates a transition from compressional to strike-slip faulting regimes in 

North America, is also referenced. The WSM suggests that the proposed injection site is in a transition 

zone dominated by a strike-slip faulting regime with the maximum horizontal stress direction in a NE-SW 

orientation. Additionally, we established a reservoir static model for the IBDP site. This model was 

designed to establish the structural and stratigraphic framework of the area and was created based on 

structure surfaces obtained from a high-resolution 3D seismic survey conducted in 2019, as well as faults 

that were extracted from seismic interpretation and ML algorithms. The model covered a substantial area 

of 5.6 x 5.6 miles and comprised various surfaces, including the top and bottom of each formation. The 

purpose of creating this model was to serve as a foundation for other tasks within the SoS project by 

providing a comprehensive understanding of the subsurface framework, and it can be used for various 

applications like reservoir modeling and simulation, forecasting the behavior of subsurface rock 

formation, and identifying potential risks for injection operations. 

The geologic characterization described was developed iteratively with the fault identification 

aspect of Task 3 and forward modeling of Tasks 4 and 5, as designated in the methodology proposed in 

Figure 1. Seven unique geocellular models were made in response to these iterations. The geologic 

conceptual model was modified three times in support of this methodology, which concluded the relative 

importance of faults on the distribution of CO2 and pressure within the Mt. Simon Sandstone and the 

Precambrian crystalline basement. 

While updated three times, the final geologic conceptual model varied several attributes in the 

Argenta, Mt. Simon, and Precambrian formations (Table 3). The differences, evolved through iterations 

with the modeling task, were most notably the following:  

• Adjusting the thickness of Argenta over the paleo-highs between the wells. 

• Incorporating the discontinuous LPZs (low-permeability zones) in the model based on the 

conceptual characteristics of the mudstone in a fluvial system. 

• Incorporating a greater number of faults in the model instead of the original four. 

  



 

40 
 

Table 3a. Precambrian (PC) geologic conceptual model at the beginning of the workflow and through the final 

iteration of the workflow. 

 PC Geologic Conceptual model 

Attribute Initial Final  

Depositional Environment  intrusive igneous, plutonic and 

extrusive igneous, volcanic 

intrusive igneous, plutonic and 

extrusive igneous, volcanic 

Fractures None Cluster of fractures, oriented with 
principal stresses with spacing from 
x to y feet and a to b length 

Faults Sparsely Faulted (4 faults), 
extended from top Middle Mt. 
Simon through Precambrian; Fault 
zone width x to y ft and length from 
a to b ft; orientation random 

Intensively faulted, faults extended 
from Mt. Simon B to through the 
Precambrian; Fault zone width x to 
y ft and length from a to b ft; 
orientation with induced seismic 
cluster orientation and with large 
scale, farfield structural features  

Porosity  Matrix porosity (< 1%) Matrix and fracture porosities 
Permeability horizontal Matrix permeability (< 1 md) Matrix and fracture permeabilities 

Permeability anisotropy, horz None Yes, consistent with fracture 
orientation 

Vertical permeability <0.01 md Yes, only in fractures. 

Gross vertical height Infinite into Earth Infinite into Earth 

Vertical height of p&p bodies Uniform  Includes fracture p&p 
Upper part (Rhyolite): 30-40 ft 
Lower part (breccia): 20-70 ft 
Permeability 3 to 50 mD 
Porosity between 0 to 3% 

Vertical height of LPZ No LPZ No LPZ 

Horizontal dimensions p&p bodies  Infinite   2000-5000 ft x 300-800 ft  

Orientation horizontal p&p bodies N/A  p&p clusters (from fractures) with 
orientation of fractures 

General shape of p&p bodies None Elongated, ellipses  

Topography  Flat, surround area 
Near wells up to about 150 ft 
3500 width of near circular 
topography; high surrounded by 
mostly lows and no other high in 
about 2 x 2 miles 

Flat, surround area extended to 
simulate the near well area.  
Near wells up to about 150 ft 
3500 width of near circular 
topography; 6 x 6 miles area about 
6 highs somewhat evenly 
distributed with lows. Lows and 
highs relatively connected laterally, 
but some highs are isolated. Lows 
are wide features up to 6000 ft 

Dip  Except topography, relative flat Except topography, relative flat 

Lateral continuity  N/A Relatively isolated with low perm 
matrix surrounding the fracture 
clusters (0.0005-1 md) 
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Table 3b. Argenta geologic conceptual model at the beginning of the workflow and through the final iteration of the 

workflow. 

 Argenta Geologic Conceptual model 

Attribute Initial Final  

Depositional Environment  lower and upper shoreface 
environments with varying energy 
conditions 

lower and upper shoreface 
environments with varying energy 
conditions 

Fractures None  None 

Faults Yes, same as PC Yes, same as PC 

Porosity  Intergranular, average 8% Intergranular, average 8% 

Permeability horizontal 0.8 md average 0.08 md average 

Permeability anisotropy, horz Yes, upper shore face higher perm 
than lower shore face 

Yes, upper shore face higher perm 
than lower shore face 

Vertical permeability 0.03 md average 0.003 md average 

Gross vertical height greater thickness above PC troughs 
and lesser thickness above PC hills 
(100-150 and 20-60 ft, 
respectively.) 

greater thickness above PC troughs 
and lesser thickness above PC hills 
(100-150 and 20-60 ft, 
respectively.) 

Vertical height of p&p bodies Mostly uniform with gross thickness  Mostly uniform with gross thickness  

Vertical height of LPZ No layering or baffling No layering or baffling 

Horizontal dimensions p&p bodies  No bodies; uniform p&p No bodies; uniform p&p 

Orientation horizontal p&p bodies N/A N/A 

General shape of p&p bodies N/A N/A 

Topography  Similar to PC, but troughs filled, so a 
little less. Lack of knowledge 
regarding the thickness of Argenta 
in areas without wells. 

Similar to PC, but troughs filled, so a 
little less. Thickness of Argenta 
reaches to less than 3 feet over the 
pleo-highs. 

Dip  Except topography, relative flat Except topography, relative flat 

Lateral continuity  High, no isolated bodies High, no isolated bodies 
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Table 3c. Arkose (Mt. Simon A) geologic conceptual model at the beginning of the workflow and through the final 

iteration of the workflow. 

 Arkose (Mt. Simon A) Geologic Conceptual model 

Attribute Initial Final 

Depositional Environment  Braided River, Fluvial, Eolian Braided River, Fluvial, Eolian 

Fractures None None 

Faults Same as PC initial Same as PC final 
Porosity  total = effective  

Intergranular, average 19%  
Injection interval (7025-7050) 
7-32.5 % (avg 19.4 %) 

total = effective  
Intergranular, average 19% 
Injection interval (7035-7050)  
7-32.5 % (avg 19.4 %) 

Permeability horizontal 62 md average  
Injection interval (7025-7050) 
163 md (0.02-1920 md) 

96 md average 
Injection interval decreased 10 ft 
(7035-7050) 

Permeability anisotropy, horz No, relative uniform  No, relative uniform  

Vertical permeability 31 md average include LPZ 31 md average include LPZ 

Gross vertical height The gross thickness ranges from 350 
ft to 375 ft above the Argenta. 

The gross thickness ranges from 350 
ft to 375 ft above the Argenta. 

Vertical height of p&p bodies In each interval of 20-30 ft of 
sandstone, there is a separation by 
mudstone and siltstone with low 
porosity and permeability. 

In each interval of 20-30 ft of 
sandstone, there is a separation by 
mudstone and siltstone with low 
porosity and permeability. 

Horizontal extension of LPZ Continuous layers with low p&p discontinuous layers with low p&p 

Vertical height of LPZ 1 to 4 feet 1 to 4 feet 

Horizontal dimensions p&p bodies  Infinite (at variable thickness) over 
50x50 miles in central IL 

Infinite (at variable thickness) over 
50x50 miles in central IL 

Orientation horizontal p&p bodies N/A N/A 

General shape of p&p bodies Uniform-sheet with cross bedding Uniform-sheet with cross bedding  

Topography  Yes, Similar to Argenta, but troughs 
filled, so a little less 

Yes, Similar to Argenta, but troughs 
filled, so a little less 

Dip  Except topography, relative flat 
(2.6°) 

Except topography, relative flat 
(2.6°) 

Lateral continuity  The sand bodies are continuous, but 
the siltstones are not. 

The sand bodies are continuous, but 
the siltstones are not. 
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TASK 3 - FAULT IDENTIFICATION 

INTRODUCTION 

Quantifying in-situ subsurface conditions and understanding slip mechanisms along faults are 

critical to reducing the risk of induced seismicity and improving modern energy activities in the 

subsurface. In Task 3 (Sandia/MIT), we present both supervised and unsupervised ML methods to 

process and characterize microseismic data obtained at the IBDP site. During subsurface injection 

activities, there is a risk of activating hidden or unknown faults with stress and pore pressure changes 

associated with the injection.  

Machine learning for fault detection and interpretation of microseismic wave fields has 

increasingly developed over the past five years (Perol et al., 2018; Zhu and Beroza, 2019; Mousavi et 

al., 2020; Münchmeyer et al., 2022). A recent deep-learning (DL) success to identify seismic phases 

from microseismic events and their wave patterns can be attributed to the DL method’s ability to 

extract salient features in the data set from big training data. However, most DL methods require 

large training (i.e., labelled) data to train the model properly, which is not typical for geologic CO2 

storage sites. 

At the IBDP site, CO2 injection was maintained below fracture pressure, meaning that induced 

activities generally developed at natural, pre-existing zones of mechanical weakness. Thus, the low-

magnitude (< ~1.5) microseismic data may reveal hidden or unknown faults that are prone to changes 

in stress and pore pressure. From previous interpretations of surface seismic data, there were 

indications of faults at the IBDP site. However, we hypothesized that waveform characteristics to 

identify events could be extracted through an ML feature extraction process with proper data-

preprocessing and simple neural architecture to accommodate the limit in the training data. The 

latter is an important aspect since most geologic carbon storage sites experience a small numb er of 

events compared to large earthquake events. The proper feature extraction process can be enhanced 

by incorporating physical properties of waveforms in ML architecture. With ML, focal mechanism 

analysis of events, and inverse analyses of the microseismic data, characteristics of faults can be 

identified rapidly, which need to be corroborated by the geologic conceptual model.  

In Task 3 (Sandia/MIT), we first implemented four supervised ML approaches for detection, 

phase picking, and source location of microseismic waveform data induced by CO 2 injection at the 

IBDP site using a small number of located event data (~600 events) over a period from February to 

March 2012 (cluster #2) in the catalog. For the first approach, we used a set of preprocessing and 

data augmentation techniques to feed waveform time-frequency information to a convolutional 

neural network (CNN) to accurately detect true events. For the second approach, we implemented 

the transfer-learning method to re-train the original PhaseNet architecture, which was developed 

based on conventional seismic data, such that it adapted to microseismic-level events to accurately 

obtain p-and s-arrival times. In both cases, we achieved a higher true event detection rate compared 

to the original catalog (manual picks). For source location identification, we used Wasserstein 

generative adversarial network (WGAN) to generate new synthetic waveform data that have 

properties similar to those in the catalog. With the increased number of waveform data as training 
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data, the last CNN-based model was constructed to estimate the source locations for newly detected 

events by the first CNN model. 

Next, an unsupervised ML approach was developed as a fingerprint-based clustering approach 

(Hoffman et al., 2018) to classify waveform characteristics resulting from different zones of 

mechanical weakness. We used a Short Time Fourier Transform (STFT) to reduce dimensionality and 

highlight rupture motion, followed by the Nonnegative Matrix Factorization (NMF) and the  Hidden 

Markov Model (HMM) to construct a time-dependent probabilistic architecture. The resulting spatio-

temporal patterns were taken as fingerprints of waveform characteristics. Unsupervised clustering 

was performed on the fingerprints to identify similarities and reveal time-dependent patterns of the 

microseismic data associated with hidden and unknown faults. We presented how the spatio-

temporal patterns were related to changes in pore pressure and stress caused by CO 2 injection, and 

we also compared clustering results with the focal mechanism solutions of the microseismic data. 

This ML approach improved characterizing seismic waveforms and detected low-magnitude seismic 

events leading to the discovery of hidden fault/fracture systems. 

 

METHODOLOGY 

Data Preprocessing of Raw Continuous Microseismic Data 

Raw continuous microseismic data at IBDP was processed for event detection and waveform 

characteristics. The raw data was originally saved as 10-second windows at 2 kHz sampling rate with 

traces between 84 and 94. A two-WellWatcher-PS3-geophone array in a CO2 injection well (CCS1) had 

four-channel data from a four-component passive seismic sensing system; the geophysical monitoring 

well (GM1) had three-channel data per each geophone from a 31-level array of three-component 

geophones (Bauer et al., 2016). One example of waveform with a total number of 94 traces is shown 

in Figure 21. The detailed description of microseismic data acquisition and processing is reported in 

Will et al. (2016).  

In the catalog of microseismic events at IBDP, as briefly described in Will et al. (2016), there 

are two types of events: (1) detected events selected by simple triggering algorithms (e.g., a 

combination of filters and short-time-average/long-time-average [STA/LTA] thresholding) and (2) 

located events, which have source locations estimated by additional constrains of directional 

waveform information derived from hodograms.  

For ML applications in Task 3 (Sandia/MIT), four-channel data in the raw continuous 

microseismic data from two PS3 geophones (i.e., PS3-1 and PS3-2) were converted to three-

directional waveform data (V, H1, H2). The continuous waveform was stored in separate 10-second 

files (total of 8,640 files) that make up the 24-hour recording and converted to an MSEED file. Both 

raw and processed waveform data are shown as examples in Figure 22. 

We focused on two microseismic event clusters (#2 and #4) to characterize events detected 

at the IBDP site that occurred in the Precambrian basement, as opposed to those that occurred in the 

Mt. Simon Sandstone. The microseismic event locations are shown in Figure 23. 
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Figure 21. An example of raw continuous 10-second window waveform event data from two PS3 geophones and 

GM1 geophones. 

 

 

 

 

 
 
Figure 22. Examples of waveform (vertical channel) from the located event catalog (left) and raw continuous data 

(right). Dashed red lines represent event times in the catalog. Note that the waveform in the catalog is after 

filtering, hence they are different from the raw continuous data. The red dashed line on the raw data (right) is the 

same as the catalog to highlight the data shift between the original raw and processed catalog data. This also 

shows that the data shift is consistent. 
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Figure 23. (Left) Microseismic event locations from the beginning to the end of 2012 at the IBDP site. The solid lines 

represent faults constructed from seismic survey. (Right) Microseismic event location from clusters #2 (February-April 

2012) and #4 (May-August 2012) at the IBDP site.  

 

For event detection, phase arrival-time estimation, and fingerprint methods for waveform 

characterization, we focused on data recorded at PS3-1 and PS3-2, which have better signal to noise ratio 

and are collected from the two deepest geophones near the injection depth. Figure 24 presents the 

frequency of recorded events between February 27, 2012, and March 3, 2012, when there was a 

significant increase in seismic activity in cluster #2. This period accounts for more than 80% of the located 

events over the 15 days (most of cluster #2’s active period). Seismic event origins of this period were 

mainly concentrated in cluster #2, which was located 1,161 ft (354 m) away from the CCS1 injection well, 

as shown in Figure 23. This active period was then followed by a few days of minimal seismic records, 

which we will call a transition period, since we discovered changing waveform characteristics in both 

periods. 

 

 
Figure 24. Reduced period of event frequency of occurrence within chronological 2-hour bins over February 27, 2012, 

to March 3, 2012. The located catalog is superimposed on top of the detected catalog. The active period of cluster 

#2 is from February 27, 2012, to March 1, 2012, which is followed by the transition period of cluster #2. 
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Data Processing and Training Data Generation for Event Detection and Phase Arrival Times 

Event data preparation: We implemented ConvNetQuake’s window selection strategy (Perol et 

al., 2018) by using the catalog to find samples. For the case of events, this strategy assumes the catalog 

reports an onset time of each event and its origin coordinates to estimate and find the events in the 

continuous records when given an average wave-travel velocity. To prepare the event windows, the 

continuous raw waveform data must be preprocessed, since the located event data in the catalog at the 

IBDP site (Will et al., 2016) contains the time information as the onset of seismic wave arrival to the 

sensors. Additionally, the two-second window of the event waveform is processed so that the arrival time 

of the waveform from PS3-1 is aligned slightly earlier than the center of the two-second window. Hence, 

the event data must be extracted from raw continuous waveform data using information in the catalog 

to pinpoint the event occurrence. To do this, the start of the sampling window is offset to about two 

seconds behind the reported event time in the catalog and a travel speed of ~16,000 ft per second is 

added, ensuring that the 0.2–0.5-second interval of event is captured within the two-second window. For 

this work, we used waveform data from both PS3-1 and PS3-2 sensors for event data.  

Noise data preparation: We looked for windows of seismic noise in between the cataloged events 

to ensure that the noise data could be captured randomly. We implemented ConvNetQuake’s window 

selection strategy by using the catalog to find events or noise samples. We also added a threshold value 

(0.01 amplitude) to prevent non-cataloged true events from integrating into the noise-training dataset.  

As a result, one noise data was selected every 100 seconds for 15 days, resulting in a total of ~13,191 

noise data from PS3-1 & PS3-2.  

The event times in the catalog were used to search for the start of a seismic event within raw 

continuous waveform, and we extracted 2-second windows of waveform for event detection using 

convolutional neural network (CNN) and 1.5-second windows for phase arrival times using PhaseNet (Zhu 

and Beroza, 2019). Figure 25 shows the overall workflow for both the CNN model and PhaseNet, 

respectively, starting from this window extraction. 

 

 

Figure 25. Workflow for (a) event detections using convolutional neural network (CNN) and (b) arrival-time 

estimation (i.e., phase picking) using PhaseNet. 

Data preparation for event detection: Waveform samples were preprocessed prior to training 

CNN models. Inspection of time-frequency of multiple raw data samples suggested seismic event energy 

to be predominant between 10-400 Hz. First, a bandpass filter of 10-400 Hz and a simple data detrend 

was applied to the waveforms. We transformed the sample’s time-series information into an augmented 

input information in the form of time-frequency to provide our ML approach with additional and sufficient 
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information to achieve the best detection-accuracy performance. Short Time Fourier Transform (STFT) 

with a window size of 64 ms (i.e., 128 points) was used to convert the independent channels of the 2-

second waveform samples into 60 x 60 spectrogram images. These images were then normalized to adjust 

the distribution of the data values, leaning towards Gaussian. We implemented a normalization 

preprocessing similar to one in sound signal spectrograms (Dennis, Tran, and Li, 2010) to improve our CNN 

model results. This preprocessing incorporated the log-scaling of the spectrogram images to adjust the 

sample data distribution using the following log-power transformation: 

S(k,t) = log(X(t, k)+c), (Eq. 1) 

where X(t, k) is the Fourier Transform of the time bin t with the frequency bin k, and c is a constant value to avoid 

infinity values in the calculation (i.e., 1x10-22). All three-channel spectrogram images of each event window were 

then stacked into 3D input, resulting in 60 x 60 x 3 input samples. Figure 26 shows a spectrogram example prior 

to corrections (A) and after corrections (C) with their respective histograms (B and D). 

The new log-scaled time-frequency images were further normalized to [0,1] using a min-max function 

over the entire waveform data set (i.e., global min and mix values), which is suitable for the rectified linear unit 

(ReLu) activation function.  

 

Figure 26. Input data preparation for CNN before data remapping. (A) Generated spectrogram example for a single-

channel seismic event. (B) Histogram of spectrogram prior to rescaling. (C) Spectrogram after logarithmic rescaling. 

(D) Histogram of spectrogram after rescaling. 

Data preparation for phase picking: Preprocessing of the dataset for PhaseNet included applying 

a 10-400 Hz bandpass filter, data detrend, per channel normalization, and determination of phase arrival 

times for each waveform. Two traditional phase-picking methods were used to estimate the p- and s-

wave arrival times of raw continuous waveform data corresponding to the cataloged events. First, AR-

picker method implemented in the Obspy package (Beyreuther et al., 2010) used an Auto Regression – 

Akaike Information Criterion (AR-AIC) method and the STA/LTA ratio, and PhasePaPy (Chen and Holland, 

2016) used the derivative of the AIC function (i.e., AICD picker). For generating training data for p- and s-

wave arrival times, AR-picker and PhasePaPy were used to estimate the arrival times, and the best results 
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of these methods were evaluated manually to finalize the training data sets. For the cluster #2 events, we 

focused on the waveform data over a period of February 27 to March 12, 2012. Based on manual 

comparison for selected cases (see Figure 27), the p-arrival times using the AICD-picker were generally 

more accurate and consistent than those of the AR-picker, while the s-arrival times using the AR-picker 

were consistently reasonable. We also noted that the general p- and s-arrival time difference for cataloged 

waveforms was between 0.065-0.08 seconds for the cluster #2 data, which was also used as a guide to 

evaluate automatic-picking accuracy. 

The precision of this labeled data was approximate but not as optimal as would be preferred for 

a deep learning (DL) model, but transfer learning (TL) easily overcame this to make even more precise 

picks. These picks were later inspected for a final screening to remove incorrect labels, resulting in 419 

labeled training samples to be used in PhaseNet. 

 

    

  

Figure 27. Sample phase picks from manual picks and parameter-based auto pickers. Human p-arrival picks are 

shown with a blue dashed line, and s-arrival picks by a red dashed line. The p- and s-arrival obtained by AR-pick are 

shown by solid black lines. AICD p-arrival picks are shown by dashed black lines. Data-specific, optimized AR-picker 

performs well at predicting s-arrivals but is outperformed by the optimized AICD model at predicting p-arrivals. 

Data augmentation for source location estimation: To enhance the accuracy of source location 

estimation and overcome a limited number of events (i.e., 400-500 events in cluster #2) for ML training 

data, we explored a data augmentation approach. It is noted that the DL methods for source locations in 

the literature have typically been trained with tens to hundreds of thousands of event data (Münchmeyer 

et al., 2022). In this work, we generated additional training data by training generative DL models. An 

open source SeismoML (Mancini et al., 2021) was used to learn the relationships between source locations 

(3D coordinates and distance) and waveform data. Here we used Wasserstein generative adversarial 

networks (WGAN)–Gradient Penalty from SeismoML. As in the original model, input includes x, y, z 

coordinates of source locations and distance between source and geophone locations, while output is a 

seismogram of a single channel. Detailed description of the method is available in Mancini et al. (2021) 

and references therein. Once the WGAN-GP model was trained with located event data in the catalog, the 

trained generative model was applied for generating synthetic event data at a range of locations to 

increase overall training data.  

Figure 28 shows examples of generated synthetic waveform data with waveform of the located 

events in the catalog. We applied a bandpass filter (10-400 Hz) to dampen the noise level of the generated 

waveform. Overall, the generated waveform had very similar p- and s-arrival times to the located events. 
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Figure 28. Comparison of generated waveform using WGAN and waveform in the catalog (“true”). a) Bandpass 

filter and b) no bandpass filter. V, H1, and H2 represent three-directional channels. 

 

Deep Learning Methods for Event Detection, Phase Arrival-time Picking, and Source Location Estimation 

Event detection: We developed a convolutional neural network (CNN) model to detect 

microseismic events from the continuous waveform data at the IBDP site. The CNN model consisted of 

four convolution layers with each layer followed by max pooling, batch normalization, and dropout, as 

shown in Figure 29. As described in the data preprocessing, a three-channel waveform spectrogram was 

used as input to the CNN. A ReLu activation function was used in each layer, excluding the final 

classification layer, which used a Softmax activation for event classification. The loss was computed using 

binary cross entropy by comparing each of the predicted probabilities to actual class output (event or 

noise).  

Figure 29. Schematic of CNN and MLP (multi-layer perceptron) architecture for event detection. The inputs are 

three-channel spectrogram images for the CNN and MFCC coefficients for the MLP. Features extracted by both 

models are concatenated before entering a final dense layer leading to the final prediction output. 

(a) (b)
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We considered presenting multiple input information to the DL model to improve DL 

performance, especially by using additional physics-based information (e.g., Yoon et al., 2020). For 

additional physical quantity, Mel-Frequency Cepstrum Coefficients (MFCCs) were extracted from each 

channel time-series to serve as the input to a multilayer perceptron (MLP) to improve detection accuracy. 

The MFCCs represented a short-term power spectrum of sound as perceived by human hearing, 

representing energy-related information of waveform. For the CNN + MLP model, the output of MLP was 

concatenated with that of the final dense layer from the CNN, which was followed by a dense layer before 

the classification output. 

For training event detection CNN models, the data set was split into 70% of samples for training, 

20% for validation, and 10% for testing. Due to the significant imbalance in the number of event and noise 

samples for training, we avoided the use of batch shuffling and decided to stack the training set such that 

there would be an event sample after every eight noise samples, ensuring there would be at least a few 

numbers of events in every batch during training. 

Phase picking for p- and s-arrival times: PhaseNet (Zhu and Beroza, 2019), which is a deep neural 

network designed for automatic phase picking through data segmentation, was used.  PhaseNet is a U-

Net variant architecture, designed for 1D time series inputs and outputs three probabilities corresponding 

to p-arrival, s-arrival, and noise. PhaseNet was originally trained on three-component data from the 

Northern California Earthquake Data Center Catalog with more than 700,000 local earthquake event data 

recorded at 100 KHz. These events contain very distinct characteristics in the waveform, compared to the 

IBDP microseismic data, in terms of seismic magnitude, sampling rate, and total samples. The IBDP data 

consists of microseismic recordings at 2,000 Hz with fewer than 20,000 detected events over ~3 years in 

the catalog. To improve the accuracy of model performance, we studied the retraining of PhaseNet using 

the IBDP dataset. This transfer learning approach was evaluated by retraining PhaseNet with initialization 

using the pre-trained model weights of the original PhaseNet, followed by training the model with our 

distinct waveform characteristic training samples. The new PhaseNet model adjusted to the temporal 

resolution of our data, as well as the signal amplitudes and aleatory artifact noise, which were all different 

from the dataset used for the original PhaseNet. 

We used the same procedure with PhaseNet but with 1.5-second windows instead and no 

overlap. Since the output of PhaseNet is the prediction probability of events for all possible waveform 

points, a two-step approach was used to finalize the event detection. First, all 1.5-second waveform 

windows that did not have p-wave and s-wave prediction were eliminated. Second, for the remaining 

windows, a threshold on the prediction probability in both p-wave and s-wave detection was applied to 

separate event windows from noise windows. Our visual inspection indicated the probability that a 

threshold of 0.9 tends to detect events better than that of 0.8 in terms of false positive detection. Hence, 

we evaluated the performance of PhaseNet with a threshold of 0.9. 

 

Fingerprint Method of Waveform Data for Waveform Clustering  

Our first stage of unsupervised learning involved identification procedures of the hidden Markov 

Model (HMM). A stochastic matrix is a square matrix used to describe the transitions of a Markov Chain 

such that each entry is a real, non-negative number that represents a probability. To achieve this 

requirement, we implemented the non-negative matrix factorization (NMF), which processes 

observations to generate non-negative estimated parameters for the HMM. 

We performed the NMF such that each spectrogram was reconstructed to a product of two 

matrices: the first matrix being the dictionary of frequency components, or W matrix, and the second 
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matrix being the activation coefficients, or H matrix. This resulted in dimensionality reduction, where 

columns of the original spectrogram were mapped into smaller dimensions. The W matrix focused on the 

features within the spectrogram and specifically highlighted the amplitude of the signal. The H matrix 

focused on the patterns within the spectrogram and specifically highlighted when the signal changed 

significantly. We tested and learned the HMM on both matrices separately and compared the results. 

Examples are shown in Figure 30. 

To calculate the NMF for each spectrogram, we utilized a Python library known as NIMFA (Zitnik and 

Zupan, 2012). NIMFA includes several different factorization methods for the NMF and supports both dense 

and sparse matrices. We implemented the standard NMF, which uses simple multiplicative updates based on 

Euclidean distance. We specified the objective function to be the standard Frobenius distance cost function, 

and to reduce dimensionality, we selected the number components that can be used in the NMF. This type of 

NMF is a powerful method for identifying distinct patterns within the signal. 

In this work, we began by learning our HMM on the NMF H or W matrix, which further isolated 

and removed commonalities between signals and reduced dimensionality. We focused specifically on 

temporal patterns as a sequence of hidden states in time. These states are defined as patterns of 

frequency components that tend to happen together. In this case, we used what is known as a first-order 

Markov Chain. With an HMM, the output of a time step is also dependent on the hidden, imaginary state 

corresponding to the observation. After the HMM algorithm converges, the learned distributions are used 

to find the final values for the states (Holtzman et al., 2018).  

In this work, HMM analysis was performed using a Python package of Pomegranate (Schreiber, 

2018). Pomegranate assumes that all probabilistic models can be seen as probability distributions, 

meaning they all result in probability estimates for the samples. Since compositional models can be 

viewed as probability distributions, a mixture of Bayesian Networks or Hidden Markov Model Bayes' 

Classifiers can be built to make predictions over sequences. After HMM analysis of the hidden state of the 

waveform signals, k-means clustering was performed to clusters based on the fingerprint of the hidden 

state change. A detailed description of the method used in this work can be found in Willis (2020). 

For IBDP data, the waveform data were converted to the spectrogram using short-time Fourier 

transform (STFT) as shown in Figure 30. For the HMM application for the fingerprint identification of the 

waveform signal, the most basic NMF was employed. We built the HMM model such that the model 

learned the transition matrix, emission distribution, and start probabilities for each state. We specified 

for this method to use an exponential distribution for the emission distribution of the components of the 

model. Exponential distributions are generally used to model the time for a process to occur at a constant 

average rate, which is what results from the STFT, making it an appropriate distribution to use. 

Using k-means clustering, we clustered the HMM predictions into three distinct clusters and 

analyzed the spatio-temporal relationship within these clusters. This clustering and analysis resulted in a 

sequence of outputs for each signal and a transition matrix representing the probability of a certain state 

following a previous state. We used the transition matrices to create a fingerprint for each signal. Our final 

stage of unsupervised learning involved testing different clustering methods with every signal's 

fingerprint. We tested and compared k-means clustering and t-distributed stochastic neighbor embedding 

(t-sne) clustering. We focused our study on two event clusters: cluster #2 (698 events), which occurred 

between February 21 and April 3, 2012, and cluster #4 (745 events), which occurred between May 16 and 

August 12, 2012. Each waveform data was processed with a Butterworth Bandpass Filter, and we 

transformed the waveforms into event spectrograms using STFT to reduce dimensionality and improve 

pattern recognition.  
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Figure 30. Application of the fingerprint method for the microseismic waveform data at the IBDP. The top row is the 

three-channel event waveform data of two-second window; the second row is the corresponding spectrogram; the 

third row shows the hidden state change over time based on the HMM analysis; the bottom row is the fingerprint 

map of the hidden state change. A total of three clusters were used for clustering, and clusters #1 and #2 examples 

are shown. 

Focal Mechanism Analysis 

Microseismic waveforms contain rich information about the source and medium properties along 

the path of propagation. Focal mechanisms can be used to determine the orientation and slip of a fault. 

Seismic-phase polarity is the most straight-forward way to calculate the focal mechanism of a seismic 

event. With microseismic data, the determination of seismic-phase polarity can be difficult due to 

emergent phases and low signal-to-noise ratio (SNR). Estimation of p- and s-arrival times helps when 

determining seismic-phase polarity. Although p- and s-waves can be observed in induced microseismicity, 

surface waves are often absent from the waveforms, making it harder to identify the s-wave. For cluster 

#2 events, we estimated that the s-wave would arrive between 0.076 and 0.079 seconds after the p-wave. 

With these estimates, we identified the seismic-phase polarity for microseismic data. Then, using recent 

developments in earthquake analysis, we computed stable and accurate focal mechanism solutions for 

microseismic data. By picking arrival times and polarities of the p-and s-waves, we computed the focal 

mechanisms with the implementation of HASH (Hardebeck and Shearer, 2002, 2003) in SEISAN, which is 

an open-source earthquake analysis software. HASH is also an open-source software from the USGS that 

finds the best-fitting, double-couple mechanism for each event. 

HASH is a method for determining focal mechanism solutions with first-motion p-wave polarities. 

The main difference between HASH and previous methods, such as FPFIT, is that HASH considers possible 

errors in the source location, velocity model, and polarity observations. A set of acceptable focal 

mechanism solutions, including those with up to a given fraction of misfit polarities, is found for each 

event. Due to the complexity and poorly understood effects of source location and velocity models on 

focal mechanism, multiple combinations of these parameters are used when determining the focal 

mechanism solution. A set of acceptable solutions is considered stable if the solutions are tightly 
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clustered. Once the set of acceptable solutions is considered stable, an average solution is computed to 

find the preferred focal mechanism (Hardebeck and Shearer, 2002, 2003). 

In focal mechanism analysis, the best solutions are generally found using one seismic event 

recorded by several seismic stations that are distributed evenly around the epicenter of the event. 

However, stations at the IBDP only differ in location by depth since the seismic network is a string of 

receivers in injection and GM wells. This limitation greatly affects the accuracy of the focal mechanism 

solutions. We selected five to nine three-component stations with the highest SNR to help achieve more 

accurate focal mechanism solutions.  

 

RESULTS 

Detection of Microseismic Events 

Figure 31 shows that the CNN model was accurately trained, and the best model selected had a 

loss value at an order of ~1×10-6 for validation dataset. However, the CNN + MLP model improved the 

validation loss value by nearly one order of magnitude at ~1×10-7 within the same number of epochs. The 

CNN + MLP model with reduced MFCC parameters (six key-feature MCFF components) achieved only 

slightly lower results than the simple CNN model but showed a similar trend to all MFCC models, which 

suggested models with MFCCs would keep improving as they underwent more epochs. 

 

Figure 31. Model loss versus epoch for multiple CNN model variations. Individual model losses are shown as dashed 

lines, and the individual model validation losses are shown by the solid lines of the respective model color line 

identified in the legend. Properly normalized data models significantly improve performance and minimize 

overfitting, compared to simply using raw data. 

Properly normalizing the spectrograms allowed the frequency of the waveform data to be 

distributed over the range of amplitude more evenly (Figure 26, b and d). Figure 31 shows that validation 
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loss results with normalization perform better than those without normalization. Therefore, proper data-

preprocessing reduced model overfitting and identified new waveforms of interest. 

Comparison of detection rates over an active period of the cluster #2 period in Figure 32 indicates 

that the CNN model detected more events than those reported by the standard triggering algorithm in the 

detected catalog. Specifically, the CNN detection rate was similar to the triggering algorithm (STA/LTA) 

during the active and post periods but exceled at detecting event waveform characteristics during the 

transition period (depicted by the yellow zone in Figure 32), revealing a new set of events to enhance the 

catalog information. Because the CNN model extracted more complex features from site-specific samples, 

we expected higher-confidence-level pickings than with the triggering algorithm. Visual inspection of image 

windows corresponding to CNN detections confirmed that most of these events revealed at least one phase 

arrival onset. To show the effectiveness of this model, we detected more than double events of interest than 

using PhaseNet alone over continuous data.  

We also compared the number of recorded events with clear microseismic characteristics 

obtained from the PhaseNet model and the located catalog. PhaseNet detected almost double the 

number of events having evident p- and s- wave features (more than 90% probability) compared to those 

initially reported in the located catalog. 

Detection rate comparison over cluster #4 in Figure 32 shows a similar trend during a period of 

high event density. The standard triggering algorithm detected slightly more potential microseismic 

events during an active period compared to the CNN model. 

  

Figure 32. Cumulative number of detected events through the CNN (Pred_CNN) and PhaseNet (Pred_Phasenet 0.9) 

models in comparison to the located and detected events in the catalog. Cluster active region is represented by the 

red-shaded area in the plots, and the yellow-shaded area represents the transition period. (a) Cluster #2 and (b) a 

short period of cluster #4.  

Most detected events (Figure 33a) showed major similarities with events in the located catalog, 

which generally had short duration (0.25 seconds) and very distinct phase onset and p-s arrival difference 

between 0.065-0.08 seconds. This waveform characteristic is represented well within the training data, 

resulting in excellent feature extraction by the CNN model. In contrast, we also detected activity not 

represented in the catalog, consisting of events around one second in duration and very distinct p-wave 

arrival but no notable s-wave arrival (Figure 33b). Therefore, the characteristic of no distinct s-wave arrival 

events shared more characteristics with slow slip physics compared to the fast slip of the first group of 
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waveforms. The third group of detected events consisted of overlapping slow slip events spanning the full 

window, making it difficult to identify individual p- and s-wave arrivals, shown in Figure 33c. This type of 

waveform is known to be challenging for most parametric-based methods and is consequently usually 

discarded as a non-event. However, we found that these events, stacked together with subsequent 

detections, behaved as a single event of long duration that could range from 30 seconds to 30 minutes.  

The last group in Figure 33d consisted of detected waveforms from cluster #4. At first glance, they 

looked similar to the first group’s waveforms, but in fact, they showed subtle dissimilarities, which were 

consistent with our knowledge of cluster #4. In general, their arrival-time difference was significantly 

larger than the first group’s, which is consistent with the larger travel time required by cluster #4 events 

to reach the sensors and our knowledge that p-waves move faster than s-waves. Due to this arrival-time 

difference, the duration of the events was also larger, between 0.4-0.5 seconds. Cluster #4 also had lower 

SNR event signals in PS3-1 than cluster #2, despite being reported in the located catalog as higher 

magnitude events. 

  

Figure 33. Examples of event characteristics in cluster #2 (a-c) and cluster #4 (d) captured by the CNN model. Three 

channels from PS3-1 are shown. 
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Microseismic Event Clustering 

We performed k-means clustering of fingerprint output from the NMF-HMM process with three-

channel components of cluster #2 and cluster #4 microseismic events, separately. The vertical span of the 

sensors benefited the ability to detect differences in vertical component and allowed for more depth 

locations. Horizontal components of waveform highlight shear wave characteristics more clearly. As 

presented, we chose to use the HMM on the activation coefficient matrix of frequency components from 

the NMF. For clustering, we needed to determine the input of waveform data and the number of clusters 

to optimally characterize the waveform patterns. In this work, we used three channels (V, H1, and H2) of 

waveform as input to NMF to extract fingerprints of each waveform event. An example of these maps is 

shown in Figure 34. For clustering waveform events, we tested clusters (or groups) from 3 to 10. To clarify 

the feature maps, we used t-sne to visualize high-dimensional data in a two-dimensional map (Figure 35). 

Figure 35 shows that three groups tended to cluster the events better than the higher number of groups. 

Figure 35b also shows that group 0 represents dominantly high-magnitude events, group 1 represents 

intermediate-magnitude events, and group 2 represents low-magnitude events. From this relation, we 

speculated that group 0 represents the main slip events or those that occurred along the main fault plane, 

while events in groups 1 and 2 represent small-scale slip events or those that occurred along the fracture 

network. 

Figure 34. Example of clustering results with the vertical channel waveform data and a total number of three 

clusters. The order of rows follows the vertical waveform of event, seismogram, activity coefficients of NMF output, 

state sequence of HMM output, and fingerprint of waveform data. 

 
Figure 35. (a, c, d) For different number of clusters (3, 5, and 7) t-distributed stochastic neighbor embedding (t-sne) 

is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two- or three-

dimensional map. (b) Distribution of the magnitude of events for three clusters (0, 1, and all three clusters). 

(a) (b)

(c) (d)
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Figure 36. Spatial distribution of three groups (or clusters) from fingerprint-based clustering of microseismic cluster 

#2 between February 21, 2012, and April 1, 2012. Circle = group 0; square = group 1; diamond = group 2. The size of 

the symbols represents the magnitude of events, and the color represents the time from 00:00:00, February 21, 

2012.  

 

 
Figure 37. Spatial distribution of three groups from fingerprint-based clustering of microseismic cluster #4 between 

May 16, 2012, and August 6, 2012. Only groups 0 and 1 are shown. The size of the symbols represents the 

magnitude of events, and the color represents the time from 00:00:00, May 16, 2012.  

 

Figure 36 shows the spatial distribution of three groups based on fingerprint-based clustering of 

NMF-HMM. All three groups tended to be overlapped in space and time. It is noted that one of the bigger 

sub-groups of cluster #2 (i.e., early concentrated events in Figure 37) occurred over three days from 

February 27, 2012, to March 1, 2012, which indicates that short-period microseismic events would be 

driven by direct pore diffusion through connected fault-zone architecture.  

Figure 37 shows that in the spatio-temporal relations of group 0 in cluster #4, we found one 

distinct accumulation of events stretching from the Argenta formation into the Precambrian, which 

(a) (b)

(c) (d)

Group 0 Group 1

Group 0 Group 1
Mt. Simon

Argenta

Precambrian
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occurred midway through the time series, and a second accumulation of events in the Precambrian, which 

occurred at the end of the time series. We believe these two sets of events represent the two primary 

mechanisms associated with CO2 injection-induced seismicity, direct pressure diffusion and indirect stress 

transfer. As pressure propagates through highly permeable material, it can hit a fault directly, increasing 

the possibility of a fast slip event, or it can hit the fault indirectly (through slow pore pressure diffusion 

and/or stress transfer), which causes the material to compress the fault, making slip events be overlapped 

and/or longer in duration. The accumulation of earlier events that are connected to the reservoir, 

specifically the Argenta, are most likely a result of direct pressure diffusion, while the later events in the 

Precambrian region are more likely a result of indirect stress transfer.   

 

Fault Plane Analysis Using Located Events in the Catalog  

Microseismic clusters reveal concentrated trends, which suggests the presence of faults or pre-
existing zones of weakness. In previous studies, extensive analysis was performed on the seismic data to 
find evidence of structural features responsible for the linear trends. No such features were found, 
suggesting that the responsible features were either sub-seismic or the result of more complex 
interactions in the sub-surface (Will et al., 2016). In this work, we used NMF-HMM fingerprint-based 
clustering to characterize sub-seismic features of microseismic patterns. As suggested previously, group 
0 represents the main slip events or events that occurred along the main fault plane, while groups 1 and 
2 represent small-scale slip events or events that occurred along the fracture network. To construct main 
faults corresponding to IBDP microseismic clusters, we used group 0 featured with higher magnitude 
events to reconstruct a hidden/undetected fault plane (Figure 38). As shown, clustering-based fault plane 
(Figure 38b) had steeper projection of fault plane than that constructed with the entire microseismic data 
(Figure 38a).  

Figure 38. Reconstructed fault plane using (a) entire microseismic events and (b) microseismic events from group 0 

from fingerprint-based clustering. This data is from IBDP microseismic cluster #4. The size of each event point 

represents a magnitude (Mw) of events.  

 

Characteristics of Microseismic Events 

Long-period long-duration pattern of waveform data 

Many events detected during the transition period in cluster #2 are grouped together to be a 

single event of long duration, which could last from 30 seconds to 30 minutes, as shown in Figure 39. 

(a) (b)
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Kumar et al. (2017) recognized these events as long period long duration (LPLD) events, which are known 

for their low amplitude compared to typical detectable (micro-)seismic events and emergent waveforms 

with no distinctive p- and s-wave arrivals (making it difficult to perform phase picking and source location). 

Despite their low amplitude, LPLD events are known to release energy orders of magnitude higher than 

regular microseismic events due to the comparable longevity of the event. Das and Zoback (2013) suggest 

that LPLD events tend to be observed around faults large enough to produce a sequence of overlapping 

slow-slip events, and these locations are associated with high natural fracture density, likely caused by 

the increase in pore pressure and/or the presence of high clay (>40%) contents (i.e., low permeability). 

LPLD observation at IBDP cluster #2 indicates that fault architecture in cluster #2 contains dense fracture 

networks or a large damage zone, and a sequence of slow shear slip may be triggered by pore pressure 

increase from CO2 injection. This observation needs to be used to parameterize the thickness of fault zone 

in inverse modeling. Furthermore, the higher amplitude detected at PS3-2 (upper geophone) during LPLD 

events shows that wave attenuation and propagation is different than during the active period. 

These LPLDs may be associated with the energy accumulated during the high event succession of 

the active period. However, these waveforms were not observed in cluster #4’s active period, possibly 

due to wave propagation obstacles associated with the region. Since LPLDs are generally not events of 

high magnitude but rather of low magnitude with long duration, an LPLD occurring in the region of cluster 

#4 would be gravely attenuated before reaching the geophone sensors of the IBDP or no LPLD-type events.  

 
Figure 39. Examples of long-period long-duration (LPLD) events with different duration. The left window interval is 

one hour, and the right window interval is six minutes. 
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Phase arrival-time estimation 

The retrained PhaseNet model in this work reported promising validation results and reflected 

improved consistency in accuracy compared to the performance of AR-picker or PhasePaPy packages. The 

model reported a p- and s-arrival pick precision of 0.906 and 0.942, respectively, with the validation data. 

These are very similar results to the retrained model from Chai et al. (2020). Figure 40 represents 

observations of differences and similarities regarding phase picking using PhaseNet (right) and parameter-

based pickers (left). We applied the AR-picker and AICD method to the very windows where PhaseNet 

detected both phase arrivals to see the difference in picking accuracy between these methods. The 

examples A and B in Figure 40 show that both methods generally produced phase picks close to actual 

onset. However, close inspection shows PhaseNet was more consistent and precise in its phase picking 

placement, highly comparable to a manual picking, despite the variability of waveform characteristics. 

This consistency is even more evident in examples (Figure 40 d and f) where the parameter-based picks 

mistook the p-arrival with an s-arrival. It is very interesting to see how PhaseNet outperformed the 

traditional methods used to label and re-train the DL model. One possible explanation is that the model 

retained the most important feature information gathered from the well-trained original model and 

simply adjusted weights to adapt to the IBDP signal strength and frequency, along with other unique 

waveform characteristics. 

Figure 40. PhaseNet picking accuracy over continuous dataset. On the right, parameter-based automatic pickers 

applied on the same windows for accuracy comparison. Row 1 shows both PhaseNet and the parameter-based 

pickers predicting nearly identical arrival-time picks. Rows 2 and 3 show how PhaseNet maintains picking 

consistency, while parameter-based pickers make mistakes, demonstrating the superior accuracy and consistency 

of PhaseNet. 
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Focal Mechanism Results 

In this analysis, we focus on the most active time periods during IBDP clusters #2 and #4 to 

account for slip mechanisms during the active periods. As with fingerprint-based clustering, we used 

t-sne for deciding an optimal number of clusters needed for k-means clustering through visualization. 

Figure 41 shows the t-sne projection of k-means clustering results with three, five, and seven clusters. 

This visualization suggests that three and five clusters work well with focal mechanisms . 

 

Figure 41. T-sne projection of waveform data from NMF-HMM k-means clustering used for focal mechanism 

analysis. (a-c) IDBP microseismic cluster #2 and (d-f) IDBP microseismic cluster #4. 

 

The goal of this clustering of focal mechanism results is to evaluate if k -means clustering is 

classifying the microseismic events based on different focal mechanisms. In our focal mechanism 

analysis, we have shown that we may be able to estimate location and type of slip associated with 

fault planes in the area. Here we evaluate if our clustering results are related to the type of focal 

mechanisms. 

Figure 42 shows that most events are assigned to group 0 and the majority of group 0 is 

associated with Normal Right Lateral Oblique (NRLO), Reverse Right Lateral Oblique (RRLO), and 

Right Lateral Strike Slip (RLSS). In previous analysis, we have also seen that group 0 is associated 

with larger magnitude events than groups 1 and 2. In the focal mechanism analysis, we showed that 

the main focal planes associated with clusters #2 and #4 are RRLO, RLSS, and NRLO. These are also 

the focal mechanisms associated with group 0. Since group 0 is associated with larger magnitude 

events and the focal mechanisms that create the main focal planes, it seems that group 0 represents 

events that occur along the focal plane, and groups 1 and 2 represent events that occur separate 

of the focal plane. 

5 Clusters3 Clusters 7 Clusters

(a) (b) (c)

(d) (e) (f)
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Figure 42. Clustering results of focal mechanism results for cluster #2 (a-b) and for cluster #4 (c-d). Focal 

mechanisms: NRLO = Normal Right Lateral Oblique, R = Reverse, RRLO = Reverse Right Lateral Oblique, RLSS = Right 

Lateral Strike Slip, and N = Normal. 

 

Source Location Identification of Microseismic Events and Rapid Recognition of the Presence of Faults 

 We used WGAN-GP as a generative model to improve source location identification. For 

demonstration purposes, we focused on events over February 27, 2012 – March 3, 2012, corresponding 

to the active period of cluster #2. As mentioned earlier, supervised ML models, such as the CNN model in 

this work, require enough training data to extract features of event data. Figure 43 shows comparison of 

CNN model performance between event data in the catalog only and synthetic waveform data in addition 

to catalog data. The WGAN-GP model was constructed using the full waveform information and four 

quantities (latitude, longitude, depth, and distance) from events in the catalog. The trained WGAN-GP 

model was then used to generate synthetic microseismic events over a range of four quantities (latitude, 

longitude, depth, and distance) at different locations from the catalog events. 

 With event data only from the catalog, the CNN model was well trained with training data. 

However, the trained model performed poorly with validation data (Figure 43, a and b). For all four 

quantities (latitude, longitude, depth, and distance), the prediction showed narrow values rather than 

along a one-to-one line. With synthetically generated event data, the number of events increased from 

419 to ~2,500, which improved prediction of source locations, especially with validation data (Figure 43, 

c and d). All four quantities were well predicted with a few points off from one-to-one line. Overall, this 

(a) (b)

(c) (d)
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result demonstrated a significant improvement of source location identification using two different DL 

models (i.e., WGAN-GP for synthetic data generation and the CNN model for source location prediction). 

As described in detail by Spurio Mancini et al. (2021), the DL models developed in this work can be also 

used to perform Bayesian source location inversions of microseismic events. 

 

Figure 43. CNN model performance of source location coordinates (latitude, longitude, depth, and distance). Parity 

plots of training and validation data from (a, b) 419 events in the catalog and (c, d) 419 events in the catalog and 

2,100 events with synthetic data.  

Rapid recognition of the presence of faults can be achieved by integrating four ML models 

presented in this task. These four ML models include the CNN model for event detection from continuous 

waveform data, PhaseNet for phase picking of detected events, WGAN-GP for generating synthetic data 

using outcomes from the CNN model and PhaseNet, and another CNN model to predict source locations. 

(a) (b)

(c) (d)
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Once source locations are identified, a fault plane can be constructed to evaluate the presence of (hidden) 

faults. In this case, we can perform a projection method as a rapid tool to construct fault planes with or 

without a clustering method, as shown in Figure 38. The execution of all four ML models is very fast, at 

seconds per event, hence the rapid recognition can be achieved compared to traditional standard 

methods. 

 

CONCLUSION 

We designed and compared multiple DL models for the rapid recognition of faults based on 

microseismic waveform data. With time-frequency feature extraction capabilities, automated 

microseismic event detection using the CNN model was drastically improved by the augmentation of the 

data time series into a time-frequency domain and a proper normalization strategy for the input 

information. We also demonstrated that inclusion of additional physical properties, such as MFCCs as an 

indicator for energy term of waveform, improves event detection. The increase in detected events and 

long-duration and long-period type events using DL method compared to the catalogue suggests there is 

more microseismic events of interest unidentified in the IBDP repository. With phase estimates of newly 

detected events using PhaseNet, source locations were identified using another CNN model that was 

improved with data augmentation using the generative model (i.e., WGAN-GP). WGAN-GP was trained 

with full waveform data and location information, generating new synthetic data at various locations 

different from the located events. Overall, these four DL models can be integrated to perform rapid fault 

identification. 

Many ML applications to seismic data involve detection of events with the use of supervised 

methods, in which a model is learned and predicts an output corresponding to a given input. However, 

supervised ML methods need intensive labelling of training data, which is sometimes challenging and 

requires a certain knowledge. Here, we also used an unsupervised approach to classify the signals and 

make clusters based on the hidden features. An unsupervised learning approach does not require labeled 

data for model training; instead, it learns features in latent space through data analysis itself. 

By identifying fractures and faults from microseismic event locations, we are better able to 

identify the potential of induced seismicity. The spatial distribution of these faults/fractures helps us to 

understand fluid migration and/or stress transfer within or around the reservoir, providing insight into 

the behavior of the injected CO2, the reservoir, and the risk of seismic hazard. Moreover, the microseismic 

events have the potential to reveal small-scale fractures that are below the resolution of active seismic 

imaging. 
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TASK 4 - PRESSURE AND STRESS MODELING 

INTRODUCTION 

The purpose of the pressure and stress modeling was to fully understand and identify the geologic 

features that controlled pressure transmission between the injection interval of CCS1 and the clusters of 

induced seismicity events (clusters #2 and #4). Because stress (i.e., poroelastic) modeling is more 

computationally intense, relatively coarser grid cells would be necessary in comparison to pressure modeling 

only. Because grid cells represent average geologic features, smaller grid cells are able to represent smaller 

geologic features. Therefore, a rigorous calibration to IBDP data was only attempted with the pressure 

modeling, and the rigorously calibrated geocellular model was upscaled for poroelastic modeling. The 

poroelastic model predicted pressure and stress distribution in the Mt. Simon and Precambrian, but 

specifically in the microseismic clusters #2 and #4. Additionally, poroelastic modeling helped understand 

how pressure was transmitted from the injection interval to the clusters’ locations.  

The calibration to the IBDP pressure and saturation using pressure modeling was explored by 

identifying geologic features of varying scales and simulating these features in geocellular models. The 

effort was to understand the effect, if any, faults, if present, may have on the calibration. The poroelastic 

modeling was expected to require relatively coarser model cells compared to the pressure modeling; 

consequently, the geocellular model used for poroelastic modeling was upscaled from the model used for 

pressure modeling and was not rigorously calibrated to the IBDP data. 

The coupled multiphase flow and geomechanics provided a geologically consistent mechanistic 

explanation for microseismicity occurrence at the IBDP site. Our work focused on leveraging the upscaled 

geocellular model calibrated from the pressure modeling effort that provides an in-depth understanding of 

the fault system associated with the microseismicity. By using an integrated approach combining advanced 

computational modeling with accurate geological structures (Figure 1), we aimed to understand the 

hydraulic and geomechanical conditions that resulted in the microseismicity occurrence. 

 

PRESSURE MODELING 

Grid Design and Settings for Geocellular Model (ISGS model version 6; 2020-2022) 

At the beginning of the SoS project (2019-2020), the pressure modeling effort initially used the 

geocellular model (ISGS version 1). Because SoS pressure modeling efforts failed to get a good match (i.e., 

with field data) of the first six to nine months of IBDP injection, seven unique geocellular models were 

constructed. (The development of version 7 is discussed in Task 2 section of this report.) 

To limit pressure modeling run time, the grid of geocellular model version 6, which comprised of 

nine geologic formations and subintervals (Table 2) (i.e., Precambrian, Argenta, Mt. Simon A-Lower, Mt. 

Simon A-Middle, Mt. Simon A-Upper, Mt. Simon B, Mt. Simon C, Mt. Simon D, and Mt. Simon E), was 

redesigned in Petrel such that it would have a reduced number of grid cells. The number of grid cells in 

the model was initially cut down to ~12.5 million by reducing the volume of the constructed geocellular 

model to ~21,758 x 21,861 x 2,172 ft (~4.1 x 4.1 x 0.4 mile). This reduction included the exclusion of the 

Precambrian zone from the model. To further reduce the number of grid cells, the central area of the 

model [Figure 44; red box (~10,453 x 10,453 ft; ~2 x 2 mi)] was refined to make the grid cell within this 

area 100 x 100 ft. This refinement effected changes to the lateral dimension of grid cells on the outer sides 

of the model domain (i.e., outside the red box in Figure 44), which resulted in grid cell sizes ranging from 

~100 x 900 ft to ~900 x 900 ft. (Version 7 used the version 6 geocellular model of the Mt. Simon.) 
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Figure 44. Map view of the geocellular model area. The red box indicates the area with grid cell dimension of 100 x 
100 ft. 

 

Figure 45. Geocellular model showing structure, different geologic zones, and gridding (vertically exaggerated 4x). 
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Figure 46. Cross-section across CCS1 and VW1 showing location of the CCS1 perforation, VW1 Westbay perforations 
(WB 1–6), and the porosity distribution (vertically exaggerated 4x). 

 

 

 

Figure 417. Cross-section across CCS1 and VW1, showing location of the CCS1 perforation, VW1 Westbay 
perforations (WB 1–6), and the porosity distribution (vertically exaggerated 4x). 
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Figure 48. Geocellular model version 7 after merging Mt. Simon, Argenta, and Precambrian model; a) Cross-section through 
the CCS1 and VW1 within the permeability model, showing part of the Mt. Simon Sandstone and Precambrian (only the first 
layer out of 8-layer zone) zones and b) Map view, showing permeability distribution at the top of the Precambrian model. 

Grid Design and Settings for Later Version of Geocellular Model (ISGS model version 7; late 2022) 

In late 2022, the geocellular model described above was modified to include the fractured Precambrian 

crystalline basement (PCB). A model for the fractured PCB was attached to the base of the Mt. Simon geocellular 

model, which increased the number of model layers. The unification of both models increased the geocellular 

model from 117 x 116 x 276 (~3.8 million) grid cells to 117 x 116 x 286 (~3.9 million) grid cells. Afterwards, the 

finalized property model (ISGS model version 7) was transferred into Nexus Desktop. A cross-section view of the 

revised model showing the PCB zone is shown in Figure 48. Note that the relatively high vertical cell thickness 

used within the PCB zone, compared to Mt. Simon Sandstone zones, was to reduce computational time of the 

pressure modeling. Reducing vertical cell thickness within the PCB zone will mostly increase the vertical resolution 

of dynamically modeled results within this zone and will not have much effect on the overlying zones, which is of 

interest for the pressure modeling effort. 

 

Faults 

Faults at the IBDP site were interpreted on 3D seismic data (Williams-Stroud et al., 2020) and inferred 

from microseismic data (Dichiarante et al., 2021). A total of 14 fault planes were interpreted from 3D seismic 

data. In Task 3, three fault planes were inferred from microseismic cluster #4 (around CCS1; Bauer et al., 2022). 

The grid cells through which these fault planes cut through were determined in Petrel and defined in VIP simulator 

by I, J, and K cell index/location. Because of limited information about the faults, transmissibility multipliers 

between cells or hydraulic properties of cells representing the faults were assumed. Additional discussion on how 

these properties were varied is provided below under the section titled “Major Modifications to Geocellular 

Models.” The geometry of the seismically interpreted fault planes within the geocellular model is shown in Figure 

49. 
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Figure 49. Fault planes incorporated into the models. 

Model Set-up/Initialization 

In Nexus Desktop 5000.4.14, the geocellular model was initialized using VIP-COMP simulator (Mirzaei 

et al., 2004). VIP-COMP simulates the flow of oil, gas, and water through subsurface reservoir and predicts the 

behavior of all associated production or injection wells, while considering that fluid properties and phase 

behavior can vary strongly with fluid composition. Because the goal of the modeling work was to calibrate the 

reservoir model using predictions of reservoir pressure response to IBDP CO2 injection, gas-water fluid system 

was used to simulate the in-situ brine and the injected CO2. Estimated fluid and reservoir properties listed in 

Table 4 were used as model parameterization and initialization. The estimated initial pressure at reference 

elevation depth (sea level, 0 ft) based on measured hydrostatic pressure and brine properties was 326.27 psia. 

The relative permeability curve used for simulation was based on generalizations from the literature. Assuming 

laterally continuous geologic units, infinite-acting boundaries (i.e., aquifer functions) were attached on the 

sides of the model to eliminate reservoir pressure build-up at boundaries. 

Table 4. Fluid and reservoir properties used for pressure modeling. 

Properties Value 

Brine density (g/cc) 1.051 

Formation volume factor (rb/stb) 1.00 

Viscosity (cp) 1.1297 

Water compressibility (1/psia) 2.76e-06 

Rock compressibility (1/psia) 2.74e-06 

Reservoir temperature (°F) 116 

Standard temperature (°F) 60 

Standard Pressure (psia) 14.5 

 

 

a. Fault surfaces in Petrel structural framework (view 

from the top) 

 

b. 3-D view of the fault surfaces in Petrel 

structural framework (view from the 

west) 

 
 

c. Faults modeled in the Nexus-VIP simulator 
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Model Calibration 

To calibrate the geocellular model to the recorded dynamic data (i.e., field data) at IBDP 

(Senel et al., 2014), the process involved conducting various refinements to the stochastically 

distributed reservoir properties and structural characteristics and fluid flow properties of faults 

incorporated into the geocellular model. The history matching effort focused on matching CCS1 and 

VW1 multi-level bottom-hole pressure (BHP) data and the time-lapse CO2 saturation logs. Deviation 

of the modeled pressure and saturation profiles from the field data were used as the basis to 

investigate, determine, and refine the geologic conceptual and geocellular model via reservoir and 

flow properties that were most influential to the calibrate with field data. Figure 50 shows the weekly 

averaged BHP and injection rate data between 11/04/2011 and 12/11/2012; Figure 51 shows the 

time-lapse CO2 saturation profiles at the IBDP site. Note that the time interval between when 

injection began (November 2011) and the March 2012 saturation profile is four months, hence this 

time interval was used as the basis for calibrating the saturation profile. 
 

 

Figure 50. Plots of dynamic bottom-hole pressure (weekly average at CCS1, VW1-WB1, VW1-WB2, VW1-WB3, 
VW1-WB4) and injection rate (weekly average at CCS1) between 11/04/2011 and 12/11/2012. 
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Figure 51. Time-lapse CO2 saturation profiles around VW1 (from Senel et al., 2014). Zones 2 and 3 shown in the 
borehole track (track 1) illustrate the levels of WB2 and WB3 pressure gauges. The black and red lines shown in tracks 
2 and 3, respectively, illustrate the measured CO2 saturation in March 2012 and July 2012, respectively. The colored 
bars in tracks 2 and 3 are CO2 saturation results from Senel et al., 2014.   

Variation of Geologic Features and Reservoir Properties 

Three primary variables in the model were the focus of refinement in the calibration process. The 

variables were 1) permeability distribution (vertical and horizontal) within the model domain. This 

included permeability of some layers [referred to as low permeability zones (LPZs)] and the Mt. Simon 

Sandstone, Argenta, and Precambrian zones, 2) the vertical extent of portion of the perforation interval 

that was open to CO2 injection, and 3) structural and fluid flow properties of faults, which were interpreted 

from 3D seismic data and inferred from the microseismic clusters.  

These variables were modified independently or concurrently during the simulation process to 

build on preceding simulation results and achieve the desired calibration. For example, a preceding 

simulation result required a decrease in the pressure observed at WB1 (i.e., at the representative grid cell) 

only. To build on this particular result, a subsequent simulation required reducing the permeability of 

either the Argenta or the fault by using a multiplier for the Argenta zone or assigning a permeability value 

to a section of the fault. This example modification was made to minimize vertical pressure migration into 

Argenta and its base and, as such, the observed pressure at WB1. An additional example is that a 

preceding simulation result may have shown lower pressure level at the grid cells of WB2 and WB3 (i.e., 
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within the middle Mt. Simon Sandstone) compared to observed field pressures. Such a result required 

either independently or concurrently increasing the permeability of the Mt. Simon Sandstone (in a 

reasonable manner) or modifying the transmissibility of an incorporated fault to enable faster pressure 

communication between CCS1 and the WB systems and a higher pressure to be achieved at WB2 and WB3 

grid cells. Separately, variations of LPZ permeability, thickness and later distribution were varied to 

improve calibration to WB2 and WB3. 
 

Model Iterations 

The model calibration process was started by using the geocellular model developed by 

Schlumberger as an input into Nexus. However, the result obtained from simulating the first nine months 

using this model did not result in an acceptable calibration with IBDP pressure and saturation data. 

Consequently, different sensitivities were applied to the geocellular model by varying the petrophysical 

properties of the model in order to improve the calibration. Despite the refinements that were applied to 

the petrophysical properties, the pressure modeling did not improve the calibration. This led to the need 

to rebuild the geocellular model that was developed for IBDP. The geocellular model was re-built, and 

several iterations of the model were generated through the progression of the calibration process 

according to the project methodology (Figure 1). The accepted models by the geology team, as close 

representation of the geology at the IBDP site, were then further used as inputs into subsequent pressure 

modeling work.  

Furthermore, several refinements were carried out on the geocellular models to get the simulated 

result to match the observed data. High-level descriptions of the refinements made on this newly built 

geocellular model are provided below. 

 

Major Refinements/Modifications to Geocellular Models 

• Perforation interval that is in hydraulic communication with the rock matrix: For the CCS1 

injection, three intervals were perforated. The first and second perforated depths were for 

injection purposes, and the third perforated depth was for a vertical interference test (VIT). The 

presence of these three perforations brought about the uncertainty of where fluid was going in 

the CCS1 well. However, based on a spinner log test of CCS1 80% of the CO2 was going into the 

first perforation, it was concluded during the simulation process that only part of the first 

perforation is in hydraulic communication with the rock matrix. Nevertheless, before this 

conclusion was made, the perforation intervals that were opened to b the rock matrix were 

varied in simulations. The depths for the perforations were: 

o Measured depth (MD) for the lowermost/first perforation was 7,025-7,050 ft [Subsea (SS) 

depth: 6,335 – 6,360 ft]. This is a 25 ft interval. 

o MD for the uppermost/second perforation was 6,985-7,015 ft (MD) (SS depth: 6,295-

6,325 ft). This is a 30 ft interval. 

o MD for the third perforation was 6,286-6,288 ft. The purpose for the third perforation 

was an attempt at VIT with brine injection before CO2 injection operation commenced. 

 

Modifications made with the perforations during the various simulations included: 

o Inclusion of all perforation intervals. 

o Inclusion of the first and second perforation interval. 
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o Inclusion of parts of the first and second perforation (e.g., 10 ft of first perforation interval 

and 5 ft of second perforation interval). 

o Inclusion of only part of the first perforation (e.g., 10 or 15 ft only). 

 

• Addition of a hypothetical fault plane into the geocellular model: Because the acquired seismic 

data did not fully cover the area south of the CCS1, there was uncertainty about the presence of 

geologic structures south of CCS1. This uncertainty formed the basis to test the hypothesis that 

unimaged structures present within the south of CCS1 have influence on the observed field 

pressure data. This hypothesis was tested by: 

o Adding a hypothetical 4,000-ft-long fault that is vertical (i.e., with 90° dip angle) and 

strikes east to west. The fault was added 400 ft south of CCS1. 

o The petrophysical properties (i.e., the permeability) of the fault were also varied to assess 

the influence of the fault on the predicted result.  

 

• Incorporation of interpreted fault planes from 3D seismic and microseismic data into the 

geocellular model: Fault planes that were structurally interpreted from 3D seismic data and 

inferred from microseismic cluster were incorporated into the geocellular model (Figures 49 and 

52). The planes were represented by using the grid cells, which intersect within the model 

domain. (Faults represented by grid cells of x-y dimensions relatively larger than a fault plane 

were representing a fault zone.) The faults had distinct structural characteristics, i.e., length, 

strike, and dip direction. Different hypotheses, relating to the fault transmissibility/fault 

properties, were also tested after the incorporation of the faults to determine how sensitive the 

simulation results were to a specific fault property or the location of a fault. The hypotheses 

tested included: 

o The transmissibility of the faults depends on its characteristics, specifically its strike. 

Based on this hypothesis, the strike of fault plane was estimated, and a transmissibility 

value was assigned to each group of grid cells, i.e., a fault zone. 

o Like the hypothesis above, the transmissibility of a fault depends on the slip potential of 

the fault. Based on this, fault slip potential of each fault was calculated. This resulted in 

different fault slip potential values for each grid cell that a fault plane cuts through. The 

calculated value was equated to the transmissibility multiplier value and further used for 

the pressure modeling. 

o The faults that have vertical offset (>5 ft) are less transmissible when compared to faults 

with little to no vertical offset (<5ft). Based on these criteria, some faults were designed 

to be invisible (i.e., have permeability like that of the rock matrix), while others were 

assigned with low transmissibility multipliers. For example, an interpreted fault located 

between CCS1 and VW1 is expected to be invisible (i.e., flow across is not impeded) 

because of the early pressure response observed at VW1 gauge systems. 

 

Other modifications carried out on the faults included: 

o Varying the transmissibility multipliers of faults that were expected to influence the 

predicted result. 

o Truncating the height of faults using a reference surface. 
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Figure 52. Map view of the interpreted faults (colored lines show the top of the faults) from 3D seismic data and 
approximate centers of the different microseismic clusters (the numbered, black-open squares) that were recorded 
during the IBDP injection period. The numbered faults are indicated here because they are listed as part of Appendix 
C headings, hence it is worth showing their locations relative to the CCS1 injection well. The dashed red lines show 
fault traces inferred from microseismic cluster locations, which were incorporated into some of the simulated cases 
listed in Appendix C.  

 

Figure 53. Permeability cross-section showing the layers referred to as low permeability zones (LPZs). 
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• Refining the permeability model: 

o Identifying and modifying permeability of layers around CCS1 and VW1, which have 

permeability less than ~5 mD. These layers were informally referred to as low 

permeability zones (LPZs) (Figure 53). 

o Modifying the permeability (vertical and horizontal) of the entire model domain.  

o Modifying permeability structure observed south of CCS1. 

 

In the appendix of the report, two logs of simulated cases are presented. Appendix B provides a 

log of cases (including description of modifications applied to the geocellular models) that were simulated 

from the time a new geocellular model was generated to October 2022. The log also provides, in most 

cases, an approximate difference between observed average BHP and simulated average BHP. Appendix 

C provides a log of cases (including details of the different variables present in each case) that were 

simulated using the October 2022 geocellular model. It is worth noting that in between the time of running 

these simulations, the newly generated geocellular model by ISGS was constantly evolving to include new 

geologic features or zones suggested by ISGS geologists.  

Pressure Modeling Results 

For most of the simulated cases, an acceptable calibration between field and simulated BHP and 

saturation data was not achieved. Specifically, getting a result showing an early pressure response at WB2 

and WB3 that was similar to the observed field pressures and a nearly constant (i.e., flat) pressure trend 

after the first month of injection proved unachievable. In this section of the report, the result of a selected 

case that best matches the historical pressure and saturation data is documented. 

The selected case is SOS_110922_33 (Appendix C). For this case, the following modification was 

applied to the newly built geocellular model: 

• The LPZs (Figure 53), which include model layers 102, 112, 124, 131, 134, 137, 151, 156, 159, 

170, and 173 were multiplied by 0.3. 

• A total number of 17 fault planes (14 faults interpreted on 3D seismic data and three faults 

inferred from microseismicity cluster #5, #10, and #15) were incorporated into the geocellular 

model. 

• All faults were truncated around the level of WB3 (layer 163). 

• For faults 2, 3, 8, and 9 (Figure 52) and faults inferred from microseismicity cluster (i.e., clusters 

#5, #10, #13, and #15 [Bauer et al., 2016]): 1) the Mt. Simon part of the fault zone was assigned 

with along-fault (i.e., along-strike) permeability of 2,000 mD and across-fault permeability equal 

to the rock matrix permeability, and 2) the Argenta and Precambrian basement parts of the fault 

zone were assigned with along-fault permeability of 0.1 mD and across fault permeability equal 

to the rock matrix permeability.  

• Other faults within the model were assumed to be impermeable, thus a transmissibility 

multiplier of 1e-05 was applied to the set of cells representing these faults. 

• The perforated interval used at CCS1 injection point was 15 ft. 

• Simulated CCS1 BHP was set to the actual CCS1 BHP so that the injection pressure at CCS1 was 

causing with the VW1 WB calibration pressure data. (To this end CCS1 injection rate become a 

calibration data trend.)  

Figure 54 shows a plot of observed (open circles) and simulated (solid line) BHP at CCS1 and WB1-

4 pressure gauges. Also shown in Figure 54 is the field and simulated injection rate. At CCS1 pressure 
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gauge level, it is evident that the field and simulated BHPs matched accurately, mainly due to the constant 

CCS1 BHP constraint that was applied. With this constraint and the 15-ft perforation interval used for 

injection, the match between simulated injection rate and actual injected CO2 rate was good. Except over 

short time periods around January 2012 and June 2012, the match between the injection rates was 

generally good over the nine-month period. 

At WB1 pressure gauge level within the model, the match between field and simulated BHPs was 

also relatively good over the simulated period, although the simulated pressure overshoots by ~10 psi 

around January-February 2012 and August 2012, compared to the observed pressure response. Generally, 

throughout the simulated period, the result showed good agreement with field data. The maximum 

difference between observed field pressure and simulated pressure was <10 psi.  

 

Figure 54. Plots of observed BHP and injection CO2 rate from field data (open circles) and simulated BHP and injection 
rate (solid line). 
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At WB2 and WB3 pressure gauge levels, the match between field and simulated BHPs was 

relatively good over the first six to seven months, with a maximum difference <10 psi. After this period 

(i.e., around June 2012), a separation between the two BHP curves was observed. A maximum pressure 

difference of ~25 psi was observed around the ninth month (August 2012). Between WB2 and WB3 levels, 

gas saturation at ~120 days (Figure 55) was also observed to have matched the measured gas saturation 

profiles (Figured 51). Throughout the process of performing model iterations and pressure modeling, it 

was a challenge to get the pressure level at these two pressure gauge levels to stay constant after the first 

two months. It was only through the addition of a permeable fault zone between the two wells could the 

relative rapid, early pressure increase occur followed by a relatively flat pressure trend. 

 

 

Figure 55. Cross-section simulated CO2 saturation between CCS1 (black-left) an VW1 (red-right) 

POROELASTIC MODELING 

Geological Model 

For the coupled flow and geomechanics modeling, we used a simplified stratigraphic 

representation of the injection interval. Specifically, we divided the storage interval into six main 

zones, defined based on changes in reservoir properties and layer thickness (Figure 56). To make the 

problem computationally tractable, our stratigraphic model did not include thin layers, such as the 

Argenta and the Mudstone baffles, and instead we chose to represent those layers using 

transmissibility multipliers in the flow model. The Lower Mt. Simon interval, where CO2 injection 

occurs, is represented by Layer 5 in our stratigraphic interval, the Precambrian basement is 

represented by Layer 6, and the overburden above the Mt. Simon interval is represented by Layer 1 

(Figure 56).  
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Figure 56. (Left) Schematic view of the location of the different pressure gouges in the VW1 well with respect to the 
injection ports in the CCS1 well. In this schematic, we also show the key stratigraphic horizons that control pressure 
compartmentalization in the vertical directions, namely the Mudstone baffle and the Argenta formation. (Right) View of 
stratigraphic intervals used in our model. We divided the Mt. Simon interval according to the depth of the different 
pressure gouges at the VW1 well. Due to their low thicknesses, we accounted for the Argenta formation and the 
Mudstone baffle using transmissibility multipliers at those interfaces. Layer 1 corresponds to an impermeable 
overburden, Layers 2 to 5 are the Mt. Simon sections where injection occurs. Layer 6 is the Precambrian basement.  

A key feature of our geological model is that we included a set of non-planar faults, interpreted based 

on 3D surface seismic data and microseismicity locations. The shallowest portions of the faults are located 

halfway into the Mt. Simon formation, at a depth of about 4,921 ft (1,500 m), and the deepest portions 

penetrate as much as 1,312 ft (400 m) into the Precambrian basement where the microseismicity is located, 

reaching a depth of about 8,202 ft (2,500 m) (Figure 57). We note that the largest faults in our model were 

interpreted using 3D surface seismic data, whereas the smaller fault planes were inferred based on the 

microseismicity locations, since these faults were not visible in the 3D surface seismic interpretation. 

 

Computational Mesh 

We used the geological model, including all horizons and fault surfaces, to build a unified 

computational mesh for the flow and geomechanics simulations. The complex geometry furnished by the 

presence of many non-planar faults intersecting each other required the use of an unstructured mesh. To 

achieve this goal, we performed spatial discretization using tetrahedral elements that were set to be smaller 

near the faults and in the injection interval (~90 ft; ~30 m) and progressively larger away from these areas. The 

final computational mesh is composed of 2.67 million tetrahedral elements that conform to all faults and 

horizons in our model (Figure  58). 

 

Reservoir and Fluid Properties 

We populated our computational mesh with reservoir properties upscaled from a geocellular model 

constructed based on well-log and core data. A notable feature of the reservoir model is that the Precambrian 

basement is heavily fractured, which was modeled using an effective medium approach by setting anisotropic 

permeability values. Specifically, in the Precambrian interval, kyy = 0.1kxx and kzz = 0.79kxx. The Lower Mt. Simon 

interval has isotropic horizontal permeability and a vertical permeability that is 10 times less than the horizontal 

permeability. In Figure 59, we show the Precambrian permeability and histograms of permeability and porosity 

for the basement and the Lower Mt. Simon. 
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Figure 57. Fault geometry and microseismicity locations. a) View from the top showing all the faults included in our 
model. The fault surfaces are assigned random colors to improve visualization. Microseismicity locations are shown by 
the black dots. Solid red lines indicate the intersection of the basement surface (Precambrian) with the fault surfaces. b) 
View from the west of the fault surfaces shown in a). The location of clusters #2 and #4 are indicated as well as the fault 
intersection with the Precambrian surface (solid red lines). c) Map view of the fault locations and microseismicity. The 
solid black lines are the intersection of the fault planes with the Precambrian surface [shown by the red lines in a) and b)]. 
Circles are proportional to event magnitude and colored by time. 

 

Figure 58. Model geometry and computational mesh used in our simulations. a) Perspective view of the entire 
domain showing the computational mesh. The domain X direction is parallel to the maximum horizontal stress 
direction (N68E). The domain size is 10 km x 10 km x 5 km. b) View of the computational mesh at the top of the 
Precambrian surface, showing the faults included in our model. c) View from the top showing the mesh around the 
faults and the CCS1 and VW1 wells. Note the imprint of the fault locations on the unstructured mesh conforming to 
all fault planes. d) View of the computational mesh at the fault planes included in our model. The solid red lines 
indicate the intersection of the Precambrian top with the faults. Our computational mesh contains 2.67 million 
tetrahedral elements that conform to the input horizons and fault surfaces. 
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We defined the flow properties using empirical correlations from the literature. At the depth 

where CO2 is injected (~2,000 m), CO2 is in supercritical state. We used the thermodynamic model 

from Duan and Sun (2003) and Hassanzadeh et al. (2008) to compute the CO 2 and brine properties 

for pressure, temperature, and salinity conditions of the Lower Mt. Simon, assuming isothermal 

conditions. We defined relative permeability curves consistent with previous flow simulations at the 

Lower Mt. Simon (Senel et al., 2014; Strandli et al., 2014), where we set the irreducible water 

saturation to be Sw,irr = 0.6. For flow boundary conditions, we multiplied the pore volumes at the edge 

of the domain by 10,000 to model a strong aquifer support. In our simulations, we neglected capillary 

pressure and CO2 dissolution in brine, therefore focusing only on two-phase immiscible reservoir 

simulation. In Figure 60, we show the CO2 and brine density variation with pressure and the relative 

permeability curves that we used. 

 

 

Figure 59. Reservoir properties used in the flow simulations. a) Perspective view of the spatial variation of the 
kxx permeability component for the Precambrian basement. The other components of the permeability tensor 
for the Precambrian basement were kyy = 0.1kxx and kzz = 0.79kxx. For the Lower Mt. Simon interval, kxx = kyy 
and kzz ≈ 0.1kxx. b) Histogram comparing permeability values for the Precambrian basement and the Lower 
Mt. Simon interval. c) Same as b) but for porosity. 
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Figure 60. Fluid properties used in the flow simulations. a) Fluid density variation with pressure for the brine and 
CO2; b) Relative permeability curves.  

Fault Properties 

In our coupled flow and geomechanics modeling, faults were modeled as 2D planes with an 

assigned thickness (Karimi-Fard et al., 2004), which allowed us to define permeability across and along 

the faults such that faults contribute actively to pressure diffusion and CO2 transport. 

We defined the along-fault permeability to be much larger in the Precambrian section than the 

fault locations intersecting the Mt. Simon interval. This modeling choice was intended to account for field 

observations showing that faulting in crystalline basement rocks tends to be accompanied by a fault zone 

that is much more permeable than the surrounding rock matrix (Faulkner et al., 2003; Chester et al., 2005; 

Mitchell and Faulkner, 2009). In sedimentary sections where faulting occurs, the fault zone is likely to be 

filled with fine-grained material that significantly reduces its permeability. To account for these 

observations, we set the along-fault permeability in the fault areas within the Lower Mt. Simon to be 1 

mD, whereas the fault locations in the Precambrian basement have permeability as large as 1,000 mD 

(Figure 6261). 

We define fault zone thickness to be the zone where significant permeability alteration occurs 

due to frictional processes, causing it to be differentiated from the host rock where faulting occurred. In 

the absence of outcrops, empirical correlations are used that relate fault zone thickness to the amount of 

clay content in the fault zone and the amount of fault displacement. Here, we use the empirical correlation 

proposed by Sperrevik et al. (2002) to define the fault zone thickness: 

𝑏 = 𝐷(0.06 ⋅ (SGR)2) −  0.12 ⋅ SGR + 0.0659) (Eq. 2) 

where 𝑏 is the fault zone thickness, 𝐷 is the fault throw, and SGR is the shale gouge ratio, which quantifies 

the amount of clay content at the fault zone. The SGR is related to the clay content of the formation as: 

SGR =  ∑ 𝑉𝑐𝑙𝑖ℎ𝑖𝐷
−1𝑁

𝑖=1 , (Eq. 3) 

where 𝑉𝑐𝑙𝑖 is the fractional clay volume for each zone crossed by the fault, ℎ𝑖 is the thickness of the offset 

layer, and D is the cumulative or total fault slip. The Lower Mt. Simon contains, on average, 5% clay 

(Freiburg et al., 2014) with an average thickness of ~1,640 ft (~500 m). We assumed an average fault 

displacement of 65 m, which we justified by noting that smaller fault throws would not be visible in the 

3D surface seismic data. Therefore, we found that the average fault zone thickness is ~3 ft (~1 m). 
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Figure 621. View from the west of the fault properties. Here we show the along-fault permeability. We divide the 
fault in two regions and assign constant fault properties within each region. The regions are defined as follows: the 
upper region (green colors) within the Lower Mt. Simon and a lower region (red colors) within the Precambrian 
basement interval. The solid blue line is the intersection of the fault planes with the Precambrian basement.  

Model Calibration 

We performed history matching to model the observed pressures at the VW1 well. We used 

transmissibility multipliers to adjust the degree of pore pressure diffusion from the injection interval to 

the pressure sensors located above the injection zone. Reservoir pressure data indicated that the Lower 

Mt. Simon is compartmentalized, with pressure diffusion in the vertical direction significantly limited, 

presumably because of the mudstone baffles identified in well logs and core data. The distinctive 

character of the observed pressure at the WB1 sensor indicated that pressure diffusion into the basement 

is likely occurring; however, core data analysis showed the presence of a very low permeability (< 1 md) 

and low porosity (<10%) sandstone (Argenta formation) separating the Lower Mt. Simon from the 

Precambrian basement. It is unclear if the Argenta formation is laterally continuous or if it thins in some 

areas to hydraulically connect the Lower Mt. Simon to the Precambrian basement. Here, we assumed that 

the Argenta formation hydraulically disconnects the Lower Mt. Simon from the Precambrian basement, 

an assumption that we enforced by assigning zero transmissibility multiplier for the interface between 

these two zones. Therefore, in our hydraulic model, the only way that pore pressure could diffuse from 

the Lower Mt. Simon into the basement was along the pre-existing faults shown in Figure 57. 

Consequently, in our flow simulations, we identified the along-fault permeability as the key 

hydraulic parameter controlling the match between the observed and modeled pressures at the VW1 

well. The along-fault permeability controls the degree of pore pressure diffusion into the basement 

section, which impacts the modeled pressure at the WB1 sensor, given that this sensor is located at the 

transition zone between the Lower Mt. Simon and the Precambrian basement. Our flow model results 

indicated that an along-fault permeability of above 10 mD is necessary to match the observed data (Figure 
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62). We noted that the along-fault permeability controls the degree that pore pressure diffuses along the 

faults into the basement, whereas the basement fractured model shown in Figure 59 controls the extent 

that pressure diffusion occurs between the faults and the VW1 well. 

 

Figure 62. Comparison between modeled and observed pressures at the VW1 well for different along-fault 
permeability values. a) WB5 sensor, b) WB4 sensor, c) WB2 sensor, d) WB1 sensor. 

Methodology 

We modeled the coupling between subsurface flow and deformation using the theory of 

poroelasticity (Biot, 1941). The equations governing the coupling between flow and deformation are the 

a)

b)

c)

d)
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balance of linear moment and the fluid mass balance equation, with the effective stress linking pore 

pressure changes to deformation. 

For an isotropic material, assuming infinitesimal deformation at isothermal conditions, the 

balance of linear momentum under quasi-static deformation is given as: 

∇ ∙ 𝝈 + 𝜌𝑏𝒈 = 0 (Eq. 4) 

where 𝝈 is the Cauchy total stress tensor, g is the gravitational acceleration vector, 𝜌𝑏 =  (1 − 𝜙)𝜌𝑠 +

𝜙𝜌𝑓 is the bulk density, 𝜌𝑓is the fluid density, 𝜌𝑠 is the solid grain density and 𝜙 is the porosity of the 

porous medium. 

The fluid mass balance equation for a non-reactive multiphase flow system is given as (Coussy, 

1995): 

𝑑𝑚𝛼

𝑑𝑡
+ ∇ ∙ 𝝎𝛼 = 𝜌𝛼𝑓𝛼  

(Eq. 5) 

where 𝑚𝛼is the fluid mass content of phase 𝛼, 𝝎𝛼 is the mass flux of fluid phase 𝛼 relative to the solid 

skeleton, 𝜌𝛼 is the density of fluid phase 𝛼, where the total fluid density is given as 𝜌𝑓 = ∑ 𝜌𝛽𝑆𝛽
𝜂phase

𝛽=1
, 

with 𝜌𝛽  and 𝑆𝛽being the density and saturation of phase 𝛽, and 𝜂phase is the total number of phases. 

We assumed that the fluid phases are immiscible, and thus the fluid mass flux of phase 𝛼 is given 

as 𝝎𝛼 = 𝜌𝛼𝒗, where 𝒗𝛼 is the Darcy velocity, which for a multiphase system is given as (Bear, 1972): 

𝒗𝛼 = −
𝒌𝑘𝑟𝛼

𝜂𝛼

(∇𝑝𝛼 − 𝜌𝛼𝒈) 
(Eq. 6) 

where 𝜂𝛼 and 𝑘𝑟𝛼 are the dynamic viscosity and the relative permeability of phase 𝛼, and 𝑝𝛼 is the fluid 

pressure of phase 𝛼. Here, we neglect capillary pressure, and thus 𝑝𝛼 = 𝑝 for all phases 𝛼. 

The porous medium deformation results from effective stresses are given as (Coussy, 1995): 

𝝈′ = 𝝈 + 𝑏𝑝𝟏 (Eq. 7) 

where 𝝈′ is the effective stress tensor, 𝑏 is the Biot coefficient (Coussy, 1995) and 1 is the unit tensor. We 

adopt the sign convention that tensile stresses are positive. Finally, the constitutive equation governing 

deformation in a poroelastic medium is: 

∇ ∙ (𝜎′ − 𝑏𝑝𝟏) + 𝜌𝑏𝒈 = 𝟎 (Eq. 8) 

In our model implementation, due to the small strains associated with CO2 injection, we 

performed a one-way coupled flow and geomechanics modeling, where pore pressure was used to drive 

deformation only, without the reverse coupling (pore pressure changes induced by the deformation). We 

first solved the flow problem to obtain pore pressure and saturation changes, which were then used in 

the solution of the mechanics problem. We solved the flow problem using the finite volume simulator 

Matlab Reservoir Simulator Toolbox (MRST) (Lie, 2019). We solved the mechanics problem using the finite 

element mechanical simulator PyLith (Aagaard et al., 2013). We avoided interpolation of the pore 

pressure field by using the same computational mesh, shown in Figure 58, in both simulators.  

We investigated the impact of CO2 injection on the fault stability behavior using the Coulomb 

Failure Function, CFF, defined as (Reasenberg and Simpson, 1992; King et al., 1994):  
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CFF = |𝜏| +  𝜇𝜎′ (Eq. 9) 

We fixed the fault friction coefficient at 𝜇 = 0.6. Additionally, 𝜏 is the shear stress magnitude 

computed from the horizontal and vertical shear stresses. 

We quantified the impact of CO2 injection on fault stability using changes in CFF, DCFF, relative to 

a reference state of stress: 

DCFF(𝑡) = CFF(𝑡) −  CFF(𝑡0) (Eq. 10) 

where CFF(𝑡0) is the Coulomb stress prior to the beginning of the injection. In our sign convention, where 

tensile stresses are positive, fault destabilization occurs when DCFF > 0, whereas fault stabilization occurs 

when DCFF < 0. 

Additionally, we investigated the combined effects of fault destabilization caused by pore 

pressure diffusion and by poroelastic stresses by expanding the DCFF as: 

DCFF(𝑡) = CFF(𝑡) −  CFF(𝑡0) =  ∆|𝜏| + 𝜇∆𝜎𝑛 + 𝜇∆𝑝 (Eq. 11) 

The term ∆|𝜏| + 𝜇∆𝜎𝑛 is often referred to as “poroelastic stress” since it is the result of poromechanical 

coupling only. 

Because the IBDP project included geocellular modeling, the SoS project started with the model 

available at that time (2018/2019 geocellular model). This IBDP model was calibrated to the three years 

of injection. In the first six months of the SoS project, it was necessary to limit the analyses of seismicity 

data to two major clusters (#2 and #4) that developed in the first nine months following injection startup. 

Hence, the SoS model calibration effort was limited to nine months. Unfortunately, the 2018/2019 

geocellular model did not match the first nine months as well as it appeared to match the entire three 

years of CCS1 and VW1 pressure and saturation data. Therefore, a new geocellular model was developed 

earlier in the SoS project than was originally planned. In the process of following the iterative methodology 

of integrating modeling results (Figure 1), seven unique geocellular models were required and over 300 

modifications to these geocellular models to calibrate rigorously the geocellular to the IBDP pressure and 

saturation data. Dozens of these modifications occurred between development of the next geocellular 

model in order to test geologic features that might be present and improve the calibration before 

requestioning the next geocellular model.  

 

Flow Model Results 

Pore pressure diffusion in the basement section due to CO2 injection is shown in Figure 63. Due 

to the relatively large along-fault permeability values (> 10 mD along all faults compared with < 10 mD in 

the basement matrix), pore pressure diffusion was initially localized near the faults in our models. Over 

time, pressure diffusion into the fractured basement caused pressure to increase away from the faults in 

a NE-SW direction that followed the fracture orientation determined by the anisotropic permeability field 

(Figure 59). Between March and July 2012, the pore-pressure change at cluster #2 was as large as 0.5 MPa 

(5 bar). 
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Figure 63. Modeled pore pressure spatial distribution at the top of the Precambrian basement at different times. a) 
January 2012, prior to seismicity occurrence. b) March 2012, when microseismicity at cluster #2 occurred. c) July 
2012, when microseismicity at cluster #4 occurred. d) December 2012.  

A key modeling result from our flow simulations was that the pore pressure along the faults in our 

model increased significantly in the basement section compared with the regions in the Mt. Simon 

interval. This simulation result was derived directly from our along-fault permeability definition shown in 

Figure 61, where regions in the basement interval have much larger permeability than in the sedimentary 

sections. 

In the regions surrounding cluster #2 and cluster #4, pore pressure changes were as large as 0.7 

MPa and 0.4 MPa, respectively. We noted that without flow along faults, pressure diffusion to regions 

where microseismicity occurred would be constrained by the hydraulic properties of the Argenta 

formation and the Precambrian basement. 

 

 

Figure 64. Spatial distribution of pore pressure at the faults in our model for July 2012, when cluster #4 of seismicity 
occurred. Yellow stars denote fault locations that will have the fault traction and pore pressure analyzed in the 
following figures. Here we used an along-fault permeability of 100 mD.  

a) b)

c) d)
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Finally, Figure 65 compares the breakthrough time for the modeled CO2 saturation at the VW1 

well with the observed data. The data shows that CO2 plume arrived at the VW1 well around March 2012, 

which agrees with our model results. CO2 saturation was confined to the injection interval, and no CO2 

leakage to the shallower formations occurred due to flow along the faults. 

 

Figure 65. Spatial distribution of CO2 saturation after one year of injection. a) 3D perspective view showing CO2 
plume with respect to all faults in the model. Blue dots indicate microseismicity location. b) Temporal evolution of 
the modeled CO2 saturation at the VW1 well (solid red line). Dashed black line indicates the maximum CO2 
saturation observed at the VW1 well location.  

Elastic and Poroelastic Properties Used in the Geomechanical Model 

In Table 5, we show the elastic and poroelastic properties used in our geomechanical model. For 

each layer, we defined constant average values estimated from well-log measurements at the IBDP site.  

Table 5. Summary of elastic and poroelastic properties used for each layer in our model. Within each layer, values 
are assumed to be constant. 

  𝑬 (GPa) 𝝂 𝝆𝒃 (g/cm3) 𝒃 
Layer 1 Overburden 40 0.30 2550 0.7 
Layer 2 Mt. Simon 41 0.29 2550 0.7 

Layer 3 
Lower Mt. 

Simon 
29 0.30 2430 0.7 

Layer 4 
Lower Mt. 

Simon 
27 0.30 2320 0.7 

Layer 5 
Lower Mt. 

Simon 
25 0.33 2390 0.7 

Layer 6 Basement 39 0.25 2700 0.7 

 

State of Stress at the IBDP Site 

At the IBDP site, interpretation of wellbore breakouts and drilling-induced tensile fractures using 

FMI logs indicate an average maximum horizontal stress orientation of N68E (Babarinde et al., 2021), a 

value that is in agreement with contemporary SHmax orientation in the eastern and central U.S (Lund et al, 

2020) and consistent with six in-situ stress measurements within 37 to 62 miles (60 to 100 km) away of 

the IBDP site (Bauer et al., 2016; Lahann et al., 2017). Focal mechanism analysis of several microseismic 
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events at IBDP has consistently shown a strike-slip stress regime with events happening on fault planes 

oriented within 30° from the SHmax direction (N68E) (Kaven et al., 2015; Langet et al., 2020), suggesting 

that seismicity occurred on critically stressed faults.  

We estimated the vertical stress magnitude by integrating the density values corresponding to 

each zone in our model (Table 5), resulting in a vertical stress gradient of 24.8 MPa/km. At the IBDP site, 

the magnitude of the minimum horizontal stress, Shmin, was measured at two different depths using mini-

frac tests (Bauer et al., 2016; Babarinde et al., 2021). No measurements of SHmax magnitude were available 

at the IBDP site; however, stress magnitude measurements available for a site ~100 km away showed that 

SHmax gradients vary between 28 MPa/km to 43 MPa/km (Lahann et al., 2017). Figure 66 shows the stress 

measurements at the IBDP site and 100 km away from it for different Shmin/Sv and SHmax/Sv gradients. The 

stress ratio that agrees best with the Shmin measurements at the IBDP site are on the range Shmin/Sv ≈ 0.6 

to 0.9, whereas ratios for SHmax/Sv vary from 1.1 to 2.5.  

Our geomechanical model was initialized with pre-stresses corresponding to one of the stress 

gradients shown in Figure 66. For boundary conditions, we disallowed displacement perpendicular to all 

sides and the bottom of the domain (no displacement boundary conditions), leaving the top of the domain 

as a free surface. 

Figure 66. Initial stress variation with depth for the geomechanics simulations. a) Minimum horizontal stress, Shmin. 

Colored lines indicate different Shmin / Sv ratios. Blue stars correspond to stress measurements 95 km away from the 

IBDP site (Lahann et al., 2017). Black stars are minimum horizontal stress measurements at the IBDP site. The 

average depth of the basement at the CCS1 well is shown by the dashed black line. b) Same as a) but for the 

maximum horizontal stress, SHmax. Note that no data are available for SHmax at the IBDP site.  

 

Geomechanical Model Results 

Impact of uncertainty on initial pre-stresses 

We investigated the impact of uncertainty in the initial pre-stresses assigned to our domain by 

measuring the slip tendency, Ts, at selected faults in our model. Assuming that faults have zero cohesion, 

the slip tendency is defined as the ratio of the shear to effective normal stress (Morris et al., 1996; Lisle 

and Srivastava, 2004): 

Ts =  
|𝜏|

−𝜎′  
(Eq. 12) 
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where τ is the shear stress magnitude and σ′ is the effective normal stress. 

Figure 67 shows slip tendency values at the center of the fault “F.333”, located at cluster #4, for 

different initial pre-stress scenarios corresponding to different SHmax/Sv and Shmin/Sv stress ratios in Figure 

66. For fault “F.333”, slip tendency values are as low as 0.2 and as high as 1.2 for Shmin/Sv between 0.6 to 

0.9 and SHmax/Sv between 1.2 and 2. Our preferred scenario is defined by the ratio Shmin/Sv = 0.6 and SHmax/Sv 

= 1.1. However, other pre-stress ratios would yield similar results (e.g., Shmin/Sv = 0.9 and SHmax/Sv = 1.97). 

Additional measurements of SHmax at the IBDP site are required to resolve the precise ratio of SHmax/Sv. 

For different pre-stress ratios, we show in Figure 67b,c,d the spatial variation of the slip tendency 

at the fault locations intersecting the basement horizon. Overall, our model initialization results indicated 

that the faults near clusters #2 and #4 have Ts ~ 0.55 to Ts ~ 0.7 and, therefore, are critically stressed. 

Other fault locations are also critically stressed but do not show any apparent seismicity — a result that 

can be an indication of local stress magnitude variation, uncertainty in fault geometry, or that fault slip 

occurred aseismically. In fact, Figure 67 shows that small changes in fault strike orientation, with respect 

to the SHmax orientation, cause significant differences on the fault proximity to failure, which stresses the 

connection between fault geometry in subsurface and seismic hazards. 

 

Impact of along-fault permeability on the stability of basement faults 

For different values of the along-fault permeability, we show in Figure 68 the temporal evolution of 

changes in pore pressure (Δ𝑝) and fault tractions at clusters #2 and #4 for the spatial locations that are 

shown by the yellow stars in Figure 67. As expected, Δ𝑝 at clusters #2 and #4 decreases with decreasing 

along-fault permeability. For along-fault permeability equal to 1 Darcy, Δ𝑝 is as large as 0.75 MPa in April 

2012 (Figure 69a), when cluster #2 of seismicity occurred, and 0.5 MPa in July 2012, when cluster #4 of 

seismicity occurred (Figure 69b). Similarly, for along-fault permeability equal to 0.01 mD, pore Δ𝑝 at clusters 

#2 and #4, respectively, are Δ𝑝 ≈ 0.15 MPa in April 2012 and Δ𝑝 ≈ 0.2 MPa in July 2012. 

Pore pressure increase in the fractured basement (Figure 63) results in poroelastic stresses that 

increase compression at the fault surfaces, resulting in an increase in total normal stress that leads to fault 

stabilization at clusters #2 and #4 (Figure 68c,d). Similar to the behavior of pore pressure, along-fault 

permeability controls the extent of fault normal stress increases. The effective normal stress, 𝜎′ = 𝜎𝑛 +

𝑏𝑝, however, shows a decrease in compression, indicating that pore pressure changes outweigh the 

increase in compressive normal stress and resulting in fault destabilization (Figure 68e,f). Our model 

results also indicated that the shear stress magnitude is one order of magnitude smaller than the effective 

normal stress changes (Figure 68g,h); therefore, the poroelastic stress changes are dominated by changes 

in the total normal stress at the fault planes (Figure 68I,j). In agreement with the total normal stress 

variations, poroelastic stress changes are negative, indicating that, in absence of pore pressure changes 

at the fault locations, basement faults would be stabilized due to CO2 injection at the CCS1 well. These 

results point out the importance of along-fault pore pressure diffusion to explain the destabilization of 

basement faults. 

We quantified the impact of poroelastic stresses and pore pressure on the fault stability using 

changes in the Coulomb Failure Function (DCFF) (Eq. 10). The temporal evolution of DCFF indicated that for 

along-fault permeability equal to 1 Darcy, DCFF ≈ 0.3 MPa at cluster #2 (March 2012) and DCFF ≈ 0.2 MPa at 

cluster #4 (July 2012). Likewise, for along-fault permeability equal to 0.01 mD, DCFF ≈ 0.05 MPa at cluster 

#2 (March 2012) and DCFF ≈ 0.1 MPa at cluster #4 (July 2012) (Figure 68a,b; Figure 69a,b). Our model results 

showed that DCFF is always positive, indicating that the faults are being moved toward destabilization due 

to the increase in pore pressure (Figure 68a,b). Similar to DCFF variations, the fault slip tendency, Ts, also 
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depends on the along-fault permeability — with larger values of along-fault permeability increasing Ts. For 

both clusters #2 and #4, Ts increased slightly (≈ 3%) with respect to its initial value. 

 

Figure 67. Variation of slip tendency with initial stresses and fault location. a) Slip tendency, Ts = τ/σ′, corresponding 
to different initial stresses shown in Figure 63. Here we show Ts for fault 333, which is indicated in b, c, and d as “F. 
333”. Black open squares indicate the initial stresses shown in b, c, and d. b) Slip tendency for all faults in our 
model. Here we show the slip tendency computed at the fault locations that intersect with the basement surface. In 
this case, the slip tendencies were computed using an initial stress of SHmax/Sv = 1.1 and Shmin/Sv = 0.65. c) Same as b 
but for an initial stress of SHmax/Sv = 1.68 and Shmin/Sv = 0.9. d) Same as b but for an initial stress of SHmax/Sv = 1.97 
and Shmin/Sv = 0.9. e) 3D perspective view of Ts for an initial stress of SHmax/Sv = 1.1 and Shmin/Sv=0.65. The yellow 
stars indicate fault locations where temporal evolution of fault tractions and pore pressure will be analyzed. 
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Figure 68. Temporal evolution of fault pore pressure and stress changes for different along-fault permeability 

values. The left and right columns are clusters #2 and #4, respectively. a, b) Pore pressure changes (positive means 

increase in pore pressure). c, d) Changes in normal stress (negative means increase in compression). e, f) Changes in 

effective normal stress (positive means decrease in compression). g, h) Changes in shear stress magnitude (positive 

means increase in shear stress magnitude). i, j) Poroelastic stress changes (negative means decrease in poroelastic 

stress). All changes are relative to the beginning of the injection. The histogram of earthquakes for each cluster is 

given by the black lines. All plots correspond to the fault locations shown in Figure 67. 
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Figure 693. Temporal evolution of DCFF and slip tendency, Ts = τ/σ′, for clusters #2 and #4. Colored lines correspond 
to different along-fault permeability values. a) DCFF for cluster #2. b) DCFF for cluster #4. c) Slip tendency for cluster 
#2. d) Slip tendency for cluster #4. The fault location shown here is indicated by the yellow star in Figure 67. 

DISCUSSION 

Fault geometry has a significant impact on the fault proximity to failure (Figure 67) and points out 

the importance of using accurate subsurface fault representations to investigate earthquake hazards. 

Despite our dense fault model based on detailed interpretation of 3D surface seismic reflection data, the 

fault planes where the microseismicity cluster occurred were below the seismic resolution and invisible a 

priori to seismicity occurrence. This observation indicates the challenges of earthquake hazard prediction 

prior to injection and that, even with detailed fault mapping using state-of-the-art seismic reflection data, 

smaller faults are likely to be characterized only after seismicity occurs. 

Building accurate geological models of the subsurface requires detailed reservoir characterization 

using all available data. In the case of the IBDP site, reservoir pressure measurements at the VW1 well 

combined with well-log and core information were essential to constrain the extent that the Lower Mt. 

Simon formation is hydraulically connected to the Precambrian crystalline basement. The absence of pore 

pressure diffusion along-faults, in combination with the low porosity and low permeability of the Argenta 

interval, would compartmentalize reservoir pressure increase to the Lower Mt. Simon only, which is 

incompatible with seismicity occurrence in the basement section. Our model results showed that along-

fault pore pressure diffusion is an important mechanism to explain the destabilization of basement faults 

due to injection in shallower sedimentary sections at the IBDP site. 

In our hydraulic model, along-fault permeability was the main parameter controlling the degree 

of pore pressure diffusion from the Lower Mt. Simon into the Precambrian basement. Presumably, high 

values of the along-fault permeability correspond to highly fractured fault zones surrounding the fault 

a) b)

c) d)
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core. There are extensive field observations of how fractures enhance permeability of fault zones 

(Faulkner et al., 2003; Sperrevik et al., 2002), but the exact fracture density at the IBDP site warrants 

additional study. There is also uncertainty with respect to the degree that such fractures are filled with 

fine-grained clay particles, causing reduction in their permeability. Here, we have used empirical 

equations derived for siliciclastic rocks only. Additional work is required to investigate fault zone 

permeability for transitional zones between sedimentary and crystalline rocks, such as the location of the 

IBDP site. 

Our model results indicated that poroelastic stress changes alone would stabilize the basement 

faults where seismicity occurred due to normal stress increase at the fault planes. This increase in normal 

stress occurs due to elastic deformation of the basement associated with pore pressure diffusion from 

the faults to the fractured basement, which explains the dependency of the poroelastic stress changes on 

the along-fault permeability. 

Our model results did not indicate a clear correlation between DCFF temporal variation for 

clusters #2 and #4 and the seismicity rate (Figure 69369). We hypothesize that this lack of temporal 

correlation is attributed to heterogeneity in the along-fault permeability or in the fault frictional 

properties, uncertainty in the initial stress magnitudes, and the presence of additional faults that can 

significantly impact pore pressure diffusion behavior. Further studies using rate and state models 

(Dieterich, 1994) could be used to investigate the seismicity rate associated with our DCFF variation and 

its dependency on the fault hydraulic and frictional properties. 

 

CONCLUSION 

We have shown that pore pressure diffusion along pre-existing faults connecting the Lower Mt. 

Simon and the Precambrian crystalline basement is the main mechanism for the occurrence of induced 

seismicity associated with CO2 injection at the IBDP. For a fault zone thickness of 6 ft (1.88 m) and along-

fault permeability of 1 Darcy, we find that pore pressure changes at faults can be as high as Δ𝑝 ≈ 0.75 in 

basement regions away from the injection well where microseismicity occurred. 

We also found that poroelastic stresses alone tend to stabilize the basement faults, counteracting 

the destabilizing pore pressure effects and causing an overall decrease in the DCFF at the microseismicity 

locations. These results indicate the importance of pore pressure diffusion along faults connecting 

sedimentary sections and the crystalline basement as a mechanism for microseismicity occurrence at the 

IBDP site and in other geologically similar locations. Slip tendency analysis showed that fault strike 

variation relative to the maximum horizontal stress direction plays a major role on the proximity of faults 

to failure. Fault planes interpreted based on the microseismicity locations were found to be critically 

stressed and showed slip tendency ranging from Ts ≈ 0.55 to ≈ 0.7 prior to injection. 

Our model results highlighted the importance of accurate subsurface characterization to 

understand the hydraulic and geomechanical factors that lead to induced seismicity associated with CO2 

injection and other subsurface injection activities, such as subsurface wastewater disposal operations. 
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TASK 5 - INJECTION-INDUCED SEISMICITY MODELING 

INTRODUCTION 

Several mechanisms have been proposed to explain induced seismicity, including fault 
weakening through pore pressure perturbation, increased fault loading due to poroelastic coupling, 
and rock properties alteration due to chemical effective from reactive fluids. While the mechanisms 
are broadly understood, the details are site specific. Furthermore, the role of fault network 
complexity, fault friction heterogeneity, and rock inelasticity remain largely unexplored. These 
specific details may play a significant role in controlling the spatio-temporal distribution of injection-
induced seismicity in any site. This work focused on elucidating the role of these details on the 
mechanics of induced seismicity in general and the seismicity patterns observed in the IBDP site in 
particular.  

 
OVERVIEW AND BACKGROUND 

Figure 70 shows a schematic of geologically identified fault systems at the IBDP site together 
with the recorded microseismicity. Mapped faults did not coincide with the microseismicity locations 
in clusters #2 and #4. Accordingly, new fault surfaces were suggested by Task 3 (Sandia/MIT) to fit 
the recorded seismicity.  

 

 
Figure 70. Schematic of a geologically identified fault system in the Decatur basin together with the recorded 
microseismcity. 
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In our work, Task 5 (UIUC) had four questions of interest:  

• What controls the spatio-temporal distribution of seismicity in Decatur? 

• Is there a correlation between the magnitude of the pore pressure perturbation due to 
injection and the timing or magnitude of the seismic events? 

• How do the characteristics of the injection influence the spatio-temporal distribution of 
seismicity? 

• Is it possible to control seismicity through varying the injection characteristics? 

We addressed these questions through a series of hypotheses, which were tested using 
computational models that simulate fault response over different spatial and temporal scales to external 
stimuli. The hypotheses are as follows: 

• The spatio-temporal evolution of microseismicity on the mapped fault for cluster #2 is 
governed by heterogeneous rate and state frictional properties. 

• An active fault zone is home to a plethora of complex structural and geometric features that 
are expected to affect earthquake rupture nucleation, propagation, and arrest, as well as 
inter-seismic deformation. These complexities can affect the seismicity on the main fault even 
if they accommodate only a small fraction of the seismic moment. The feedback between 
structural heterogeneities, stress evolution, and earthquake mechanics are thus important to 
consider for both natural and induced seismicity. 

• Fault response is governed by friction law, which relates the tangential component of stress 
(fault strength) with the normal stress acting on the fault. Fluid injection increases the pore 
pressure, which results in a reduction in effective normal stress acting on the fault. Therefore, 
injection pressure and its spatio-temporal diffusion lead to heterogeneous distribution of 
effective normal stress. The reduced heterogeneous effective normal stress makes the fault 
susceptible to slip and results in different patterns with respect to number of seismic events, 
inter-seismic timing, presence of slow slip, and aperiodic cycles with or without spatio-
temporal clustering. We hypothesized that the seismicity pattern is controlled not only by the 
injection protocol but also by the fault and bulk properties. 

 

State of the Art 

Modeling injection-induced seismicity is largely done using a quasi-static approach based on 
Mohr-Coulomb criteria. Susceptibility for induced seismicity is evaluated based on the state of the stress 
resolved on an optimally oriented fault surface. If the resolved stress is high enough to exceed the fault 
strength, the fault is expected to slip. However, this picture is an oversimplification due to the complex 
nature of fault friction and prevalence of stress and material heterogeneities at different scales. 
Specifically, the Mohr-Coulomb criterion is a necessary but not sufficient condition for fault slip. For the 
slip to nucleate, the stress must be high enough not only at a single point but also over a large enough 
region, called the nucleation region, for the slip to start. The size of the nucleation region depends on 
both the fault friction and the elastic properties of the surrounding material. Furthermore, the final event 
size and the magnitude of seismic hazard depend on the distribution of frictional properties and stresses 
on the fault surface. While these concepts are well-established in the area of mechanics of natural 
earthquakes, they are not widely discussed in the state-of-the-art simulations of induced seismicity. This 
is in part due to the multiscale nature of nucleation and propagation of seismic events, which pose 
significant computational challenges. Here we use a unique and highly efficient computational scheme to 
address this gap and simulate the long-term history of seismicity in complex fault zones subjected to 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/earthquake-rupture


 

97 
 

external stress and pore pressure perturbations spanning multiple cycles of both slow inter-seismic 
deformation to fast earthquake rupture propagation. 

Challenges 

The challenges faced by our task may be summarized as follows: 

• Quantifying uncertainty associated with field and lab data related to rock properties, fault 
geometry, and fault frictional properties. To address this, we generated different stochastic 
realizations that were consistent with field and lab observations and used these realizations 
to generate sequence of seismic events that approximate observed records. 

• Multiscale nature of earthquake processes. A seismic event may take only a fraction of a 
second. However, processes leading up to seismicity can take from days to years. 
Furthermore, a microseismic event may propagate over only tens of meters. However, the 
region over which extreme changes in stress and deformations occur near the rupture front, 
and which must be resolved computationally to ensure convergence, may only extend over 
sub-millimeter scale. To address this conundrum of spatial and temporal scales, we developed 
an in-house computational scheme, FEBE, that combines finite element and spectral 
boundary integral equation methods. The technique used adaptive time steeping to alternate 
between quasidynamic during slow deformations and fully dynamic integration schemes 
during rapid earthquake rupture propagation. This enabled us to simulate sequences of 
induced events accounting for full inertia effects as well as nonlinear material response in the 
near-fault region. 

SINGLE FAULT RESPONSE 

We considered cluster #2’s seismicity and focused on one of the faults that was suggested to fit 
the microseismic event spatial distribution. 
 
Methodology 

We used FEBE, a hybrid finite element spectral boundary integral equation method, to simulate a 
sequence of earthquakes and aseismic slip on a planar fault with alternating patches of rate-weakening 
and rate-strengthening frictional properties embedded in a homogeneous linear elastic medium. The 
details of the method have been outlined in Ma et al. (2018), Abdelmeguid et al. (2019), and Abdelmeguid 
and Elbanna (2022). 
 

Geometry 

Figure 71a shows a schematic of the planar fault surface, highlighting the rheological 
heterogeneities. This fault surface represents a mid-depth horizontal section through one of the mapped 
faults, as shown in Figure 71b. We assumed 2D plane strain conditions. 
 
Friction 

We used a rate and state friction formulation in which the frictional strength was proportional to 
the effective normal stress, and the coefficient of friction depended on the fault slip rate as well as 
variables that described the contact history, such as microscale fault roughness. The nature of the steady 
state frictional response depended on two experimentally identified parameters, a and b. If a-b > 0, the 
frictional response was rate-strengthening—an increase in the slip rate leads to an increase in frictional 
resistance. Such response is characteristic of creeping fault segments. Rate-strengthening response 
suppressed nucleation of frictional instabilities in the creeping segments and resisted ensued propagation 
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of dynamic rupture, leading to their arrest. If a-b < 0, the frictional response was rate-weakening—an 
increase in the slip rate led to a decrease in frictional resistance. Such response is characteristic of locked 
fault segments. Rate-weakening response favors nucleation of frictional instabilities and promotes 
earthquake rupture propagation. 

 
Figure 71. Model geometry. a) Schematic of a planar fault surface with heterogeneous rheology embedded in a 
homogeneous bulk. Region highlighted with yellow represents velocity-strengthening patches that are 
substantiable to unstable slip, while regions highlighted with red represent velocity-weakening patches that are 
stably creeping. b) The pore pressure distribution over the fault surface is approximately spatially uniform. 

 
Effective Normal Stress 

We used Terzaghi’s effective stress principle and computed the effective normal stress on the 
fault surface as the difference between the total normal stress and the pore pressure. The pore pressure 
distribution on the fault surface was obtained from the geomechanical numerical simulations conducted 
by Task 4 (MIT/ISGS). The geomechanical analysis from Task 3 (Sandia/MIT) found that the spatial 
distribution of the pore pressure over the fault surface is approximately uniform, as shown in Figure 71b. 
The time evolution of the pore pressure with injection is shown in Figure 72. 

 
Figure 72. Time history of the pore pressure perturbation, computed by geomechanical numerical simulations 
(courtesy of Ruben Juanes, MIT). 
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Results 

The spatio-temporal distribution of simulated seismic events is shown in Figure 73. The horizontal axis 
represents the position along the fault. The vertical axis gives the simulated time in units of time steps. The 
contours represent the slip velocity on the fault—how fast one side of the fault moves relative to the other 
side. The velocity ranges from sub-nanometer per second (dark blue) to several centimeters per second (dark 
red), covering the full range from slow aseismic deformation to fast seismic motion. The nucleation location of 
each event is marked by a white circle. Four observations follow: 

• Events of different sizes (extent along the fault) are generated. The inter-event times are also non-
uniform. 

• Events nucleate within a velocity-weakening segment of the fault or at the boundary between a 
velocity-weakening segment and a velocity-strengthening segment. Most of the events propagate 
bilaterally from the nucleation location. 

• Most events arrest when they reach a velocity-strengthening segment, leading to small events whose 
sizes are controlled by the length of the velocity-weakening segment. However, an event may 
occasionally be energetic enough to penetrate through the full velocity-strengthening segment and 
into a neighboring velocity-weakening segment. As a result, these events grow bigger. 

• Both post-seismic and pre-seismic slip are observed. However, the deformation is slow enough 
that it may not be possible to detect on the surface using geodetic tools. 

Figure 73. Spatio-temporal evolution of the slip rate on the fault subjected to pressure perturbation due to fluid 
injections. As fluid is injected, the unstable velocity-weakening patches start to slip in a heterogeneous manner with 
non-uniform recurrence pattern. Pore pressure perturbation is a catalyst that destabilizes the initially creeping 
velocity-strengthening patches. 
 

Quantitative Comparison with Cluster #2 

In the following figures, we compare the patterns of simulated seismic events with the recorded 
microseismicity. The nucleation zones of the simulated events are highlighted with a yellow star, the 
recorded microseismicity is highlighted with blue dots, and the microseismic events that occur during a 
given time interval are highlighted by red triangles. 

We observe a good agreement between the location and timing of simulated events and recorded 
microseismicity for the time period between 02/23 and 02/28. Events nucleate near the center of the 
fault and remain, for the most part, clustered in this region. 
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Figure 74. Seismic record comparison with numerical simulation of heterogeneous fault rheology for the time period 
from 02/23 to 02/28. The black line represents the fault surface, and yellow stars represent hypocenters of 
microseismicity. The red triangles are the seismically recorded events. 

 

For the time period between 02/28:06 and 02/29:00, we observe some discrepancy. While we 
match the event clusters near the center of the fault as well as those events occurring toward the north-
east end, we also generate more events in the south-west direction that were not observed during that 
particular time period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 75. Seismic record comparison with numerical simulation of heterogeneous fault rheology for the time 
period from 02/28 to 02/29. The black line represents the fault surface, and yellow stars represent hypocenters of 
microseismicity. The red triangles are the seismically recorded events. 

However, when considering the time period between 02/29 and 02/29:12, we observe a burst in 

microseismic event activity on the south-west portion of the fault consistent with the earlier simulation. 

While we continue to observe simulated events on the south-west half of the fault during this time 

interval, the results suggest that the naturally occurring microseismic events have occurred a few hours 

later than expected. Despite the good agreement, this difference in timing may point to smaller-scale 

heterogeneities in fault friction or bulk properties that have not been included in our model. 
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Figure 746. Seismic record comparison with numerical simulation of heterogeneous fault rheology for the time 
period from 02/29 to 02/29:12. The black line represents the fault surface, and yellow stars represent hypocenters 
of microseismicity. The red triangles are the seismically recorded events. 

 

Finally, for the time period between 02/29:12 and 03/02, the microseismicity trend generally 

agrees with the simulated catalog, showing more clustering toward the north-east parts of the fault. 

However, differences exist where simulated events also occur on the south-west end while 

microseismicity is absent. This gap may be filled later by a swarm of events, as was discussed earlier. 

Figure 77. Seismic record comparison with numerical simulation of heterogeneous fault rheology for the time 
period from 02/29:12 to 03/02. The black line represents the fault surface, and yellow stars represent hypocenters 
of microseismicity. The red triangles are the seismically recorded events. 

These observations are summarized in Figure 78, where the simulated events form three distinct 

clusters consistent with natural observations. One cluster spanned 02/24-02/25, another cluster was 

centered around 02/28, and the third cluster was centered around 03/01. 
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Figure 78. Time history of event occurrences. Yellow stars represent hypocenters of microseismic events starting on 
the fault surface. Earthquakes occur with an irregular occurrence interval. 

 
Conclusions 

Heterogeneous frictional rheology of geological faults potentially explains the spatio-temporal 

distribution of the recorded microseismicity. Results indicate good agreement with the observed trends 

from the seismic record in terms of temporal clustering as well as general spatial distribution of nucleation 

sites for the time period from 02/23 to 03/02 (Figures 74-77). The migration pattern and sequence of 

events show similar trends to the recorded catalog. The matching may be improved by incorporating finer-

scale heterogeneities in the frictional properties and the bulk elastic properties. However, these smaller-

scale variations would be hard to constrain from field observations. In the next section, we examine how 

some small-scale heterogeneities, beyond the observation limit, further influence the fault behavior. 

 
FAULT SYSTEM RESPONSE 

Hypothesis 

An active fault zone is home to a plethora of complex structural and geometric features that are 

expected to affect earthquake rupture nucleation, propagation, and arrest, as well as inter-seismic 

deformation. These complexities can significantly affect the seismicity on the main fault even if they 

accommodate only a small fraction of the seismic moment. The feedback between structural 

heterogeneities, stress evolution, and earthquake mechanics are thus important to consider for both 

natural and induced seismicity. 

 
Model Setup 

We considered our fault system to exist in an infinite medium. A planar horizontal main fault was 

placed in the middle of the domain with secondary fault branches explicitly modeled as shown in Figure 

79. The main fault was right lateral, and the secondary faults were placed on one side of the main fault 

(on the tension side), away from the nucleation zone. This minimized the effect of the secondary fault 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/earthquake-rupture
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branches on the rupture nucleation. The secondary faults were distributed over a finite length along the 

main fault and not throughout the whole fault length, so that we could explore features of the main fault 

rupture after it exited the region with the branches. The angle between the secondary faults and main 

fault varied, and a range of values were explored. The secondary faults had constant spacing along the 

fault strike. The length of each secondary fault was chosen to be equal to the length scale of frictional 

weakening so that they would be considered small when compared to other dimensions of the problem. 

This “smallness” is critical for the current investigation as it could prompt neglecting these features or 

render them hard to observe. 

 
Figure 79. Model setup. a) Schematic of the complex fault zone structure considered in this report. The main fault 
lies horizontally in the middle of the domain, and the secondary fault branches are located in a limited region on 
one side of the fault (tension side). Following Poliakov et al. (2002), we call this setup a fish bone structure. All 
secondary faults are contained in a narrow, virtual strip of dimensions L × W that is discretized using the Finite 
Element Method (FEM). On the upper and lower edges, S+ and S−, the FEM is coupled with the Spectral Boundary 
Integral Equation, which models the exterior homogeneous elastic half-spaces. Tractions and displacements are 
consistently exchanged between the two methods at the shared nodes. The details of the coupling are outlined in 
the text. σmax and σmin represent the maximum and minimum principal stresses, respectively. θp is the angle 
between the maximum principal stress and the main fault parallel direction. Ls is the spacing between the 
secondary faults. θ is the angle between the secondary fault and the main fault. Lf is the secondary fault length. b) 
The orientation of the principal stresses for the assumed background stress state. The maximum principal stress 
makes an angle θp = 19.33° clockwise with the main fault. Also shown is the sense of motion for the secondary 
faulting consistent with this state of stress. Faults oriented in the dark grey quadrants have a right lateral shear, 
while those oriented in the light grey quadrants have left lateral shear. For the faults considered here, the main 
fault is right lateral, while the branches are left lateral. c) Sketch of the discretization for the main and secondary 
faults using split nodes. Arrows represent the sense of shear. The secondary fault is shifted Lo away from the main 
fault. The slip is constrained to be zero at the tips of the secondary fault. 

https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0390
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Methodology 

We used a highly efficient novel hybrid finite element-spectral boundary integral equation scheme to 

investigate the dynamics of fault zones with small-scale, pre-existing branches as a first step toward explicit 

representation of anisotropic damage features in fault zones. The hybrid computational scheme enabled exact 

near-field truncation of the elasto-dynamic field, allowing us to use high-resolution finite element 

discretization in a narrow region surrounding the fault zone that encompasses the small-scale branches while 

remaining computationally efficient. The details of the computational algorithm are outlined in Ma et al. (2018) 

and Ma and Elbanna (2019). 

 

Results 

Effect of short branches on rupture characteristics 

Figure 80 shows the slip, slip rate, and post-rupture normal and shear stress distributions on the main 

fault with and without short branches. The fault with branches resembles a fish bone; thus, we will refer to it 

as a fish bone system. As expected, the presence of the short branches delayed the rupture propagation on 

the main fault and lead to accumulation of less slip at the same period of time. This is explained by the fact 

that the slip on the secondary branches increased the frictional dissipation and lead to slowing down of the 

rupture. Furthermore, the presence of these branches lead to fluctuations in the slip rate profile behind the 

rupture tip, a feature that was not observed in the case of rupture propagating on a fault in a homogeneous 

medium. Moreover, there was significant heterogeneity in the fault normal and shear stress in the case of the 

fish bone system. While the final normal and shear stress distributions, behind the rupture tip, on the fault 

surface in the homogeneous medium were uniform, the distributions in the case of the fish bone were 

heterogeneous since the slip on each branch produced a force dipole on the main surface, leading to strong, 

localized perturbations in the normal and shear stress. These perturbations could potentially grow, leading to 

fault-opening or slip in an opposite direction to the overall sense of shear in the domain. 

 
Figure 80. Slip, slip rate, shear stress, and normal stress distributions on the main fault, at the same point in time, 
with and without secondary fault branches for the elastic material case. a) Slip, b) slip rate, c) shear stress 
distribution, and d) normal stress distribution. Overall, the fish bone system shows significant post-event stress 
heterogeneities as well as reduced slip, maximum slip rate, and rupture speed. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/elastodynamics
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The influence of secondary branches on the high-frequency generation in the bulk 

Figure 81 shows the near-field particle velocity for both cases with and without the secondary 

branches. For the homogeneous medium, the wave field is smooth almost everywhere, with a 

concentration of high frequencies near the rupture tips. On the other hand, for the medium with 

branches, we observe coherent wave fronts that are propagating away from the tips and spaced apart 

periodically, consistent with the periodic distribution of the secondary branches. These coherent fronts 

are generated due to the constructive interference of seismic radiation from the secondary faults. The 

acceleration spectrum plotted in Figure 82 further proves this point. The fault with small branches has a 

spectrum that is richer in high-frequency content and shows an almost flat spectrum in the frequency 

range of 2-20 Hz. This is consistent with observations in Chen (1995) and Wald and Heaton (1994) and 

similar to the results from dynamic rupture simulation on rough faults in Dunham et al. (2011b). This 

suggests that small-scale fault branches may explain near-field radiation characteristics of active faults. 

 

 
Figure 81. Contours of the bulk velocity field. a) Homogeneous medium. b) Domain with fish bone structure. 
Coherent high-frequency generation emerges in the case of the fault with secondary branches (fish bone structure) 
and propagates away from the fault plane as concentric fringes. These high-frequency waves are generated as a 
result of the constructive interference between the waves emitted by the secondary branches. In the homogeneous 
case, the high-frequency wave field is localized near the rupture fronts. 

 

https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0140
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0550
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0220
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/near-fields
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/velocity-distribution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/homogeneous-medium
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Figure 82. Fault-normal acceleration spectral amplitude at station x⁎ = 15Lc and y⁎ = −20Lc. 

 
Effect of branch length 

Figure 83 shows the distribution of maximum slip on the secondary faults for different secondary 

fault lengths. The results suggest that as the secondary fault length increases, a crack shielding effect 

emerges. The slip distribution along the secondary faults is non-uniform in the sense that as one 

secondary fault accumulates large slip, the following one or two accumulates smaller slip; then comes 

another secondary fault with large slip, and the pattern continues. The non-uniformity in slip, which 

increases as the secondary fault length increases, leads to non-monotonicity in the stress peaks on the 

main fault with some peaks smaller than others. This crack shielding-like phenomenon (also referred to 

as stress shadowing phenomenon) has been observed in the experimental work by Ngo et al. (2012) for 

tensile cracks, numerical simulation results using finite-discrete element method by Klinger et al. 

(2018), and other studies modeling spontaneous crack branching (Ando and Yamashita, 2007) and off-

fault plasticity (Templeton and Rice, 2008). 

 
Figure 83. Peak slip distribution on the secondary faults with different lengths Lf = Lc , Lf = 4Lc , and Lf = 6Lc. The crack 
shielding effect is more significant in the presence of longer secondary faults. 

 

https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0360
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0290
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0290
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0010
https://www.sciencedirect.com/science/article/pii/S0012821X19303887#br0520
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Effect of spacing between the branches 

Figure 84 shows a snapshot of slip, slip rate, shear stress, and normal stress distribution on the 

main fault at a given instant of time for three cases of secondary fault spacing. As shown in Figure 84c and 

d, as the spacing between the secondary faults increases, the amplitude of perturbations in the shear and 

normal stresses on the main fault increases, since each secondary fault accumulates more slip on average 

than in the case of smaller spacing. With smaller spacing between the secondary faults, the secondary 

faults are more effective in decelerating the rupture on the main fault. The insert in Figure 84b shows that 

with the increased spacing, the oscillations in the slip rate are spaced at a larger distance, but their 

amplitude increases. 

 

 
Figure 84. Slip, slip rate, shear stress, and normal stress distributions on the main fault, at the same point in time, 
with different spacing between the secondary faults Ls = Lc, 2Lc, 4Lc for the elastic material case. a) Slip, b) slip rate, 
c) shear stress distribution, and d) normal stress distribution. Larger spacing between secondary faults promotes 
stronger perturbations in the stress and slip rate on the main fault. 

 
Effect of branch orientation 

While the angle that a secondary fault makes with the main fault is arbitrary, we explored 

different secondary fault orientations that varied around the direction of optimally oriented shear plane, 

computed using the background tectonic stress field and a Mohr-Coulomb failure criterion. 

For the parameters used in this study, the direction of optimally oriented shear plane made 

approximately a 50° angle clockwise with the direction of the main fault. Accordingly, we considered four 

cases of orientation of the branching faults, 50°, 60°, and 70°, in addition to the default case discussed 

above. By investigating the slip evolution on the main fault (Figure 85), we found that the main fault 

rupture transitioned into supershear mode when the branch angles were 50° and 60°, while it remained 

subshear in all the other cases (30°, 40°, and 70°). The resulting slip distribution across the secondary 

faults for the different branch angles are given by the histograms in Figure 86. The average slip on the 
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secondary faults increased as the branch angle moved toward the optimal orientation (i.e., from 30° to 

40°), which was consistent with the increase in the amplitude of stress perturbations on the main fault. 

Surprisingly, the average slip on the secondary faults was lower at 50° (the optimal orientation, according 

to the background stress state) and 60°. The reduction in slip on the secondary faults in these cases, 

despite favorable orientation, was hypothesized to be due to the supershear transition on the main fault 

which led to 1) the amplification of slip on the main fault and 2) rapid exit of the main fault rupture tip 

from the fish bone region, reducing the exposure time of the secondary faults to the impulsive dynamic 

loading from the main fault rupture tip. This was accompanied by a reduction in the amplitude of stress 

perturbations on the main fault compared to the case of 40°. Finally, as the branch angle further increased 

(e.g., 70°), the resolved shear stress started to decrease, while the resolved normal stress continued to 

increase, making it difficult to trigger slip on the secondary branches. Indeed, the case for 70° had much 

smaller average slip value (almost an order of magnitude less) than all the other cases. As a result, the 

stress perturbations on the main fault in this case were also the smallest.  

 

 
 
Figure 85. Slip line plotted every 0.1 s up to t = 6 s on the main fault with secondary faults of different 
angles θ = 30°, 40°, 50°, 60°, 70°. Note that the rupture has traversed a much longer distance for cases θ = 50° and 
60° than the other cases, suggesting that a supershear transition has occurred. The rupture speed in the case with 
secondary faults θ = 50° was found to be 0.92cp. 
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Figure 86. Peak slip distribution on the secondary faults with different angles θ = 30°, 40°, 50°, 60°, 70°. 

 
Conclusions 

Fault zone complexity is a dominant factor in controlling slip and stress distributions on primary 

fault surfaces. Small-scale branches or small-scale variations in the orientation of the fault strike may lead 

to significant stress heterogeneity and complex rupture dynamics and enhance high-frequency radiation 

that may affect infrastructure. In injection projects, the presence of small-scale geometric complexities, 

such as branches and non-planar fault geometry, may bring segments of the fault closer to failure than 

what the average strike of a planar fault may suggest. Accordingly, it is imperative to enrich models of 

induced seismicity with fault zone heterogeneities, including rheological heterogeneities and structural 

complexities. 
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CONCEPTUAL MODEL FOR SEISMICITY 

Modeling Sequence of Earthquake and Aseismic Slip (SEAS), including injection-induced pore 

pressure perturbation, plays a key role in understanding the spatio-temporal evolution of induced 

seismicity. We conducted case studies through numerical simulation to investigate how long-term pattern 

of seismicity could be influenced by several factors associated with fluid injection and fault friction. These 

factors included injection location with respect to fault rheology, background tectonic loading, injection 

pressure magnitude, permeability evolution, and off-fault inelastic response. 

 

Hypothesis 

Fault response is governed by friction law, which relates the tangential component of stress (fault 

strength) with the normal stress acting on the fault. Fluid injection increases the pore pressure, which 

results in a reduction in effective normal stress acting on the fault. Therefore, injection pressure and its 

spatio-temporal diffusion lead to heterogeneous distribution of effective normal stress. The reduced 

heterogeneous effective normal stress makes the fault susceptible to slip and results in different patterns 

with respect to number of seismic events, inter-seismic timing, presence of slow slip, and aperiodic cycles 

with or without spatio-temporal clustering. We hypothesized that the seismicity pattern is controlled not 

only by the injection protocol but also by the fault and bulk properties. 

 

 
Figure 87. Model set-up for simulating sequence of injection-induced earthquakes and aseismic slip. 
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Figure 88. One-dimensional diffusion of pore pressure. Constant injection pressure is maintained at the injection 
location, and it follows free diffusion after injection shut-off. 

Model Set-up 

The model geometry is shown in Figure 87. We considered a 2D anti-plane rate-and-state fault 

having a velocity-weakening (VW) and velocity strengthening (VS) patch. The off-fault material is 

considered homogeneous linear elastic unless mentioned otherwise. Injection is assumed to happen 

directly in the fault core. Pressure diffusion is allowed only along the fault, which assumes higher 

permeability along the fault. Evolution of pore pressure for one-dimensional diffusion is shown in Figure 

88. We also model a separate case, with uniform pore pressure perturbation, considering almost 

impermeable fault core and off-fault plasticity, presented at the end of this section. 

  
Methodology 

The simulation of SEAS is carried out using a hybrid finite-element spectral boundary integral 

scheme. An alternating quasi-dynamic and dynamic solver is used to account full inertia effect during rapid 

seismic rupture and approximating inertia through radiation damping during aseismic slow deformation 

(Abdelmeguid et al., 2019; Mia et al., 2022). 

 

Results 

Role of injection location 

As shown in the model geometry, the fault has a central VW patch and VS patch on both sides. 

We simulated two cases: injection within VW and injection within VS. In both cases, the injection pressure 

was 20% of the background normal stress, and the background tectonic plate rate was 35 mm/year. 

Usually, the VW patch remained locked during the aseismic phase and got destabilized occasionally with 

seismic rupture. On the other hand, the VS patch slowly crept, following the background tectonic loading. 

Before starts of injection, the seismic cycle was found periodic. In both cases, the periodic pattern was 

broken due to injection. As shown in Figure 89, injection started at 20 years and ended at 24 years. During 

this interval, one seismic event was supposed to happen if there was no injection. For injection within the 

VW, there was one additional event during the injection. The nucleation site for the first event during 
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injection was shifted toward the injection location (Figure 89). For the case of injection within the VS, 

there was no additional seismic event during injection. However, the event timing was changed through 

seismic events happening earlier than expected. The seismicity pattern was influenced by accelerated 

aseismic slip near the injection location (Figure 90). 

 
Figure 89. Injection within the velocity-weakening (VW) patch. a) Peak slip rate history shows the break in the pre-
injection periodic pattern through reduced interevent time during injection. Vertical dashed lines at 20 and 24 years 
indicate the duration of injection. b) Cumulative slip plot shows additional events during injection. The region 
between vertical dotted lines indicates the VW patch. Green dot indicates the injection location at the center of the 
VW patch. Solid blue lines are plotted at an interval of three months during aseismic slip, and dotted magenta lines 
are plotted at every ~20 milliseconds during dynamic rupture when peak slip rate is above 0.01 m/s. Green slip lines 
correspond to the beginning and end of injection. c) Spatial evolution of slip rate is shown with respect to the 
simulation time step. The VW patch remains locked during aseismic phase and slides with higher slip rate during 
seismic rupture. Red dot indicates the nucleation site shifts to the injection location. 
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Figure 90. Injection within the velocity-strengthening (VS) patch. a) Peak slip rate history. Vertical dashed lines at 
20 and 24 years indicate the duration of injection. b) Cumulative slip plot shows accelerated aseismic slip due to 
injection as indicated by the arrow. The region between vertical dotted lines indicates the VW patch. Green dot 
indicates the injection location is at the center of the VS patch. Solid blue lines are plotted at an interval of three 
months during aseismic slip, and dotted magenta lines are plotted at every ~20 milliseconds during dynamic 
rupture when peak slip rate is above 0.01 m/s. Green slip lines correspond to the beginning and end of injection. c) 
Spatial evolution of slip rate is shown with respect to the simulation time step. Accelerated aseismic slip appears as 
higher slip rate (indicated by the arrow) than the background plate rate (35 mm/year). 

Role of background tectonic loading 

To investigate the effect of injection in a region where seismicity is less frequently observed, 

background tectonic loading was chosen one order of magnitude lower. Here the background plate rate 

was 3.5 mm/year, as opposed to the previous cases where it was 35 mm/year. This lower plate rate 

generated periodic seismic cycles with an inter-event time of around 50 years. The peak slip rate history 

for no injection showed that this low plate loading rate value was not supposed to generate seismic events 

from 200-250 years. When injection was made for four years starting at 220 years and ending at 224 years, 

a seismic event was observed during the injection (Figure 91). Also, after the injection shut-off, temporal 

clustering of seismic events was found with inter-event time in order of months. In the later phases, the 

cycle tended to restore the original pre-injection pattern. The seismic pattern, including post-seismic 

complexity, is shown in Figures 92 and 93 through cumulative slip plot and spatio-temporal evolution of 
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slip rate, respectively. Segmentation in the spatio-temporal evolution of slip rate indicates the seismic 

complexity in terms of rupture arrest and multiple events.  

In this background tectonic plate rate, injection within the VS patch (Figure 94) also generated a 

seismic event during injection. Before the seismic event, the fault slip rate history showed the signature 

of a slow-slip event, as indicated by the peak slip rate reaching around 10−6 𝑚

𝑠
 , which is three orders of 

magnitude higher than the background tectonic plate rate. To understand how injection within the VS 

patch contributed to generating a seismic event during injection, we plotted the history of slip 

accumulation for chosen points near the injection location. As shown in Figure 95, slip accumulation 

accelerated once the injection started, and it continued to accumulate aseismic slip through an injection-

induced slow-slip event. Near the end of the injection, the slip accumulation became steeper due to the 

seismic event.  

 

Figure 91. Peak slip rate history for injection within the VW patch and background plate rate of 3.5 mm/year. a) No-
injection case showing periodic pattern of seismicity with inter-event time ~ 50 years. b) Injection within the VW 
patch with a duration of four years marked by vertical dashed lines. Injection pressure is 20% of the background 
normal stress. Pre-injection periodicity is broken through seismic events during injection. Post-injection temporal 
clustering of events is observed with seismic events within months. 
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Figure 92. Cumulative slip plot for background plate rate of 3.5 mm/yr. Seismic event occurs during injection (between 
the green lines). Post-seismic complexity with rupture arrest and multiple events is shown in the zoomed-in view. 

 
Figure 93. Spatio-temporal evolution of slip rate for background plate rate of 3.5 mm/year. Injection pressure is 
20% of the background normal stress. Injection is made within the VW patch. Segmentation in the slip rate contour 
indicates the post-injection seismic clustering. 
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Figure 94. Injection within the VS patch for background plate rate of 3.5 mm/year. Injection pressure is 20% of the 
background normal stress. a) Peak slip rate history shows seismic event during injection; b) Spatio-temporal 
evolution of slip rate, indicating signature of slow slip event before the seismic event during injection. 

 

Figure 95. Accelerated aseismic slip due to injection into the VS patch with plate rate of 3.5 mm/year. Injection 
pressure is 20% of the background normal stress. a) History of slip accumulation at different points near the 
injection location. b) Zoomed-in view of cumulative slip, where injection location is indicated by xinj . Solid blue lines 
are plotted at an interval of approximately one year during aseismic slip, and dotted magenta lines are plotted at 
every ~20 milliseconds during dynamic rupture when peak slip rate is above 0.01 m/s. Green slip lines correspond to 
the beginning and end of injection. Increased spacing between the cumulative slip lines during injection indicates 
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accelerated aseismic slip due to injection. c) Peak slip rate history during injection, showing a slow slip event and a 
seismic event. 

Role of injection pressure magnitude 

We modeled three different injection pressures (𝑃) as a percentage of initial normal stress (𝜎𝑛) acting 

on the fault: 𝑃 = 0.02 𝜎𝑛 ;  𝑃 = 0.1 𝜎𝑛;  𝑃 = 0.2 𝜎𝑛. The shape of the slip lines for 𝑃 = 0.2 𝜎𝑛 in Figure 96 

indicates the rupture was driven by the fluid pressure, and the nucleation site for the first seismic event during 

injection was near the injection location. The lower pressure cases did not show this feature. We observed that 

higher injection pressure leads to increased number of seismic events during injection both for a background 

plate rate of 35 mm/year (Figures 96-97) and 3.5 mm/year (Figures 98-99). 

 

Figure 96. Effect of injection pressure. Cumulative slip plot for three different injection pressures: 𝑃 = 0.02 𝜎𝑛  , 𝑃 =
0.1 𝜎𝑛, 𝑎𝑛𝑑  𝑃 = 0.2 𝜎𝑛 .  Solid blue lines are plotted at an interval of three months during aseismic slip, and dotted 
magenta lines are plotted at every ~20 milliseconds during dynamic rupture when the peak slip rate is above 0.01 m/s. 
Fluid is injected at the center of the fault, indicated by the green dot. The green lines mark the slip lines at the 
beginning and end of injection. Additional seismic event is observed during injection for higher injection pressure. 

Figure 97. Effect of injection pressure. Spatio-temporal evolution of slip rate for different injection pressures. 
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Figure 98. Effect of injection pressure for a tectonic loading rate of 3.5 mm/year. Cumulative slip plot for three 
different injection pressures: 𝑃 = 0.02 𝜎𝑛 , 𝑃 = 0.1 𝜎𝑛 , 𝑎𝑛𝑑  𝑃 = 0.2 𝜎𝑛 .  Solid blue lines are plotted at an interval 
of one year during aseismic slip, and dotted magenta lines are plotted at every ~ 20 milliseconds during dynamic 
rupture when peak slip rate is above 0.01 m/s. Fluid is injected at the center of the fault, indicated by the green dot.  
The green lines mark the slip lines at the beginning and end of injection. Additional seismic event is observed during 
injection for higher injection pressure. 

 

 
Figure 99. Effect of injection pressure for a tectonic loading rate of 3.5 mm/year. Spatio-temporal evolution of slip 
rate for different injection pressures: 𝑃 = 0.02 𝜎𝑛  , 𝑃 = 0.1 𝜎𝑛 , 𝑎𝑛𝑑  𝑃 = 0.2 𝜎𝑛. The lower injection pressure 
generates events that rupture the whole VW patch. The higher injection pressure shows post-injection seismic 
complexity, as indicated by the segmentation of slip rate contour for 𝑃 = 0.2 𝜎𝑛. 
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Role of permeability evolution 

In the previous sections, we have considered constant permeability. However, permeability can 

evolve, depending on effective normal stress and, hence, pore pressure (Rice, 1992; Yang et al., 2021). 

The pressure sensitivity of permeability evolution influences the pore pressure diffusion, which in turn 

influences the seismic cycles. Figure 100 shows the peak slip history comparing the fixed permeability 

with the variable permeability case. It shows that in both cases, there was one additional event during 

injection compared to the case of no injection. The timing for seismic events was earlier with variable 

permeability than fixed permeability. The effect of variable permeability became more pronounced when 

the pressure sensitivity parameter (𝜎∗) was changed from 15 MPa to 5 MPa, as shown in Figure 101. The 

inter-event time for the no-injection case was almost constant after a few initial events. Variable 

permeability showed reduced inter-event time during injection. After injection shut-off, the cycle tended 

to regain the unform pre-injection state; however, this takes longer time to settle at periodic pattern 

compared to the no-permeability evolution case. 

 

 

 
Figure 100. Comparison of seismic cycle for pressure-dependent permeability evolution with constant permeability. 
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Figure 101. Comparison of inter-event time for variable and constant permeability. Variable permeability shows 
reduced inter-event time compared to constant permeability. 

Role of fault core permeability and off-fault plasticity 

Instead of along-fault pore pressure diffusion, there could be situations where pore pressure 

diffuses quicker in the bulk than the fault. Also, injection at a distant location can make the pressure front 

reach the fault region with almost uniform pressure. To simulate such a situation, we consider an 

impermeable fault core and allow the step change in pore pressure in the off-fault bulk, which allows the 

bulk effective normal stress to decrease. Since the off-fault bulk yield strength depends on the effective 

normal stress, yield strength decreases when pore pressure perturbation is introduced. In Figure 102, 

spatio-temporal evolution of slip rate is shown for a cycle simulation with off-fault plasticity. Periodic 

system spanning rupture is shown before the start of pore pressure perturbation, and spatio-temporal 

clustering of seismicity is observed after the pore pressure perturbation is applied. Pore pressure 

perturbation of 5 MPa (10% of normal stress) is introduced, which reduces the effective normal stress 

from 50 MPa to 45 MPa and corresponding yield strength reduces from 40 MPa to 37 MPa. It allows to 

move in the phase diagram shown in Figure 103 due to the change in yield strength. Depending on the 

bulk inelastic properties like yield strength and viscosity, the seismic cycle may attain periodic, complex, 

or intermediate quasi-complex pattern. 
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Figure 102. Effect of pore pressure perturbation for off-fault plasticity. Spatio-temporal evolution of slip rate shows 
system-spanning periodic events before pore pressure perturbation. Spatio-temporal clustering of seismicity is 
observed when pore pressure in the bulk increases. 

 

 

Figure 103. Emergence of complex seismic pattern depending on yield strength (𝜎𝑦) and viscosity (𝜂). a) Summary of 

seismicity patterns generated by varying yield strength and viscosity. Yield strength (𝜎𝑦) is normalized by a reference 

stress, 𝜎𝑟𝑒𝑓 = 𝜎𝑛[𝑓0 + 𝑎 𝑙𝑛(𝑉𝑠𝑒𝑖𝑠𝑚𝑖𝑐/𝑉𝑝)] ≈ 41.5 𝑀𝑃𝑎, which is an estimation of peak stress for elastic case 

accounting direct effect in rate-and-state friction. Relaxation time is normalized by time-scale associated with 
frictional weakening within the process zone, 𝑡𝑓 = 𝑅/𝑐𝑠 = 0.0062 𝑠. Complex patterns are found for lower yield 
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strength and lower range of viscosity. For a particular viscosity, a decrease in yield strength leads to transition from 
periodic to quasi-complex and complex pattern (as shown in B, C, and D). For a particular yield strength, a decrease 
in viscosity leads to the emergence of spatio-temporal clustering as shown in D, E, and F. Rate-independent plasticity 
also shows transition from periodic to complex pattern when yield strength is decreased. 

Conclusion 

Interplay between fault friction and several factors, including injection location with respect to 

fault rheology, background tectonic loading, injection pressure magnitude, permeability evolution, and 

off-fault inelastic response, contribute to the sequence of injection-induced earthquakes and aseismic 

slip. Injection within the VW patch can destabilize the locked fault and introduce seismic events. Injection 

within the VS patch accelerates the aseismic slip and influences the seismic cycle through slow-slip event 

or by changing the event timing. Higher injection pressure and variable permeability pronounced the 

effects through additional seismic events with reduced inter-event time. Off-fault inelastic material 

behavior also plays a role in changing the seismicity pattern from simple periodic to spatio-temporal 

clustering, depending on the increase in pore pressure and consequent reduction in yield strength. 
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SUMMARY OF TASK CONCLUSIONS  

After comprehensive discussion of the major structural features in the ILB and their significance 

in comprehending the subsurface rock formation, as well as a thorough analysis of the orientation of 

maximum and minimum horizontal stress at the IBDP site, Task 2 developed a geocellular model for the 

IBDP site that was designed to establish the structural and stratigraphic framework of the area. The model 

was enhanced iteratively to improve the calibration to the IBDP data with the forward modeling results 

as designed in the proposed methodology (Figure 1). At various stages of development, the geocellular 

model served as a foundation for other tasks within the project by providing a comprehensive 

understanding of the subsurface geologic framework.  

In Task 3, we designed and compared multiple deep learning (DL) models for the rapid recognition 

of faults based on microseismic waveform data. It was found that automated microseismic event 

detection using our convolutional neural network (CNN) model was improved by the augmentation of the 

data time series into a time-frequency domain and a proper normalization strategy for the input 

information. We also found that including physical properties, such as Mel-Frequency Cepstrum 

Coefficients (MFCCs) as an indicator for energy term of waveform, into the CNN model improved event 

detection. The increase in detected events and long-duration and long-period type events using the DL 

method suggested there were more microseismic events of interest unidentified in the IBDP repository. 

With phase estimates of newly detected events using PhaseNet, source locations were identified using 

another CNN model that was improved with data augmentation using the generative model (i.e., WGAN-

GP). WGAN-GP was trained with full waveform data and location information, generating new synthetic 

data at locations different from the located events. Overall, these four DL models can be integrated to 

perform rapid fault identification. 

In Task 4, we showed that pore pressure diffusion along pre-existing faults connecting the Lower 

Mt. Simon and the Precambrian crystalline basement is the main mechanism for the occurrence of 

induced seismicity associated with CO2 injection at IBDP. For a fault zone thickness of 6 ft (1.88 m) and 

along-fault permeability of 1 Darcy, we found that pore pressure changes at faults can be as high as Δ𝑝 ≈ 

0.75 MPa in basement regions away from the injection well where microseismicity occurred.  

We also found that poroelastic stresses alone tend to stabilize the basement faults, counteracting 

the destabilizing pore pressure effects and causing an overall decrease in the DCFF at the microseismicity 

locations. These results demonstrate the importance of pore pressure diffusion along faults connecting 

sedimentary sections and the crystalline basement as a mechanism for microseismicity occurrence at the 

IBDP site and in other geologically similar locations. Slip tendency analysis showed that fault strike 

variation relative to the maximum horizontal stress direction plays a major role on the proximity of faults 

to failure. Fault planes interpreted based on the microseismicity locations were found to be critically 

stressed and showed slip tendency ranging from Ts ≈ 0.55 to ≈ 0.7 prior to injection.  

In Task 5, we showed that fault zone complexity is a dominant factor in controlling slip and stress 

distributions on primary fault surfaces. Small-scale branches or small-scale variations in the orientation of 

the fault strike can lead to significant stress heterogeneity and complex rupture dynamics and enhance 

high-frequency radiation that affects infrastructure. In injection projects, the presence of small-scale 

geometric complexities, such as branches and non-planar fault geometry, can bring segments of the fault 

closer to failure than what the average strike of a planar fault suggests. Accordingly, it is imperative to 

enrich models of induced seismicity with fault zone heterogeneities, including rheological heterogeneities 

and structural complexities.  



 

124 
 

PROJECT CONCLUSIONS 

Usage of the proposed methodology (Figure 1), the iterative development of the final geologic 

conceptual model represented by the final geocellular model as determined by calibrating three forward 

models’ simulation results, identified faults/faults zones as the geologic features present that are most 

likely controlling microseismicity at IBDP.   

Over 200 simulations of non-faulted variations of the geocellular model within the bounds of the 

geologic conceptual model (which is bound by core and log data, depositional environment, and 

established regional geology) resulted in no acceptable calibration to the IBDP pressure and saturation 

data of CCS1 an VW1. Only after this exhaustive, comprehensive, and methodical search for a calibration 

without faults/fault zones present in the geocellular model were faults introduced for the pressure 

modeling.  

On the basis of an updated interpretation of the reprocessed 3D surface seismic survey (10 km2or 

3.9 square miles), 28 faults/fault zones are present at the IBDP site that originate deep into the 

Precambrian, pass through the Argenta, and extend upward into the lower part of the Mt. Simon. (These 

faults were interpreted based solely on offset of seismic reflectors which are indicative of revers, normal, 

and oblique faults) Two of the faults/faults zones were between CCS1 and VW1, and parts of three 

additional faults/fault zones were within < 500 ft of at least one of the two wells.  At most 1-2 of these 

faults could be approximated to coincide with long axis of the elliptical shaped microseismic clusters. 

Consequently, the faults identified through surface seismic had no to minimal recorded and located 

seismic activity.  

It is commonly accepted that the most likely source of injection induced seismicity is within fault 

and faults zones where rock surfaces are passing each other and releasing seismic energy. The area 

defined be individual microseismic clusters at IBDP had no faults interpreted from 3D seismic. So, at IBDP 

faults interpreted from 3D seismic had no induced seismicity, and faults with induced seismicity were not 

identifiable from 3D seismic. Therefore, the faults present within the seismic clusters are likely strike-slip 

faults.  

Injection induced seismicity is a risk to developing a CO2 storage project. If traditional approaches 

of identifying faults do not identify faults that are susceptible to injection induced seismicity, it will be 

challenging to adequately address injection induced seismicity before a CO2 injection begins.   

Consistency between all models’ results highlighted the importance of representative subsurface 

characterization to understand the hydraulic and geomechanical factors that lead to induced seismicity 

associated with CO2 injection and, more generally, other subsurface injection operations. 
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PROJECT RECOMMENDATIONS 

After thorough review of regional geology, specifically of large structural features, faults with 

orientation similar to those identified at IBDP were found such that, a priori, faults could be assumed at 

IBDP with knowledge of regional faults to more fully define injection induced seismic risk to a project. In 

particular, fault orientations that coincide with the maximum principal should be of particular interest for 

seismicity; however, the faults with different orientations may be the means of transmitting pressure and 

of equal importance. 

The proposed workflow was proven to identify the presence unique geologic features by 

integrating results of pressure, stress, and seismic modeling. Integrated use of these models is 

recommended as part of site selection process and assessment of seismic risk to a project. 

While not a direct part of this research, brine injection should be further explored to intentionally 

attempt to induce seismicity within the projected estimates of injection pressure required for CO2 

injection. This could better characterize a site before final decisions are made to inject and store CO2 at a 

site and a perforated interval. 
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APPENDIX A: TASK 6 - ADVANCING THE METHODOLOGY 

PRE-PROJECT STATE OF THE ART IN UNDERGROUND INJECTION FAULT IDENTIFICATION 

Prior to the commencement of the SoS project, the most commonly employed methods for 

identifying faults were surface seismic surveys and subsurface investigations utilizing wellbore data. 

However, these approaches were predominantly used for the detection of larger faults, with the primary 

objective of locating major structures responsible for fluid trapping and, to a lesser extent, seismic activity. 

There was often an associated degree of uncertainty regarding the presence of additional faults. With 

large-scale injection projects, it is essential to have a comprehensive understanding of the existence of all 

faults—not only larger ones but also smaller faults that can lead to seismic events. 

Another technique for fault identification involves analyzing well test data following the 

completion of a well. Injection tests can be utilized to measure fracture propagation pressure, which is 

related to rock strength and can provide valuable insights into the characteristics of existing fractures. 

Injection fall-off and multi-well pressure transient tests are also capable of detecting faults, contingent 

upon the contrast of flow properties between the fault and the host rock. For a multi-well test to identify 

a fault, it would have to be located between wells in the test. 

An alternative indirect method to identify faults and areas prone to creating microseismicity 

involves the orientation of stresses. This method can be achieved through the inversion of earthquake 

focal mechanisms. However, this technique is limited in its capacity to identify localized stress 

perturbations caused by small, active faults. Wellbore breakouts, drilling-induced tensile fractures (DITFs), 

and core disking can provide information regarding localized stress perturbations, but the availability of 

well log data, particularly borehole image logs, may be restricted. 

 

Uncertainties  

The accurate identification of fault systems and precise estimation of fault locations are critical 

components of efforts to mitigate injection-induced seismicity in deep-injection schemes. However, 

conventional approaches, including surface seismic surveys, can prove ineffective in certain cases when 

exploring deep-seated geological formations. Complex geology and high-refraction layers can impede the 

propagation of weak signals that emanate from the depths, leading to distorted ray paths. Moreover, 

conventional methods are typically inadequate in detecting strike-slip faults, which lack vertical offsets. 

Consequently, these limitations can result in significant uncertainties in pinpointing the origin of 

microseismic events in the basement and in detecting hidden or sealed faults. In addition to surface 

seismic surveys, wellbore analysis represents an alternative means by which fault systems can be 

identified. However, this approach is limited to instances when a drilled well intersects coincidentally with 

a fault zone. In such cases, the fault can be distinguished via the analysis of extracted core and 

interpretation of petrophysical well logs. Nevertheless, it should be noted that the effectiveness of this 

method is restricted to the characterization of a single fault system and relies on the fortuitous 

intersection of a drilled well with a fault zone. 
 

Risks  

There is a correlation between induced seismic events and faults located in the older crystalline 

rocks that underlie the injection intervals. Given enough data on subsurface geology, permeability, fault, 

regional/local stress, and seismic history, injection spots prone to induced seismic activity can be 
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identified in advance. In some cases, seismic risk can be managed by reducing the amount of CO2 injected 

and the duration of injection. 

When the SoS project began, there were no standard methods for implementing risk assessments 

for induced seismicity. Surface seismic surveys alone were not enough to calculate and quantify induced 

seismic risk and design earthquake-resistant construction. Accurate interpretation of microseismic data, 

along with other measured field data such as pressure and geophysical data compared to data-driven 

models in the state-of-the-art technology, would improve field-scale operation conditions such as 

injection rates, intervals, and locations, and mitigate unwanted risks such as induced seismicity. 

 

GOALS AND OBJECTIVES FOR THE ADVANCEMENT OF TECHNOLOGY IN UNDERGROUND 

INJECTION PROJECTS 

The proposed technology aimed to advance the safety and sustainability of subsurface energy 

activities through the development and validation of advanced technologies for accurately predicting and 

managing induced seismicity during underground injection projects. This technology includes the 

development of a coupled model of multiphase fluid flow geomechanics in deep geologic formations that 

can simulate fault slip and fracture activation upon fluid injection/extraction and the use of ML techniques 

to determine relevant earthquake attributes from passive seismic data. The objectives of the SoS project 

were to validate the developed technologies in a laboratory environment and with field-level studies, 

advance the technology-to-technology readiness level (TRL) 5, and use it to design and optimize fluid 

injection/extraction processes in deep geologic formations.  

 

PROGRESS AND IMPROVEMENT AT THE END OF THE SOS PROJECT 

The SoS project aimed to develop an integrated methodology (i.e., workflow) of forward and 

physics-constrained, data-driven (inverse) models to identify subsurface geologic features, estimate 

changes to the in situ stress field, and explain pressure perturbations between the storage unit and the 

basement. The technology readiness level (TRL) for the key technology, the development of a coupled 

model of multiphase fluid flow-geomechanics in deep geologic formations, was initially at TRL 4, based on 

previous DOE-funded work (DE-FOA-0001826). During the SoS project, the technology advanced to TRL 5, 

demonstrating feasibility in a relevant environment. Significant progress was made on ML techniques to 

determine relevant earthquake attributes from passive seismic activity. At the SoS project's onset, this 

technology was at TRL 3 and advanced to TRL 4 by its validation in a laboratory environment. 

Implementation of both clustering and extraction of earthquake attributes using supervised learning 

techniques in a limited scope showed the approach's suitability for use in a variety of different injection 

intervals overlying crystalline basement. To meet the SoS project's overall performance requirements, a 

computational framework was established using a Bayesian approach that integrates multiple data sets, 

including microseismic data, to identify subsurface geologic features and quantify related uncertainties. 

The usability of this approach was successfully demonstrated at TRL 4 and validated in injection intervals 

overlying a crystalline basement. The generation of a 3D geological structure model of the crystalline 

basement and its integration with an existing 3D geologic model of the storage unit and overlying intervals 

is a key aspect of the SoS project's specific performance requirements. This task involved the use of 

appropriate geostatistical algorithms to propagate geological, physical, and geomechanical properties 

into grid cells to visualize and analyze the relationships between structural features and physical, 

geomechanical properties within geological intervals. As such, this part of the SoS project has advanced 

from TRL 4 to TRL 5, representing a significant milestone in the project's development. This work has 
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significant practical applications in predicting the impacts of fluid injection/production on subsurface 

geologic features and forecasting seismic and aseismic slip events. 
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APPENDIX B: LOG OF SIMULATION CASES WITH GEOCELLULAR MODEL VERSION 6 

Below is a log of cases that were simulated from the time a new geocellular model was generated to October 2022. For most cases, an 

approximate difference between observed average BHP and simulated average BHP is provided. The following abbreviations are used 

throughout the log: Mod = modified/modification; Mult = multiplication factor or multiplier value; Kh = horizontal permeability; Kv = vertical 

permeability; mD = millidarcy; LPZ = low-permeability zone (comprised of layers). 

Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 

(~psi) 

WB1 

(~psi) 

WB2 

(~psi) 

WB3 

(~psi) 

SOS_0326 Case 1-40 Mod reservoir properties all Did not get a 
match with 
historical field 
pressure data. 
Lost VDB files 
and some other 
files, due to 
Nexus computer 
crashing 

 –  –  –  – 

 
Case 40 No mod all Poor match 100 60 80 90 

 
Case 45 Placed hypothetical fault 200 ft north of VW1 

within Mt. Simon interval. 
Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers within and above perforation 
interval (Mt. Simon) 
Layer 1-173 (mult of 0.55) 
Layer 174-184 (mult of 0.93) 
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.7) 

all Good match. But 
the incorporated 
faults are 
hypothetical and 
the reduction in 
permeability is 
unrealistic (based 
on injection test 
data). 

<40 <5 <10 <10 

 
Case 46 Placed hypothetical fault 200 ft south of CCS1 

within Mt. Simon interval. 
Kh of fault → 1e-05 
Fault length → 4000 ft 
Kh of fault → 1e-05 
  
  

all Poor match. 
Shape of curve is 
dissimilar to that 
of field data 

<50 40 30 30 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 47 Placed hypothetical fault 200 ft south of CCS1. 
Height and fault length was same as case 46. 
Kh of fault → 1e-05 

all Poor match  –  –  –  – 

 
Case 48 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-05 
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.6) 

all Poor match WB2 
& WB3, good 
match at CCS 1 
and WB1 

 –  –  –  – 

 
Case 49 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
layer 1-173 (mult of 0.55)  
layer 174-184 (mult of 0.95)  
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.6)  

all Poor match. 
Shape of curve at 
WB2 & 3 has a 
upward trend. 
Pressures 
overpredicted at 
CCS1 and WB1 

 –  –  –  – 

 
Case 50 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
Layer 1-173 (mult of 0.95)  
Layer 174-184 (mult of 0.95)  
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.6) 

all Poor match WB2 
& WB3, good 
match at CCS 1 
and WB1 

 –  –  –  – 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 51 Placed hypothetical fault 400 ft south of CCS1 
Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
Layer 1-173 (mult of 0.80)  
Layer 174-184 (mult of 0.95)  
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.6) 

all 
 

 –  –  –  – 

 
Case 52 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
Layer 1-173 (mult of 0.70)  
Layer 174-184 (mult of 0.95)  
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.0)  

all Moderately good 
match at WB 1-4, 
but overpredicting 
at CCS1 

 –  –  –  – 

 
Case 53 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-05 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
Layer 135-173 (mult of 0.70)  
Layer 174-184 (mult of 0.95)  
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.0) 

all Moderately good 
match at all 
pressure points, 
but 
underpredicting 
pressure in the 
beginning at WB2 
and 3. 

<60 <10 <30 <30 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 54 Placed hypothetical fault 400 ft south of CCS1 
Kh of fault → 1e-05 
Kv (unmodified) 
Fault length → 4000 ft 
Mod Kh in layers in and above perforation zone 
(Mt. Simon) 
Layer 135-173 (mult of 0.80) 
Layer 174-184 (mult of 0.95) 
Mod Kh in layers below perforation zone 
(Argenta) 
Layer 185-219 (mult of 2.0) 

all Poor match. 
Underpredicting 
pressure in the 
beginning at WB2 
and WB3. 
However, 
pressure rises 
later, and 
approaches 
observed field 
data. 

<50 30 30 30 

 
Case 55 Placed hypothetical fault 400 ft south of CCS1 

Kh of fault → 1e-01 mD 
Kv (unmodified) 
Porosity → 5% 
Fault length → 4000 ft 
Fault height → 500 ft 

all Poor match 
observed at all 
pressure gauge 
points 

<50 >30 >40 >40 

 
Case 56 Modified LPZ (selected layers with relatively 

low permeability) only using a 
mult value of 0.5 

all poor match >100 >40 >60 >60 

 
Case 56a No Fault 

Mod to LPZ only 
Mult value of 0 

all Poor match. 
Overpredicted at 
CCS1, WB1, and 
WB2 pressure 
gauge points, and 
underpredicted at 
WB3 (flat line) 

>100 >40 >80 >200 

 
Case 57 Kh of fault → 400 mD 

Kv (unmodified) 
Porosity → 5% 
Fault length → 4000 ft 
Fault height → 500 ft 

all poor match >100 >40 >70 >70 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 58 Hypothetical E-W fault was placed 400 ft south 
of CCS1  
Kh = Kv of fault → 400 mD 
Porosity → 5% 
Fault length → 4000 ft 
Fault height → Top of lower Mt. Simon to Base 
of Argenta (~500 ft) 

all poor match >100 >50 >70 >70 

 
Case 59 Hypothetical E-W fault 400 ft south of CCS1  

Kh = Kv of fault → 200 mD 
Porosity, fault length, and height is same as case 
58 above. 

all poor match >100 >40 >70 >70 

 
Case 60 Hypothetical E-W fault 400 ft south of CCS1  

Kh = Kv of fault → 50 mD 
Porosity, fault length and height is same as case 
above. 

all poor match >100 >40 >70 >70 

 
Case 58a To investigate the impact of fault's Kv, 

hypothetical E-W fault was placed 400 ft south 
of CCS1 
Kh of fault → 400 mD, Kv (unmodified), 
Porosity→ 5% 
Fault length and height is same as the case 
above. 

 
poor match >100 >40 >70 >70 

 
Case 58b To investigate impact of changing porosity 

Hypothetical E-W fault 400 ft south of CCS1 
(Extended to basement) 
Kh of fault → 400 mD, Kv (unmodified), 
Porosity→ 15% 
Fault length and height is same as case above. 

all poor match >100 >40 >70 >70 

 
Case 58c to investigate impact of fault Kv only 

Hypothetical E-W fault 400 ft south of CCS1 
(Extended to basement) 
Kv of fault → 400 mD, Kh (unmodified), 
Porosity → 5% 
Fault length and height is same as above. 

all poor match >100 >40 >70 >70 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 64 to investigate lower fault perms 
Hypothetical E-W fault 400 ft south of CCS1 
(Extended to basement) 
Kv=Kh of fault → 5 mD, Porosity → 5% 
Fault length and height is same as above. 

all poor match <50 40 >70 >70 

 
Case 65 to investigate lower fault perms 

Hypothetical E-W fault 400 ft south of CCS1 
(Extended to basement) 
Kv=Kh of fault → 0.5 mD, Porosity → 5% 
Fault length and height is same as above. 

all poor match <100 30 >50 >50 

 
Case 61 2-fault case                                                                                                                                                                                                                                                                                                               

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 400 mD 
Porosity of faults → 5% 
2nd Fault length → 2000 ft 
2nd Fault height → Top of lower Mt. Simon to 
Base of Argenta (~500 ft) 

all poor match >100 >50 100 100 

 
Case 62 (2-fault-case, reduced perm)                                                                                           

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 200 mD 
Porosity of faults → 5% 
Porosity, fault length and height is same as 
above (Case 60). 

all poor match >100 >50 100 100 

 
Case 63 (2-fault-case, reduced perm)                                                                                     

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 50 mD 
Porosity of faults → 5% 
Porosity, fault length and height is same as 
above (Case 61). 

all poor match >100 >50 100 100 

SOS_0704 Case1  (LPZ only) 
No Fault 
Mod to LPZ only 
Multiplier value of 0.1 

all poor match 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case2 (2-fault-case, reduced perm) 
Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 5 mD 
Porosity of faults → 5% 
Porosity, fault length and height is same as 
above (VDB_0326 --> Case 61). 

all poor match >100 >30 >60 >60 

 
Case3 (2-fault-case, reduced perm) 

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 0.5 mD 
Porosity of faults → 5% 
Porosity, fault length and height is same as 
above (VDB_0326 --> Case 61). 

all Good match at 
WB1-3, but bad 
match at CCS1 

>120 >20 <10 <10 

 
Case4 (Fault and LPZs) 

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 50 mD 
Lpz *0.5 
Porosity, fault length and height is same as 
above (Case 61). 

all poor match >60 40 >70 >70 

 
Case5 (Fault and LPZs) 

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 50 mD 
Lpz *0.1 
Porosity, fault length and height is same as 
above (Case 61). 

all poor match >50 20 30 30 

 
Case6 (Fault and LPZs) 

Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 5 mD 
Lpz *0.5 
Porosity, fault length and height is same as 
above (Case 61). 

all poor match >100 10 <20 <20 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case7 (Fault and LPZs) 
Added 2nd hypothetical fault 400 ft east of 
CCS1 (fault strikes N-S) 
Kh=Kv of faults → 5 mD 
Lpz *0.5 
Porosity, fault length and height is same as 
above (Case 61). 

all poor match >100 10 <5 <5 

SOS_0716 Case 29 Addition of seismically interpreted 
faults                                                                                                                                                                                                                            
(All faults included) 
Included faults 
Used transmissibility mult value = 1 

all poor match >100 >40 100 100 

 
Case 29b Included faults 

Except for faults 2 and 3, used transmissibility 
mult value = 1e-05 

all poor match >50 >40 >70 >70 

 
Case 29c Included faults 

All faults used transmissibility mult value = 1e-
05 

all poor match 
    

 
Case 30 (LPZ mod only) 

Mod LPZs perm 
Mult by 0.5 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults 
Used transmissibility mult value = 1 

all poor match >100 >40 100 100 

 
Case 30a (LPZ mod only) 

Mod LPZs perm 
Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults 
Used transmissibility mult value = 1 

all poor match >100 >40 100 100 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 40 Mod LPZs 
Mult by 1e-01 
Includes all faults 
Except for faults 2 and 3, used transmissibility 
mult value = 1e-05 

all Fair match <50 <10 <30 <30 

 
Case 40a Mod LPZs 

Mult of 1e-01 
Mod matrix perm 
Mult Mt. Simon layers by 0.87 
Mult Argenta layers by 3.2 
Includes all faults 
Except for faults 2 and 3, used transmissibility 
mult value = 1e-05 

1, 2-1 Good match <30 <5 <10 <10 

 
Case 29d Case 29d (all faults+matrix+LPZ) 

Mod LPZs 
Mult of 1e-01 
Mod matrix perm 
Mult mt. Simon layers by 0.87 
Mult Argenta layers by 3.2 
Includes all faults 
Used transmissibility mult value = 1e-05 

1, 2-1 Bad >100 >50 >100 >100 

 
Case 29e Case 29e (all faults) 

Mod LPZs 
Mult of 1e-01 
Mod matrix perm 
Mult mt. Simon layers by 0.87 
Mult Argenta layers by 3.2 
Includes all faults 
Used transmissibility mult value = 1e-02 

1, 2-1 Bad >100 40 100 100 

 
Case 29f Case 29f (all faults) dotted 

Same as 29d, changed transmissibility mult to 
1e-01 

1, 2-1 Bad  –  –  –  – 

 
Case 29g Case 29g (all faults) 

Similar to 29d, changed Mt. Simon mult to 1 & 
fault transmissibility mult to 1e-01 

1, 2-1 Bad  –  –  –  – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 29h Case 29h (all faults) 
Similar to 29f, changed fault transmissibility 
mult to 5e-01 

1, 2-1 Bad  –  –  –  – 

SOS_HM_11032021 Case 1  Mod LPZs perm 
Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults (“not truncated”) 
Transmissibility mult applied based on fault 
orientation 
Fault 2= 1, Fault 3 = 0.001 

1, 2-1 Bad <10 >50 >100 >100 

 
Case 2 Mod LPZs perm 

Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults (“not truncated”) 
Transmissibility MULT applied based on fault 
orientation 
Fault 2= 1, Fault 3 = 0.5 

1, 2-1 Bad >20 30 >50 >50 

 
Case 3 Mod LPZs perm 

Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults (“not truncated”) 
Transmissibility MULT applied based on fault 
orientation 
Fault 2= 1, Fault 3 = 1 

1, 2-1 Bad >20 30 >50 >50 

 
Case 4 Mod LPZs perm 

Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults (“truncated”) 
Transmissibility MULT applied based on fault 
orientation 
Fault 2= 1, Fault 3 = 0.5 

1, 2-1 Bad >20 30 >50 >50 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 5 Mod LPZs perm 
Mult by 1e-01 
Mod matrix perm 
Mult Argenta layers by 3.2 
Includes all faults (“truncated”) 
Transmissibility MULT applied based on fault 
orientation 
Fault 2= 1, Fault 3 = 0.5 

1, 2-1 Bad >20 30 >50 >50 

SOS_HM_11032021 Case 6 Use of fault slip tolerance for fault 
transmissibility multiplier 

1, 2-1 
 

>50 >30 >50 >50 

 
Case 7 Use of fault slip tolerance (*0.5) for fault 

transmissibility multiplier 

  
>50 >30 >50 >50 

 
Case 8 Use of fault slip tolerance (*0.1) for fault 

transmissibility multiplier 

  
>50 >30 >50 >50 

 
Case 9 Use of fault slip tolerance (*0.01) for fault 

transmissibility multiplier 

  
>50 >30 >50 >50 

 
Case 10 Use of fault slip tolerance (*0.0001) for fault 

transmissibility multiplier 

  
>50 >30 >50 >50 

SOS_0716 Case 41 
(re-run) 

Case 41 → Best Match case  
Mod LPZs 
Mult by 1e-01 
Mod matrix perm 
Mult Mt. Simon layers (1-175) by 0.87 
Mult Argenta layers by 3.2 
Reduced the number of faults to 10 
faults 2 and 3 transmissibility mult =1, the 8 
other faults transmissibility mult = 1e-05 

1, 2-1 Fair match <20 <10 <30 <30 

 
Case 40b Rerun 40, includes filtering/eliminating faults 1, 2-1 Fair match – – – – 

 
Case 44 Rerun 40, includes filtering/eliminating faults 1, 2-1 Fair match – – – – 

 
case 42 Rerun 40, includes filtering/eliminating faults 1, 2-1 Fair match – – – – 

 
Case 45 Rerun 40, includes filtering/eliminating faults 1, 2-1 Fair match – – – – 

 
Case 46 Rerun 40, includes filtering/eliminating faults 1, 2-1 Fair match – – – – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 48 Mod LPZs 
Mult by 1e-01 
Mod matrix perm 
Mult Mt. Simon layers (1-175) by 0.87 
Mult Argenta layers by 3.2 
Included red box (~50ft height) and multiplied 
by 0.2 

1, 2-1 poor match <20 25 <40 <40 

 
Case 49 Mod LPZs 

Mult by 1e-01 
Mod matrix perm 
Mult Mt. Simon layers (1-175) by 0.87 
Mult Argenta layers by 3.2 
Included blue box (~50ft height) and multiplied 
by 0.2 

1, 2-1 poor match <20 25 <40 <40 

 
Case 50 Mod LPZs 

Mult by 1e-01 
Mod matrix perm 
Mult Mt. Simon layers (1-175) by 0.5 
Mult Argenta layers by 3.2 
Included red box (~50ft height) and multiplied 
by 0.2 

1, 2-1 poor match, over 
predicting 
pressure at all 
gauge points 

>100 >30 >30 >30 

 
Case 52 Mod LPZs 

Mult by 1e-01 
Mod matrix perm 
Mult Mt. Simon layers (1-175) by 0.87 
Mult Argenta layers by 3.2 
Included red box (~50ft height) and multiplied 
by 0 

1, 2-1 Poor match >100 >30 >30 >30 

 
Case 55 Mod LPZs 

Mult by 1e-01 
Mod matrix perm 
Mod red box (layer 165 -184) = CCS 1 well 
perm 
Mult Mt. Simon layers (1-184) by 0.87 
Mult Argenta layers by 3.2 

1, 2-1 Poor match >50 30 >50 >50 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 56 Mod LPZs 
Mult by 1e-01 
Mod matrix perm 
Mod red box (layer 165 -184) = CCS 1 well 
perm 
Mult Mt. Simon layers (1-184) by 0. 6 
Mult Argenta layers by 3.2 

1, 2-1 Poor match >50 30 >50 >50 

 
Case 57 Case 57 

Mod LPZs 
Mult by 1e-01 
Mod matrix perm 
Mod red box (layer 165 -184) = CCS 1 well 
perm 
Mult Argenta layers by 3.2 

1, 2-1 Poor match >50 30 >50 >50 

 
Case 1c  Old rel. perm curve 1-1, 2-

1 
Poor match <20 >40 100 100 

 
Case 1c_1 Mod rel. perm curve (Swirr => 50%) 

No mod to matrix or LPZs 
1-1, 2-
1 

Poor match <20 >40 100 100 

 
Case 1f_1 Mod rel. perm curve  

Mod matrix perm 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 1 (Kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 

 
Case 1g_1 Mod rel. perm curve  

Mod matrix perm 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 01 (kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 1f_2 Mod rel. perm curve  
Mod LPZs 
Mult by 0.1 (kh & kv) 
Mod matrix perm 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 1 (kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 

 
Case 1g_2 Mod rel. perm curve  

Mod LPZs   
Mult by 0.1 
Mod matrix perm 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 01 (kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 

 
Case 1f_3 Mod rel. perm curve (reduced Krw by 50% @ 

90% and 70% Sw)  
Mod LPZs 
Mult by 0.1 (kh & kv) 
Mod matrix perm 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 1 (kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 1g_3 Mod rel. perm curve (#same as case 1g_1) 
Mod LPZs 
Mult by 0.1 
Mod matrix perm 
Mod red box (layer 165 -184) = CCS 1 well 
perm (kh #not equal kv) 
Mult Mt. Simon layers (1-184) by 0. 8 (kh & 
kv) 
Mult Mt. Simon layers (174 only) by 0. 01 (kv 
only) 
Mult Argenta layers by 3.2 (kh & kv) 

1-1, 2-
1 

Poor match >50 >40 >70 >70 

 
Case 
1c_1_1 

Mod rel. perm curve (Swirr => 50%) 
No mod to matrix or LPZs 
0.678 cP to 1.1918 cP 

1-1, 2-
1 

Poor match >50 >50 50 50 

 
Case 1_2 Mod rel. perm curve (Swirr => 40%) 

Mod LPZs 
Mult by 0.1 (kh & kv) 
0.678 cP to 1.1918 cP 
Changed 1st perforation (to 25 ft) and 2nd 
perforation (to 10 ft) 

1-1, 2-
1 

Poor match >50 <20 <30 <30 

SOS040222 Case 
1c_1_1 (re-
run) 

Mod rel. perm curve (Swirr => 50%) 
No mod to matrix or LPZs 
0.678 cP to 1.1918 cP 
Updated perforation depth for WBs 
CCS1 to 1st perforation (to 10 ft) and 2nd 
perforation (to 2 ft) 

 
Poor match >50 >50 50 50 

 
Case 1_2 
(re-run) 

Mod rel. perm curve (Swirr => 40%) 
0.678 cP to 1.1918 cP 
Changed 1st perforation (to 25 ft) and 2nd 
perforation (to 5 ft) 
Mod LPZs 
Mult by 0.1 (kh & kv) 
Updated perforation depth for WBs 

 
Poor match >50 <20 <30 <30 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 1_4 Rel. perm curve (Swirr => 40%) 
Used fluid properties from SF 
Mod LPZs 
Mult by 0.1 (kh & kv) 
1st perforation (to 25 ft) and 2nd perforation (to 
5 ft) 

 
Good match. 
Though there is a 
delayed pressure 
response at WB1, 
the match 
observed is good 

<50 <10 <20 <20 

 
Case 1_5 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod LPZs 
Mult by 0.1 (kh & kv) 
Mod matrix 
Mult by 0.87 
1st perforation (to 25 ft) and 2nd perforation (to 
5 ft) 

 
Good match, but 
over predicts at 
CCS1 

>50 <10 <10 <10 

 
Case 1_6 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod LPZs 
Mult by 0.1 (kh & kv) 
Mod matrix 
Mult by 0.87 
1st perforation (to 25 ft) and 2nd perforation (to 
10 ft) 
Rather than moving the base of the 2nd 
perforation up, actual base (as recorded in the 
field) was used 

 
Good Match <50 <10 <20 <20 

 
Case 1_7 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod LPZs 
Mult by 0 (kv only) 
1st perforation (to 25 ft) and 2nd perforation (to 
10 ft) 

 
poor match – – – – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 1_7k Used fluid properties from SF 
Mod matrix 
Mod south of CCS1 (layer 165 -184) = CCS 1 
well perm (kh #not equal kv) 
Mod model 
Mult by 0 (kv) 
1st perforation (to 25 ft) and 2nd perforation (to 
10 ft) 

 
poor match – – – – 

 
Case 1_8 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod LPZs 
Mult by 0 (kv only) 
1st perforation (to 10 ft) 

 
poor match – – – – 

 
Case 1_8k Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod matrix 
Mod south of CCS1 (layer 165 -184) = CCS 1 
well perm (kh #not equal kv) 
Mod model 
Mult by 0 (kv) 
1st perforation (to 10 ft) 

 
poor match – – – – 

 
Case 1_8a Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Mod Matrix 
Mult by 0 (kv only) 
1st perforation (to 10 ft) 

 
poor match – – – – 

SOS042022 Case 1 Rel. perm curve (Swirr => 40%) 
Used fluid properties from SF 
Change LPZ (between CCS1 and VW1) to 
268mD 
1st perforation (to 10 ft) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 2 Rel. perm curve (Swirr => 40%) 
Used fluid properties from SF 
Hypothetical fault (between CCS1 and VW1) à 
kh = 0.1, kv =0.2 
1st perforation (to 10 ft) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 3 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Modified matrix (500 ft south of CCS 1) à 
assigned VW1 perm values (base) 
1st perforation (to 10 ft) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 4 (Remodeled in case 5, for case 1 kv/kh =0.5) 

Combined case 1 and 3 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 6 Rel. perm curve (Swirr => 40%) 

Used fluid properties from SF 
Hypothetical fault (between CCS1 and VW1) à 
kh = 0, kv =0 
1st perforation (to 10 ft) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 7 Combined case 1 and 2 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 

– – – – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi) 

saturation at the 
end of the 3rd 
month 

 
Case 8 Combined case 1, 2, and 3 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 9 Combined case 1 and 3 

Extend LPZ window down and modify Kh value 
Modified matrix (300 ft south CCS1) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 10 Extended LPZ window down and modified Kh 

value 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

 
Case 11 Modified matrix (200 ft south CCS1) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 9a Combined case 1 and 3 
Extended LPZ window up & down direction and 
modified Kh  
Modified matrix (300 ft south CCS1) 

 
poor match. 
Simulation was 
focused on 
improving the 
match with gas 
saturation at the 
end of the 3rd 
month 

– – – – 

SOS05312022 Case 1 Base case 1-1, poor match >50 <20 50 50 
 

Case 2 Modified LPZ window between CCS1 and 
VW1 à Cube shaped high perm feature (~1000 x 
1000 x 50 ft.) 
Reduced perm of entire Mt. Simon by 20% 

1-1, Fair match. Poor 
match at CCS1 
and WB1, but 
good at WB2 and 
WB3 pressure 
gauge points 

>50 >20 <10 <10 

 
Case 3 Reduced perm of entire Mt. Simon by 20% 1-1, poor match. 

Overpredicted 
pressure at 
CCCS1. Pressure 
underpredicted at 
WB2 and WB3 

>100 <10 25 25 

 
Case 4 Modified LPZ window between CCS1 and 

VW1 à Cube shaped high perm feature (~1000 x 
1000 x 50 ft.) 

1-1, poor match 
observed at WB2 
and WB3 pressure 
gauge points 

<50 <10 <30 <30 

 
Case 5 Mimicked fracture swarm in the model by 

assigning high perm (10 D) within Argenta 
interval. High perm is a row of cells from CCS1 
to WB1 

1-1, poor match >100 >20 >40 >40 

 
Case 6 Mimicked fracture swarm and 1 fault in the 

model by assigning high perm (10 D) that cuts 
across parts of lower Mt. Simon and Argenta. 
High perm is a column of cell (next to CCS1) 
and a row of cells from CCS1 to WB1. 

1-1, poor match >50 >200 >50 >50 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 7 Mimicked fracture swarm and 2 faults in the 
model by assigning high perm (10 D) that cuts 
across parts of lower Mt. Simon and Argenta. 
High perm is 2 columns of cell (1 next to CCS1 
and the other next to VW1) and a row of cells 
from CCS1 to WB1. 

1-1, poor match >50 >150 >50 >50 

 
Case 9 Created LGR around CCS1 and VW 1, in order 

to represent fault 
Fracture Swarm --> 10D, Faults -->10D, Used 2 
faults that were seismically interpreted, faults 2 
& 3 

1-1, poor match >100 >50 >50 >50 

 
Case 10 Created LGR around CCS1 and VW 1, in order 

to represent fault 
Fracture Swarm --> 10D, Faults -->10D 

1-1, poor match >50 >100 <50 <50 

 
Case 11 Created LGR around CCS1 and VW 1 in order 

to represent fault 
Fracture Swarm --> 10D, Faults -->10D, 
reduced lateral extent of the fracture swarm, 
such that it does not go beyond the vertical 
faults 

1-1, poor match – – – – 

 
Case 12 Created LGR around CCS1 and VW 1, in order 

to represent fault 
Fracture Swarm --> 2D, Faults -->2D 

1-1, poor match >100 >70 >40 >40 

 
Case 13 Created LGR around CCS1 and VW 1, in order 

to represent fault 
Fracture Swarm --> 10D, Faults -->10D 

1-1, poor match >100 >70 >40 >40 

 
Case 1b Base case, Constant BHP rate 1-1, poor match – >70 >40 >40 

 
Case 2b Modified LPZ window between CCS1 and 

VW1 à Cube shaped high perm feature (~1000 x 
1000 x 50 ft.) 
Reduced perm of entire Mt. Simon by 20% 

1-1, poor match – >70 20 20 

 
Case 3b Reduced perm of entire Mt. Simon by 20% 1-1, poor match – >70 20 20 

 
Case 4b Modified LPZ window between CCS1 and 

VW1 à Cube shaped high perm feature (~1000 x 
1000 x 50 ft.) 

1-1, poor match – >70 30 30 
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Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 14_1 Similar to case 9. Created LGR around CCS1 
and VW 1, in order to represent fault 
Fracture Swarm --> 10D, Faults -->10D. Did not 
use 2 faults that were interpreted from seismic 
data, faults 2&3 

1-1, poor match – >100 >50 >50 

 
Case 15 Constant CCS1 BHP constraint. Created LGR 

around CCS1 and VW 1, in order to represent 
fault 
Fracture Swarm --> 10D, Faults -->1000 mD. 

1-1, poor match – >100 >50 >50 

 
Case 16 Constant CCS1 BHP constraint. Created LGR 

around CCS1 and VW 1, in order to represent 
fault 
Fracture Swarm --> 1000 mD, Faults -->1000 
mD. 

1-1, poor match – >100 >50 >50 

 
Case 17 Constant CCS1 BHP constraint. Created LGR 

around CCS1 and VW 1, in order to represent 
fault 
Fracture Swarm --> 1000 mD, Faults -->1000 
mD. 

1-1, poor match – >100 >50 >50 

 
Case 18 Constant CCS1 BHP constraint. Created LGR 

around CCS1 and VW 1, in order to represent 
fault 
Fracture Swarm --> 100 mD, Faults -->100 mD. 

1-1, poor match – >100 >50 >50 

 
Case 19 Constant CCS1 BHP constraint. Created LGR 

around CCS1 and VW 1, in order to represent 
fault 
Fracture Swarm --> 100 mD, Faults -->1000 
mD. 

1-1, poor match – >100 >50 >50 

SOS_072922 Case 0 
(base case) 

Base Case. Fractured crystalline basement 
added to the base of the model 

1-1, poor match >100 >50 >50 >50 

 
Case 1 Perm of Argenta mult with 3.2 1-1, poor match >100 >50 >50 >50 

 
Case 2 Mod case 1, used constant BHP 1-1, poor match – >50 >100 >100 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 3 Argenta => Perm *3.2 
Constant CCS1 BHP 
Mt. Simon => Perm * 0.8 

1-1, poor match – >50 >100 >100 

 
Case 4 Argenta => Perm *3.2 

Constant CCS1 BHP 
Mt. Simon => Perm * 0.8 
Basement => Perm *0.1 

1-1, poor match – >50 >100 >100 

 
Case 5 Included faults that extend to basement 

Along fault (transmissibility = 1) & Across fault 
(transmissibility = 0.1) 

1-1, poor match – >100 >50 >50 

 
Case 6 Included faults that extend to basement 

Along fault (transmissibility = 1) & Across fault 
(transmissibility = 0.1) 
Mod PCB model * 0.1 

1-1, poor match >100 >50 >50 >50 

 
Case 7 Included faults that extend to basement 

Along fault (transmissibility = 1) & Across fault 
(transmissibility = 0.1) 
Mod PCB model * 0.001 

1-1, poor match >100 >50 >50 >50 

SOS_072922U Case 2 Added faults that extend into basement 
In Mt. Simon and Argenta Along fault perm = 1 
md & across fault = rock matrix perm 
In PCB, Along fault perm = 100 md & across 
fault = rock matrix perm 

1-1, poor match 
    

 
Case 3 Added faults that extend into basement 

In Mt. Simon, Along fault perm = 1 md & 
across fault = rock matrix perm 
In Argenta & PCB, Along fault perm = 100 md 
& across fault = rock matrix perm 

1-1, poor match 
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Database (VDB) 
study 

Case  Description Perf Note Mismatch (average) between 
predicted and observed 

CCS1 
(~psi) 

WB1 
(~psi) 

WB2 
(~psi) 

WB3 
(~psi)  

Case 4 Reduced basement perm by 0.01 
In Mt. Simon, Along fault perm = 1 md & 
across fault = rock matrix perm 
In Argenta & PCB, Along fault perm = 100 md 
& across fault = rock matrix perm 

1-1, poor match 
    

 
Case 5 Reduced Argenta perm by dividing by 3 

In Mt. Simon, Along fault perm = 1 md & 
across fault = rock matrix perm 
In Argenta & PCB, Along fault perm = 100 md 
& across fault = rock matrix perm 

1-1, poor match 
    

 
Case 6 Reduced Argenta perm by dividing by 3 * 

Reduced basement perm by 0.01 
In Mt. Simon, Along fault perm = 1 md & 
across fault = rock matrix perm 
In Argenta & PCB, Along fault perm = 100 md 
& across fault = rock matrix perm 

1-1, poor match 
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APPENDIX C: LOG OF SIMULATION CASES WITH GEOCELLULAR MODEL VERSION 7  

Below is a log of cases that were simulated using the geocellular model version 7. 
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Short note 

SOS_072922 x x x x x x x x x x x x x x x x x x x x  

SOS_072922_1 x x 3.2 x x x x x x x x x x x x x x x x x  

SOS_072922_2 x x x x x x x x x x x x x x x x x ✓ x x  

SOS_072922_3 x 0.8 3.2 x x x x x x x x x x x x x x ✓ x x  

SOS_072922_4 x 0.8 3.2 0.1 x x x x x x x x x x x x x ✓ x x  

SOS_072922U_3 x x x x x x x x x x x x x x x x x ✓ 1 100  

SOS_072922U_4 x x x 0.01 x x x x x x x x x x x x x ✓ 1 100  

SOS_072922U_5 x x 0.3 x x x x x x x x x x x x x x ✓ 1 100  

SOS_072922U_6 x x 0.3 0.01 x x x x x x x x x x x x x ✓ 1 100  

SOS_072922U_7 x x 0.3 0.01 x x x x x x x x x x x x x x 1 100  

SOS_072922U_8 x x 0.3 0.01 x x x x x x x x x x x x x ✓ 1 100 
Extended fault 2 
NW by 1 cell 

SOS_072922U_9 x x 0.3 0.01 x x x x x x x x x x x x x ✓ 1 100 
Extended fault 2 
NW by 2 cells 

SOS_072922U_10 x x 0.3 0.01 x x x x x x x x x x x x x ✓ 1 100 
Extended fault 2 
NW by 3 cells 

SOS_072922U_11 x x 0.3 0.01 x x x x x x x x x x x x x ✓ 1 100 
Extended fault 2 
NW by 4 cells 

SOS_072922U_12 x x x 0.01 x x x x 100 x x x x x x x x ✓ 1 100 
Designed N-S 
fault as fault 2 
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Short note 

SOS_072922U_13 x x x 0.01 x x x x 100 x x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 2 

SOS_072922U_14 x x x 0.01 x x x x 1000 x x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 3 

SOS_072922U_15 x x x 0.01 x x x x 1000 x x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 4 

SOS_072922U_16 x x x 0.01 x x x x 1000 x x x x x x x x ✓ 1 1000 
Made Kx = Ky = 
Kz 

SOS_072922U_17 x x x 0.01 x x x x 10000 x x x x x x x x ✓ 1 1000  

SOS_072922U_18 x x x 0.01 x x x x 1 x x x x x x x x ✓ 1 1000  

SOS_072922U_19 x x x 0.01 x x x x 1 x x x x x x x x ✓ 1 1000 
Made Kx = Ky = 
Kz 

SOS_072922U_20 x x 0.3 0.01 x x x x 1 x x x x x x x x ✓ 1 1000 
reran 
SOS_072922U_8 

SOS_072922U_21 x x 0.3 0.01 x x x x 1 x x x x x x x x ✓ 1 1000 
reran 
SOS_072922U_9 

SOS_072922U_22 x x 0.3 0.01 x x x x 1 x x x x x x x x ✓ 1 1000 
reran 
SOS_072922U_10 

SOS_072922U_23 x x 0.3 0.01 x x x x 1 x x x x x x x x ✓ 1 1000 
reran 
SOS_072922U_11 

SOS_072922U_24 x x 0.3 0.01 x x x x 1000 x x x x x x x x ✓ 1 1000  

SOS_072922U_25 x x 0.3 0.01 x x x x 1000 x x x x x x x x ✓ 1 1000 
Extended fault 2 
NW by 6 cells 

SOS_072922U_26 x x 0.3 0.01 x x x x 10000 x x x x x x x x ✓ 1 10000  

SOS_072922U_27 x x 0.3 0.01 x x x x 10000 x x x x x x x x ✓ 1 1000  

SOS_0922U_1 x x 1.0 0.01 x x x x 1000 10 x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 2 
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Short note 

SOS_0922U_2 x x 1.0 0.01 x x x x 1000 10 x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 3 

SOS_0922U_3 x x 1.0 0.01 x x x x 1000 0.1 x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 4 

SOS_0922U_4 x x 1.0 0.01 x x x x 1000 0.01 x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 5 

SOS_0922U_5 x x 1.0 0.01 x x x x 5000 0.01 x x x x x x x ✓ 1 1000 
Designed N-S 
fault as fault 6 

SOS_0922U_6 x x 1.0 0.01 x x x x 5000 0.01 x x x x x x x ✓ 1 1000  

SOS_0922U_7 x x 1.0 0.01 x x x x 2500 0.01 x x x x x x x ✓ 1 1000  

SOS_0922U_8 x x 1.0 0.01 x x x x 2500 0.01 x x x x x x x ✓ 1 1000  

SOS_0922_13 1 1.6 1.0 x 
1E-
05 

1.0 1.0 45 x x x x x x x x x ✓ x x  

SOS_0922_14 1 1.7 1.0 x 
1E-
05 

1.0 1.0 45 x x x x x x x x x ✓ x x  

SOS_0922_16 1 2.0 1.0 x 
1E-
05 

1.0 1.0 45 x x x x x x x x x ✓ x x  

SOS_0922_17 0.1 2.0 1.0 x 
1E-
05 

1.0 1.0 10 x x x x x x x x x ✓ x x  

SOS_0922_18 0.1 1.4 1.0 x 
1E-
05 

1.0 1.0 45 x x x x x x x x x ✓ x x  

SOS_0922_19 0.1 1.6 1.0 x 
1E-
05 

1.0 1.0 15 x x x x x x x x x ✓ x x  

SOS_0922_20 0.1 1.7 1.0 x 
1E-
05 

1.0 1.0 10 x x x x x x x x x ✓ x x  

SOS_0922_21 0.1 1.7 1.0 x 
1E-
05 

1.0 1.0 10 x x x x x x x x x ✓ x x  

SOS_0922_22 0.1 1.7 1.0 x 
1E-
05 

1.0 1.0 15 x x x x x x x x x ✓ x x  
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Short note 

SOS_0922_23 0.1 1.7 1.5 1E-03 
1E-
05 

1.0 1.0 20 x x x x x x x x x ✓ x x  

SOS_0922_24 0.1 1.7 1.5 1E-03 
1E-
05 

1.0 1.0 20 2000 2000 x x x x x x x ✓ x x  

SOS_0922_25 0.1 1.7 1 1E-03 
1E-
05 

1.0 1.0 20 2500 0.01 x x x x x x x ✓ x x  

SOS_0922_26 0.1 1.7 1 1E-03 
1E-
05 

1.0 1.0 20 2500 x x x x x x x x ✓ x x  

SOS_0922_27 0.1 1.7 1 1E-03 
1E-
05 

1.0 1.0 20 5000 0.01 x x x x x x x ✓ x x  

SOS_0922_28 0.1 1.7 1 1E-03 
1E-
05 

1.0 1.0 20 1000 0.01 x x x x x x x ✓ x x  

SOS_0922_29 0.1 1.7 1 1E-01 
1E-
05 

1 1 20 5000 0.01 x x x x x x x ✓ x x  

SOS_0922_30 0.1 1.7 1 1E-01 
1E-
05 

1 1 20 5000 10 x x x x x x x ✓ x x  

SOS_0922_31 0.1 1.7 1 1 
1E-
05 

1 1 20 5000 10 x x x x x x x ✓ x x  

SOS_0922_32 0.1 1.7 1 1.5 
1E-
05 

1 1 20 5000 10 x x x x x x x ✓ x x  

SOS_0922_33 0.1 1.7 1 5 
1E-
05 

1 1 20 5000 10 x x x x x x x ✓ x x  

SOS_0922_34 0.1 1.7 1 1 
1E-
05 

1 1 15 5000 1 x x x x x x x ✓ x x  

SOS_0922_35 0.1 1.7 1 1 
1E-
05 

1 1E-05 15 5000 1 x x x x x x x ✓ x x  

SOS_0922_36 0.1 1.7 1 1 
1E-
05 

1 1E-05 15 5000 1 x x x x x x x ✓ x x  

SOS_0922_37 0.1 1.7 1 1 
1E-
05 

1 1E-05 20 5000 1 x x x x x x x ✓ x x  
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Short note 

SOS_0922_38 0.1 1.7 1 1 
1E-
05 

1 1E-05 10 5000 1 x x x x x x x ✓ x x  

SOS_0922_39 0.1 1 1 1 
1E-
05 

1 1E-05 10 5000 1 x x x x x x x ✓ x x  

SOS_0922_40 0.1 1 1 1 
1E-
05 

1 1E-05 10 10,000 1 x x x x x x x ✓ x x  

SOS_0922_41 0.1 1 1 1 
1E-
05 

1 1E-05 10 10,000 1 F2 x x x x x x ✓ x x  

SOS_0922_42 0.1 1 1 1 
1E-
05 

1 1E-05 15 10,000 1 x x x x x x x ✓ x x  

SOS_0922_43 0.1 1 1 1 
1E-
05 

1 1E-05 15 10,000 1 F2 x x x x x x ✓ x x  

SOS_0922_44 0.1 1.4 1 1 
1E-
05 

1 1E-05 15 10,000 1 x x x x x x x ✓ x x  

SOS_0922_46 0.1 1 1 1 
1E-
05 

1 1E-05 15 10,000 1 x ✓ x x x x x ✓ x x  

SOS_0922_47 0.1 1 1 1 
1E-
05 

1 1E-05 15 10,000 1 F2 ✓ x x x x x ✓ x x  

SOS_0922_48 0.1 1.1 1 1.4 
1E-
05 

1 1E-05 15 10,000 1 F2 ✓ x x x x x ✓ x x  

SOS_0922_49 0.5 1.1 1 1.4 
1E-
05 

1 1E-05 15 10,000 1 F2 ✓ x x x x x ✓ x x  

SOS_0922_50 0.3 1.1 1 1.6 
1E-
05 

1 1E-05 15 10,000 1 x ✓ x x x x x ✓ x x  

SOS_0922_51 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 10,000 5,000 x ✓ x x x x x ✓ x x  

SOS_0922_52 0.3 1.1 0.1 2 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_0922_52 0.3 1.1 0.1 100 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  
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Short note 

SOS_0922_53 0.3 1.1 0.1 50 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_0922_54 0.3 1.1 0.1 10 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_110922_1 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_110922_1_1 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_110922_1_0 0.3 1.1 0.1 20 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS-110922_2 0.3 1.1 0.5 2 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_110922_3 0.3 1.1 0.1 1.6 
1E-
05 

1 1E-05 15 10,000 1 x ✓ x x x x x ✓ x x  

SOS_110922_5 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_6 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 5,000 5,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_7 0.3 1.1 1 2 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_8 0.3 1.1 2 1 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_9 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_10 0.3 1.1 2 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_11 0.3 1.1 1 2 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_12 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  
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Short note 

SOS_110922_12 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_12_0 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 1,000 1,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_12_1 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x Kz only 

SOS_110922_12_1_
1 

0.3 1.1 1 1 
1E-
05 

1 1E-05 15 1,000 1,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_13 0.3 1.1 0.1 2 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_14 0.3 1.1 
0.0
1 

2 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_15 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 x x x x x x x x x ✓ x x  

SOS_110922_16 0.3 1.1 1 2 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ F2 F2 ✓ ✓ ✓ ✓ x x  

SOS_110922_17 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ x x x x x ✓ x x  

SOS_110922_18 0.3 1.1 1 2 
1E-
05 

1 1E-05 15 2,000 2,000 F2 ✓ x x x x x ✓ x x  

SOS_110922_18_0 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 10,000 
10,00

0 
x ✓ x x x x x ✓ x x  

SOS_110922_19 0.3 1.1 0.1 1 
1E-
05 

1 1E-05 15 100 100 F2 ✓ F2 F2 x x x ✓ x x  

SOS_110922_19_1 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 100 100 F2   ✓       F2 F2 x x x ✓ x x  

SOS_110922_20 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 500 500 F2 ✓ F2 F2 x x x x x x  

SOS_110922_21 0.3 1.1 1 1 
1E-
05 

1 1E-05 15 300 300 F2 ✓ F2 F2 x x x x x x  
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Short note 

SOS_110922_22 0.3 1.1 1 1 1E-
05 

1 1E-05 15 300 10 F2 ✓ F2 F2 x x x x x x PCB zone, K=300 
mD 

SOS_110922_23 0.3 1.1 1 1 1E-
05 

1 1E-05 15 300 x F2 ✓ F2 F2 x x x x x x PCB zone, K=300 
mD 

SOS_110922_24 0.3 1.1 1 1 1E-
05 

1 1E-05 15 1000 1 F2 ✓ F2 F2 x x x x x x PCB zone, 
K=1000 mD 

SOS_110922_25 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 1 F2 ✓ F2 F2 x x x       PCB zone, 
K=1000 mD 

SOS_110922_26 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 1 F2 ü F2 F2 x x x         

SOS_110922_27 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F2 ü F2 F2 x x x ü – –   

SOS_110922_28 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F2 ü F2 F2 x x x ü – – Made fault _9 
trans =1 

SOS_110922_29 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 2000 0.1 F2 ü F2 F2 x x x ü – – Made fault _9 
trans =1 

SOS_110922_30 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 2000 0.1 F2 ü F2 F2 x x ü ü – – Made fault _9 
trans =2 

SOS_110922_31 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 2000 0.1 F2 ü F2 F2 x x ü ü – – Made fault _9 
trans =3 

SOS_110922_32 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 2000 0.1 F2 ü F2 F2 x x ü ü – – Made fault 9 trans 
= 1 & connected 
clusters 10 and 15 
faults 

SOS_110922_33 0.3 1.1 0.1 1 1E-
05 

1 1E+0
0 

15 2000 0.1 F2 ü F2 F2 F2 F2 F2 ü – – Made fault 9 trans 
= 1 & connected 
clusters 10 and 15 
faults 

SOS_110922_34 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F2 ü F2 F2 F2 F2 F2 ü – – Added faults 1, 
10, and 17 and 
assigned F2 perm 
values 
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Short note 

SOS_110922_35 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F2 ü F2 F2 F2 F2 F2 ü – – Added all faults 
interpreted from 
microseismic 
clusters 

SOS_110922_36 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F3 ü F2 F2 F2 F2 F2 ü – – Added all faults 
interpreted from 
microseismic 
clusters, and 
extended N-S and 
E-W long faults to 
model boundary 

SOS_110922_37 0.3 1.1 0.1 1 1E-
05 

1 1E-05 15 1000 0.1 F2 ü F2 F2 x x x ü – – Cluster fault perm 
(diagonal ones)= 
500 mD 
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